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Abstract 

The study focuses on long-term performances of MSWI bottom ash used as a reinforcement layer in an 8 

years old road-construction. Long term properties may change under the combined effects of loading, 

climate- and chemical conditions. Characterization of the chemical changes in aged MSWI bottom ash is 

thus of prime interest as secondary alteration is a key process for the ageing of these kind of materials. The 

MSWI bottom ash in this study comprises a 60 meter-long segment of a test road, which was sampled eight 

years after construction. The objective of the sampling was to obtain a very low degree of disturbance to 

the application’s in-situ properties. Access to the sub-base was achieved by removing the surface course 

and unbound base course, leaving the top surface of the unbound sub-base reachable.  Epoxy impregnated 

slabs were also used for a micro textural and chemical characterization by SEM/EDS of the bottom ash 

sub-base layer. No cracks that imply movements or rotation of particles in the road construction or other 

disturbances as due to the sampling process were found. This undisturbed material made it possible to study 

chemical processes and structural changes that have been ongoing in the test road since it was constructed. 

The SEM/EDS analysis showed that most particles had reacted to some extent and that reaction-products 

surrounding aluminum particles were undisturbed. Partly decomposed particles indicate that the reaction 

(that has been ongoing since the road was constructed) has been slow and incomplete because of the 

coexistence of metallic aluminum and aluminum hydroxide. It also shows that the material not has been 

subjected to any physical influence during these 8 years that otherwise would have moved the reaction 

products from the particles that originally have reacted. Clay mineralization that indicates long-term ageing 

of the ash material was also detected by XRPD. The pH of the material was lower than 8.5, indicating a 

mature degree of carbonization. It is also concluded from the study that chemical reactions consistent with 

this maturity have been taking place in the road construction as indicated by textural relationships. 

Keywords: MSWI bottom ash, aged, chemical alteration, microstructure, (long-term) stability 

1.0 Introduction 

1.1 Background 

Contemporary community development is accompanied with a growing awareness of costs; 

e.g. regarding environmental and economic aspects of non-renewable resources or as a shared 

responsibility between industry and the end user to maintain an acceptable standard of living. One 

expression of this awareness is to look upon “waste” as a resource, fit for various use within the 

growing community. Thus “waste” or rather residues such as crushed concrete, various steel slags 

and ash materials, are increasingly looked upon as a material source comparable to natural 

resources. Many kinds of residues have been tested and proved as construction materials within 

the infrastructural sector, particularly true within pavement design. Although recycling 

technology has now been in use for many years, there are still technical issues that need to be 

studied in further detail. One of the more important issues is the technical and environmental 

long-term performance of residues [1-2].  The current understanding of the long-term properties 

and ageing effects is insufficient in spite of several years of research on residues and their 

applicability [3-4]. Material properties for a wide range of residues are not constant over the full 

service life. In the short term they will change during production, storage, transport and laying. In 
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the long term, they will change under the combined effects of loading conditions, ageing, climate 

and additives (e.g. de-icing products). Research has so far been devoted to mechanical or 

environmental properties, each evolving separately. It has been shown that residues are generally 

more sensitive to degradation and more prone to leaching than the natural aggregates that are 

normally used [5]. The prime technical factors influencing use in roads are material stiffness and 

stability, which are determined by particle size and microstructure. Residues age in roads and this 

ageing affects pH, particle size and microstructure of the materials. These ageing reactions may 

be predicted through study of pH, gas fluxes, redox conditions, climate, mineralogy and the 

matrix surrounding particles together with leaching and stability.  

Long-term changes in this context are considered to correlate with a road construction’s 

technical service life, e.g. for an unbound application up to 40 years. It is therefore understood 

that to quantify changes related to material properties – and in particular to understand any 

changes in technical performance – that are active over a road’s service life, a sampling technique 

that acknowledges microstructural characteristics is of uttermost importance. Characterization of 

the macrostructure and microstructure is of prime interest as secondary alteration is a key process 

to understand more about ageing of MSWI in this environment [6]. This requires a sampling 

technique that ensures undisturbed samples for a thorough analysis of the macrostructure and 

microstructure of the MSWI bottom ash sub-base layer. Any changes in a long-term perspective 

are taking place in situ, a fact that underlines the importance of acquiring undisturbed samples. 

Changes in material properties may include a wide array of ageing effects such as influences on 

pH, pore solution, particle size, mineralogy and microstructure. Efforts have previously been 

made in Sweden as part of the Vändöra project to extract undisturbed samples from a test road in 

the Linköping area of Sweden constructed with MSWI bottom ash. In the Vändöra project drilling 

without water cooling was used to obtain undisturbed samples. It was reported from the Vändöra 

project that disturbance of the samples as due to the drilling could not be excluded [7].  

In the present study a new stabilizing sampling technique was applied and used for the first 

time to acquire undisturbed in-situ samples of MSWI bottom ash used in a sub-base of a 60 m test 

road section. Sampling provided stabilized pillars of bottom ash that made it possible to obtain 

samples without structural disturbances. Bottom ash is the slag-like material produced by the 

incineration of municipal waste and is predominantly composed of a glassy constituent, which 

includes inherited manufactured glasses and glasses formed during incinerationincineration [8]. It 

has in earlier studies been shown that during combustion carbonates such as calcite, dolomite, 

anchorite and siderite decompose with the release of carbon dioxide (g) and this will eventually 

lead to the formation of lime or periclase. In the combustion chamber, pyrites oxidize and lose 

SO2 (g) forming sulphates, and iron oxides such as hematite and magnetite. Aluminium silicates 

may melt or decompose to form glass or mullite [6]. Bottom ash from municipal waste plants has 

a complex and potentially reactive matrix and some high-temperature phases formed in the 

combustion chamber are metastable and may become transformed in to more thermodynamically 

stable phases at ambient conditions [9]. Studies have also shown that the alteration processes of 

bottom ash may involve the formation of calcium hydrate phases [10]. The reactions are 

exothermic, which means that they are reactive under ambient conditions. The following 

alteration reactions may occur in fresh bottom ash: Dissolution/precipitation of salts, glass 

corrosion, hydration and oxidation, slaking of lime, and hardening reactions like cementation, 

carbonation and pozzolanic reactions. Some of these processes may involve the formation of 

crystalline phases [11-13]. 

1.2 Objectives 

The present paper is one of three papers from a project aiming at the development of a 

multi-scale, multi-method approach to the assessment of long-term properties of residues used in 

road constructions [1-2]. The two previous papers concerned the development of methods for an 

accelerated ageing and the second paper was giving an overview of the project methodology for 

different kind of industrial residues. This study provides the basic results from the material 

characterization of MSWI bottom ash aiming at to identify the crucial processes of ageing related 
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to the usefulness of MSWI bottom ash in a road construction. The novelty of the study results is 

mainly due the innovative sampling method that made it possible to relate micro structure and 

chemical processes to the meso- and macro- structure of the road base. This in turn made it 

possible to study and evaluates the long term chemical and physical behavior of MSWI bottom 

ash in a 10 years old pilot road construction with the aim to investigate the possibility to use and 

recycle MSWI bottom ash materials in road constructions. 

2.0 Materials and Methods 

2.1 Material 

The bottom ash in this investigation originally came from Sysavs municipal waste plant in 

Malmö, southern Sweden, and had been piled outdoors before being used in the test road 

construction. It was not possible to pinpoint the accurate age of the ash before use as a sub-base 

layer in the road. Based on the properties of the ash it was assumed that it must have been stored 

at least six months to reach that degree of maturity, but it could have been stored for up to four 

years. After storage, in 1998, the ash was used as sub-base in a 60-metre stretch of the Törringe 

road in the Malmö area. The pH of the bottom ash used as a road material was within the range of 

7.5 - 8 and the water content was around 0.5 liters / kg ash material [2,14]. The sub-base thickness 

was 465 mm and the total road pavement 745 mm.  

2.2 Sampling and sample preparation 

Sampling was performed in the Törringe road in September 2006. A pillar measuring 

approximately 300x500x460 mm
3
 (LxWxH in relation to the orientation of the road) of the MSWI 

bottom ash sub-base layer was stabilized in field using epoxy glue and a coating of wire net and 

gypsum plaster (Fig. 1). This sample covered the depth of the sub-base except for approximately 

5 cm at the top and bottom. Prior to laboratory preparation, the specimen was further stabilized by 

freezing to -25°C. The frozen sample was cut into three slabs about 5 cm thick, measuring 34x17 

cm
2
 which were dry-sawn with a diamond saw from the sample. These slabs were vacuum-

impregnated using epoxy glue containing a fluorescent dye. The impregnated slabs were glued to 

a glass slice and polished flat. This resulted in an epoxy-impregnated flat polished slab with a size 

close to that of the depth of the bottom ash that enabled the undisturbed ash to be studied. The 

samples used for SEM and XRD analysis were selected from one of these samples. The samples 

were then selected in order to identify variation in relation to the depth in sub-base. However no 

difference was documented. The drying process may cause shrinkage cracks but very few such 

cracks were observed. The preparation technique used has been developed for brittle materials 

and causes no cracking in the sample due to mechanical damage. 

 

 

Figure 1. Sampling of in-situ specimens of bottom ash using mesh and gypsum. 
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2.3 SEM/EDS - analyses 

The samples were analyzed using Scanning Electron Microscopy – Energy Dispersive 

Spectrosopy, (SEM/EDS). In this study we were using a low-vacuum scanning electron 

microscopy (Jeol LV5310) with Link Inca EDS equipment for micro-chemical analyses and 

element mapping. It is possible by this method to define a very small area for the analyses. The 

major constituents identified on the plane polished slabs were selected for analysis. Mineral 

reactions and zonation were investigated through element mapping.  

2.4  XRPD -analyses 

Samples were analyzed with X-ray powder diffraction (XRPD). In this study analyses were 

performed with a Philips PW 1710 diffractometer, equipped with a monochromator and coupled 

to a computer to obtain the X-ray data. Cu Ka radiation (50kV, 25mA; . = 1.5418Å) was used. All 

samples were mounted with ethanol on a Si plate to minimize background interference. The 

phases were identified from X-ray diffractograms obtained between 5 and 70 2-theta, at a scan-

speed of 0.5 2-theta min-1. The diffractograms were thereafter compared with published 2-theta 

values of known minerals. 

3.0 Results  

3.1 Quantitative macro analysis  

The composition of the three plane polished samples was determined through point 

counting on a macroscopic scale using a stereo microscope for particle identification. Particles 

with a diameter larger than 2 mm were counted. Observation in stereo microscope revealed no 

significant differences in composition or amount of different types of particles between the three 

different slabs or different levels in the slabs (Fig. 2).  No macro-scale cracks or movements were 

observed under the stereo microscope nor during the field sampling on site. The shapes of the 

macro-pores were irregular although not elongated. 

 

 

 

Figure 2. Epoxy-impregnated flat-polished slab measuring approximately 34x17 cm
2
. The figures 

in A, B, C and D confirm undisturbed ash samples that could be studied from micro to decimeter 

scale. In B and C it can be seen how aluminum metal reacts to form white aluminum hydroxides. 

The yellow color comes from the fluorescent dye in the epoxy. These are both examples of ageing 

reactions that have occurred around solid phases. It can be noted that they have not been deformed 

due to mechanical loads from the traffic. D shows the initial reaction of a beige sulphur-

containing particle. B, C and D can be identified at the corresponding levels in figure A. 
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3.2 SEM/EDS analyses  

Subsamples were selected from the undisturbed polished slabs. The emphasis of this study 

is on particles larger than approximately 10 microns and their reaction products. The reason for 

this is that the smaller particles which constitute a partly solidified bulk of the matrix are too 

small for chemical characterization using EDS technique. Reactions where the reaction products 

and reaction structure remain undisturbed are assumed to have taken place in the road 

construction. 

3.2.1 Particles of used glass 

Glass particles occur as angular, up to centimeter-large particles. The glass particles 

generally show reaction rims where the glass cracks and the rims decompose into a less dense 

structure. The chemistry in the rims is depleted in calcium compared to the glass (Fig. 3). This 

decomposition includes a volume change that leads to formation of cracks in the glass. Chemical 

alteration and formation of cracks has been also continued after the construction of the road, as 

can be seen by new cracks running from the glass into the matrix (Fig. 4). This shows that internal 

expansion continues in the glass after deposition in the road construction. 

 

 

 

Figure 3. EDS element maps that show that the rim of the glass particle is depleted in calcium 

while silica and aluminum contents are unchanged. The instrument magnification is 200 times.  

 

 

 

Figure 4. A BSE image that shows the glass weathering reactions in the glass rims. The crack 

running through the glass into the surrounding matrix shows that expansion reactions have taken 

place in the glass in its present position. This type of cracks are not formed in the used preparation 

process. 
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3.2.2 Particles of porous vitreous silicate glass 

Porous silicate slag particles with irregular shape occur as micrometer- to centimeter-large 

particles. These particles show complex chemical patterns. These particles are formed through 

partial melting or sintering of minerals and other siliceous material during combustion. An 

example is given in Fig. 5. The BSE image shows a sharp boundary between the porous particle 

and the matrix. The element maps show diffuse boundaries with no distinct change between 

particle and matrix. This implies that chemical exchange between particle and matrix has been 

going on in the road construction. 

 

 

 

Figure 5. BSE and EDS mapping images showing a porous glassy calcium silicate particle with 

large pores and surrounded by a very fine-grained matrix. The length of the image is 

approximately 2.5 mm.  

3.2.3 Silicates and porcelain  

Porcelain and tiles occur as up to centimeter-large angular fragments. The silicate minerals and 

porcelain do not show signs of reactions or chemical dissolution in the present SEM/EDS 

investigation. There is no difference in the composition of the rims of the particles compared to 

the cores, nor is there any chemical zonation in the matrix close to the silicate particles.  

3.2.4 Carbon particles  

Carbon particles occur as up to centimetre-large rounded porous particles with a high amount of 

small mineral inclusions (Figure 6). The EDS method did not identify hydrogen and it is 

consequently not possible to differentiate between pure carbon and carbon hydrogen compounds. 

The carbon particles generally have inclusions with a complex chemistry in the EDS spectra, 

containing phosphorus, chlorine, sulphur, zinc and copper, in addition to carbon and the main 

elements in the silicate inclusions. It is not possible from the EDS analyses to determine if the 

elements are to some extent bound to the carbon or to inclusions in the carbon particles. These 

inclusions may be smaller than the size of the interaction volume that the spectra are obtained 

from. 
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Figure 6. SEM/BSE image that shows a carbon particle with inclusion of calcium, silica and 

aluminum minerals. 

3.2.5 Sulphur-rich particles  

Sulphur occurs both as particles enriched in sulphur and in low contents spread in the fine-

grained matrix. The sulphur-rich particles generally show a complex chemical pattern (Fig. 7). 

The element maps show no clear correlation between sulphur and calcium. Near the open 

continuous cracks the particle is depleted in sulphur and enriched in silica. The texture of 

undisturbed reaction product adjacent to this particle implies that these reactions have continued 

in the road construction. This can be demonstrated for most of the sulphate particles.  

 

 

 

Figure 7. EDS map over the rim of a sulphur-enriched particle. The length of the image is 

approximately 2.5 mm.  

3.2.6 Metals, metal oxides and hydroxides  

Iron and aluminum are the most common metals. The larger iron particles mostly retain 

their original shape while small fragments vary in shape from rounded particles to irregularly 

shaped crusts of iron hydroxides that are formed in-situ as seen in Fig. 8. Particles of stainless 

steel are chemically stable. There is however a slight increase in iron and alloying elements in the 

matrix near these particles.  

The aluminium metal occurs as particles ranging in size from micrometers to centimeters. 

These particles have very irregular shapes and are surrounded by an irregular halo of reaction 

products composed of aluminium hydroxides and often small amounts of copper (Fig. 9). The 

reaction products in Fig. 8-9 show no disturbance due to deformation, which implies that the 

reactions have taken place in the road construction. 
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Figure 8. BSE image and EDS map of iron hydroxide in an area that can be seen as a colored area 

in the sample. The instrument magnification is 50 times.  

 

 

 

Figure 9. BSE image showing an irregular metallic aluminium particle in bright grey surrounded 

by hydroxides in darker grey. 

3.2.7 Fine-grained particles in the matrix  

The larger particles are embedded in a matrix composed of fine particles with a wide range 

in chemical composition and with a typical size of a few microns and finer. The particles are 

composed of calcium, silica, alumina, potassium and sodium and are to a large extent silicates. 

Sieve analysis of materials from the Törringe road gave 45% finer than 2 mm while the optical 

analysis gave 75% finer than 2 mm [15]. The reason for this is that the bottom ash in the road is a 

partly solidified composite that does not fully disintegrate into individual grains during the 

preparation for sieving. 

3.3 XRPD analyses  

Samples of bottom ash were selected from the undisturbed polished epoxy impregnated 

slabs. Four different samples consisting of various amounts of matrix and 1–2 mm grains were 

picked with a nail-shaped spatula from different parts of the slab. The various samples were then 

ground separately in ethanol using an agate mortar and subsequently analysed by XRPD (see 

section 2.4).  

The indication of glass by SEM/EDS chemical analysis was confirmed by the XRPD 

mineralogical investigation. A higher background in all diffractograms with a maximum around 

30° 2-theta indicates the presence of modified depolymerised glasses (Stutzman PE, Centeno RL., 

1995). Diffuse and broad peaks may also indicate a low crystallinity. Clay minerals were also 

found through the diffuse indication as better-defined peaks around 7° 2-theta as well around 7° 

2-theta in several diffractograms (Fig. 10). The analysis furthermore showed that quartz, hematite, 

calcite and plagioclase among other minerals were present in the sample. It can be noted that 

gypsum and ettringite were not identified in the samples. 
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Figure 10. XRPD analysis of bottom ash from Törringe. The broad peak at 7.5 2-theta implies the 

presence of clay minerals in the sample. 

4.0 DISCUSSION  

The SEM study of the microstructure of the bottom ash showed no cracks that imply 

movements in the material or rotation of particles. It can be noted that all reaction products 

surrounding partly decomposed particles were undisturbed. The microtexture shows that the 

relationship between the original phases and reaction products was intact. This showed that the 

sample was undisturbed by the sampling process, but also that there had been no movements in 

the road construction. This made it possible to study the chemical and structural processes that 

had been active in the road construction, from micro to macro scale.  

The SEM/EDS analyses showed that most particles had reacted to some extent in the road 

construction. This ranged from strongly decomposed sulphur-containing particles to the particles 

of stainless steel that had a halo with a weak increase of iron and chromium. Particles of ceramics 

and rocks were exceptions and showed no signs of reactions. The observed reactions involve an 

increase in volume. The microstructural analyses demonstrated no disturbances such as cracks or 

physical redistribution of the material. There were however exceptions, such as micro-cracks 

related to glass particles. These few cracks had no influence on the structure of the road 

construction or function. The interpretation was that the expansion had been taken up as plastic 

deformation and a decrease in pore volume without changes in the volume or shape of the road 

construction. The decomposition of aluminum was of special interest and hydrogen gas is one of 

the reaction products that may reach critical concentrations. The SEM results showed the 

coexistence of metallic aluminum and aluminum hydroxide. This showed that the reaction had 

been incomplete.  

Earlier studies have shown that MSWI bottom ash, which has been stored in the open air, 

has similar weathering products as usually found in volcanic ash. Zevenbergen [13] found 

evidence of formation of clay minerals such as illite from glasses in MSWI bottom ash after years 

of natural weathering. In volcanic ashes, ageing results in the formation of secondary phases such 

as clay minerals and precipitation of iron and aluminium hydroxides. Clay minerals were also 

detected in the bottom ash from the Törringe road even though this road is asphalt-paved. 

However the water exposure of the bottom ash in the Törrringe road is calculated at 0.1 – 0.5 

liters per kg [2,14]. Due to the lack of textural observations the clay mineralization process could 

not be restricted only to a process ongoing in the road construction and it may already have been 

initiated in the pile material in the storage site at the Sysav municipal waste plant in Malmö.  

The bottom ash from Sysavs municipal waste plant in Malmö contains iron mineral phases 

such as hematite and pyrite that are usually found in other studies of bottom ash as well. It has 

been shown that rock-forming minerals usually found in soils, such as pyroxene, quartz and 

feldspars are also usually found in bottom ash [16].  

The results of the present study compare with the three major stages in the weathering of 

bottom ash that are generally identified. Each stage has a characteristic pH that is controlled 
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largely by Ca minerals and CO2, but also by soluble Al and SO4; (1) unweathered bottom ash, 

with pH > 12 (grate-sifting and unquenched bottom samples); (2) quenched/non-carbonated 

bottom ash, with pH 10–10.5 (freshly quenched and 6-week-old samples); and (3) carbonated 

bottom ash with pH 8–8.5 (1.5- and 12-year-old samples).  

The weathering of bottom ash may further be divided [12] into weathering products that have 

been waterlogged (ettringite, Ca zeolites, sepiolite, analcime and brucite) and weathering products 

that have been open to the air (calcite, dolomite, basaluminite, 2:1 clays, halloysite, gypsum and 

analcime). Quartz was present in all samples that were analysed in this study and calcite and 

hematite were present in three of four samples. Considering the age of the Törringe road this was 

expected for stage 3 in the model. Stage 3 also agrees with the pH of slightly below 8.5 on 

average for the material in the Törringe road [14,15] and with the formation of clay minerals. The 

mineral samples that contained calcite and hematite were sampled with more matrix besides the 

single mineral phases that were visible to the eye. In the two samples from the Sysav bottom ash, 

analysis of the matrix using XRPD indicated that calcite and hematite are common mineral 

phases. From results of earlier studies [12,16,17] it was found that hematite most likely is formed 

during the combustion process of bottom ash. Calcium oxide, lime, is usually formed in the 

combustion chamber. In stage 1 of the model this is converted to calcium hydroxide which in 

stage 3 has been further transformed to calcite. This reaction has probably occurred before it was 

used as sub-base in the Törringe road. However, percolation tests of the road material from the 

Törringe road compared with the pile material [2] showed that bottom ash of the road was more 

aged than the bottom ash in the pile.  

Pozzolanic reactions are likely the reason for the formation of aggregations in the fine-grained 

matrix of the bottom ash as the carbonation reaction is considered as a minor contribution to this 

observed increased stability of the ash in the road.  It is also very likely that any further 

weathering processes of the bottom ash in the road have been restricted due to a limited transport 

of water beneath the asphalt as it could also be seen that the edge material in the road was more 

aged than the material in the center [2].  As the transport is restricted in the center, the pore 

solution most likely becomes saturated with respect to weathering products and diffusion will 

restrict the weathering reaction. The ageing differences were concluded as caused by differences 

in water exposure [2]. 

 

5.0 Conclusions  

The successful sampling of undisturbed samples made it possible to study the textural 

relationship between original phases and reaction products and thus which reactions that had been 

ongoing in the road construction since it had been constructed.  

The microstructure in the bottom ash showed no cracks or physical redistribution of the 

material that implies movements in the material or rotation of particles. For example, aluminum 

reaction products surrounding partly decomposed particles were undisturbed. Clay mineralization 

that indicates a long-term ageing of the ash material was also detected by XRPD. The clay 

mineralization could not be restricted to an ongoing process only in the road construction.  

It was furthermore concluded that the ash had been carbonized as due to the relatively low 

pH and the presence of calcite. It is also concluded that the observed chemical reactions are in 

consistence with the degree of maturity of the studied MSWI bottom ash.  This study thus showed 

that bottom ash seems to be a good candidate among other alternate materials for a sustainable use 

in road constructions. This statement is made due to the observation of no cracks that implies 

movements or rotation of particles in the road construction was found and the fact that the bottom 

ash is protected under the pavement. 
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