Molecular Identification and Diversity of *Pestalotiopsis*, *Neopestalotiopsis* and *Pseudopestalotiopsis* Species from Four Host Plants in Sarawak, Borneo Island (Malaysia)

Lateef A. A.^{1,2*}, Sepiah, M.¹, and Bolhassan, M. H.¹

 ¹*Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
 ² Department of Plant Biology, Faculty of Life Science, University of Ilorin, Nigeria.

Received 7 October 2017; accepted 25 June 2018; available online 28 June 2018

DOI: https://10.30880/jst.2018.10.01.006

Abstract: Until recently, *Pestalotiopsis* species have been identified based on host relationship and conidial dimensions. *Pestalotiopsis* species occur as endophytes, saprobes and also pathogens of many plant hosts. This study used molecular phylogenetic relationships based on ITS sequence data to identify *Pestalotiopsis*, *Neopestalotiopsis* and *Pseudopestalotiopsis* species in addition to their conidial pigmentation from four host plants namely *Macaranga triloba*, *Macaranga* sp., *Shorea macrophylla* and *Syzygium* sp. Based on the molecular phylogenetic analysis of 18 *Pestalotiopsis*-like isolates from the four different host plants, the isolates clustered separately into three clades corresponding to their conidial morphology and conidial median cell pigmentation. Among the four host plants studied, *S. macrophylla* hosts the highest diversity of *Pestalotiopsis*-like species while *Syzygium* sp. had the lowest diversity. This is the first report on the molecular phylogenetics and diversity of *Pestalotiopsis*, *Neopestalotiopsis* and *Pseudopestalotiopsis* species from Sarawak, Malaysia in line with recent re-classification in the genus. New records of *Pestalotiopsis*-like species were also recorded on new host plants.

Keywords: ITS sequence; Microfungi; Molecular identification; Pestalotiopsis; Phylogenetics.

1. Introduction

Pestalotiopsis species are known to produce Taxol, an anti-cancer agent [1,2]. Correct identification and naming of species in the genus Pestalotiopsis is quite difficult and complex due to the overlapping of conidial and cultural morphologies in many species in the genus. The genus Pestalotiopsis was initially separated from the genus Pestalotia De Not in 1949 by Steyaert to accommodate 5celled *Pestalotiopsis*-like species [3]. Many Pestalotiopsis species were described as distinct species mainly based on host plant associations [3]. However, several studies have showed that Pestalotiopsis cannot be differentiated based on host plant association only, but can be correctly identified using conidial morphology combined with DNA sequence data [3, 4, 5, 6, 7].

Consequently, a recent re-classification of *Pestalotiopsis* was done resulting in two other genera being carved out of *Pestalotiopsis* namely *Neopestalotiopsis* and *Pseudopestalotiopsis* [3]. The genus

*Corresponding author: alateef123@yahoo.com 2018 UTHM Publisher. All right reserved. e-ISSN: 2600-7924/penerbit.uthm.edu.my/ojs/index.php/jst

Pestalotiopsis accommodated species with lightly-pigmented concolourous median cells while the genus *Neopestalotiopsis* accommodated species with versicolourous median cells, and the genus *Pseudopestalotiopsis* for species with darklycoloured concolourous median cells.

In Malaysia, Sarawak is located on the Borneo Island and has been recognised as a hotspot for high biological diversity indicating its rich natural resources. There has not been any study on the molecular identification, diversity and distribution of *Pestalotiopsis*-like microfungi in this region and also to reflect the classification and current evolutionary relationships. This present study aimed at revealing the identity, diversity and host plant distribution of Pestalotiopsis, Neopestalotiopsis and Pseudopestalotiopsis species in selected National Parks in Sarawak.

The result of this study will be a contribution to the taxonomy and ecology of these *Pestalotiopsis*-like species in Sarawak, Borneo Island and Malaysia, as well as being a useful step for successful prospecting of the

useful metabolites produced by *Pestalotiopsis*-like microfungi.

2. Materials and Methods

Sample collection sites and Sampling design

The sample collection sites were two National Parks (NPs); Kubah and Gunung Gading NPs, located in the 7th division of Sarawak, East Malaysia. Sarawak lies in the tropical region on the Borneo Island, with a high humidity and rainfall throughout the year. Leaf samples were collected from four host plants namely Macaranga triloba, Macaranga sp., Shorea macrophylla and Syzygium sp. on four collection trips to both sampling sites; two trips to Kubah National Park in March, 2014 and September, 2014, likewise, two trips Gunung Gading National Park in to November, 2014 and February, 2015. The latitude and longitude readings at each collection points were recorded with an handheld Global Positioning System (GPS) equipment. Leaf-litters and green leaves were collected from each selected plant. Leaf-litters were picked directly from under the plant. The collected samples were put in plastic bags, labelled appropriately and transported to the laboratory for processing.

Isolation and Identification of the *Pestalotiopsis*-like Microfungi

The collected leaf samples were processed for isolation of endophytic and saprobic *Pestalotiopsis*-like microfungi as done by [8]. *Pestalotiopsis*-like fungi were isolated from leaves of the different plant species. Isolates belonging to different morpho-species were selected based on their morphological characters such as colony growth rate, colony growth pattern and colony reverse colouration. Measurements of 25 conidia of each isolate were recorded including the pigmentation of the median cells.

All the pure cultures were deposited in the Mycology laboratory, Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak. Identification of the different genera and species were done based on conidial pigmentation and molecular sequence analysis. The frequency of isolation of each microfungal taxa was determined according to [9,10] as follows.

Genomic DNA Extraction, PCR (Polymerase Chain Reaction) amplification and Sequencing.

Each morpho-species isolate was grown on potato dextrose agar (PDA) and incubated at room temperature (25 \pm 2 °C) for three to ten days before harvesting for DNA extraction. The total genomic DNA was extracted using the CTAB method [11] and the internal transcribed spacer (ITS) gene regions of the total genomic DNA were amplified through polymerase chain reaction (PCR) using the primer pairs ITS 5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS 4 (5'-TCCTCCGCTTATTGATATGC-3') [12] in a SensQuest lab cycler. The PCR mixture used was made up of 5 µL of 5 x Mg free-PCR buffer, 0.15 µL of MgCl, 1.5 µL of dNTPs, 1 µL of each primers, 0.15 µL of Fermentas Taq DNA polymerase, 12.85 µL of double-sterilised distilled water (ddH₂O) and 1.5 μ L of the DNA template with a total volume of 25 µL. The PCR control reaction contained ddH₂O as template instead of DNA. The PCR programme used was 2 min at 94 °C. followed by 35 cycles at 94 ° C for 1 min, 55 °C for 1 min, then 72 °C for 1 min and final extension at 72°C for 10 min.

The PCR products were sent to a private sequencing company (1st -Base, Asia) for both forward and reverse primer Sanger sequencing using an ABI PRISM sequencer.

Phylogenetic Analysis

The sequences obtained from the sequencing company were confirmed to belong to the intended microfungal group using BLAST-n on the GenBank website (http://blast.ncbi.nlm.nih.gov). SeqTrace version 0.9.0 [13] was then used to obtain consensus sequences from the forward and reverse sequences. Similar reference sequences based on BLAST-n results were downloaded from GenBank for phylogenetic analysis following a similarity search and then processed in AliView version 1.17-beta software [14] before they were aligned using MAFFT version 7 [15] and then adjusted using Gblocks version 0.91b [16, 17].

$Frequency of occurrence = \frac{\text{the total number of leaf segments from which a fungal taxa was present}}{\text{the total number of leaf segments observed}} \times 100$

Table 1	Strains	used	in	this	study	for	the	phylogenetic	analysis	with	their	GenBank	accession
numbers.													

S/N	Species	Strain	Host (Country)	GenBank accession number (ITS)
1	Neopestalotiopsis clavispora	CBS 447.73	Decaying wood (Sri Lanka)	KM199374
2	*Neopestalotiopsis eucalypticola	CBS 264.37	Eucalyptus globulus (-)	KM199376
3	*Neopestalotiopsis formicarum	CBS 115.83	Plant debris (Cuba)	KM199344
4	*Neopestalotiopsis mesopotamica	CBS 336.86	Pinus brutia (Iraq)	KM199362
5	Neopestalotiopsis mesopotamica	CBS 299.74	<i>Eucalyptus</i> sp. (Turkey)	KM199361
6	Neopestalotiopsis sp.	UMAS 2_23	<i>Macaranga</i> sp. (Malaysia)	KT337383
7	Neopestalotiopsis sp.	UMAS 8_1	<i>Macaranga</i> sp. (Malaysia)	KT337378
8	Neopestalotiopsis sp.	UMAS P12	<i>Macaranga triloba</i> (Malaysia)	KT337385
9	*Neopestalotiopsis surinamensis	CBS 450.74	Soil under <i>Elaeis</i> guineensis (Suriname)	KM199351
10	Pestalotiopsis disseminata	UMAS P13	Shorea macrophylla (Malaysia)	KT337380
11	Pestalotiopsis microspora	UMAS P15	Shorea macrophylla (Malaysia)	KT337388
12	Pestalotiopsis parva	UMAS P5	<i>M. triloba</i> (Malaysia)	KT337386
13	Pestalotiopsis biciliata	CBS 124463	Platanus × hispanica (Slovakia)	KM199308
14	*Pestalotiopsis biciliata	CBS 236.38	Paeonia sp. (Italy)	KM199309
15	Pestalotiopsis biciliata	UMAS P16	Shorea macrophylla (Malaysia)	KT337374
16	Pestalotiopsis diploclisia	UMAS MP1	Syzygium sp. (Malaysia)	KT337389
17	Pestalotiopsis disseminata	PSH2000I-043	Podocarpus macrophyllus (China)	AY687869
18	Pestalotiopsis grevilleae	CBS 114127	<i>Grevillea</i> sp. (Australia)	KM199300
19	Pestalotiopsis kenyana	CBS 911.96	Raw material from agar-agar (-)	KM199303
20	*Pestalotiopsis kenyana	CBS 442.67	Coffea sp. (Kenya)	KM199302

21	Pestalotiopsis neglecta	HKUCC 996	- (China)	AF409975
22	Pestalotiopsis neglecta	UMAS 7_2	Shorea macrophylla (Malaysia)	KT337391
23	Pestalotiopsis neglecta	UMAS P10	Shorea macrophylla (Malaysia)	KT337377
24	*Pestalotiopsis oryzae	CBS 353.69	Oryza sativa (Denmark)	KM199299
25	Pestalotiopsis parva	CBS 278.35	Leucothoe fontanesiana (-)	KM199313
26	Pestalotiopsis parva	UMAS P6	Macaranga triloba (Malaysia)	KT337384
27	Pestalotiopsis sp.	UMAS P14	Shorea macrophylla (Malaysia)	KT337375
28	Pestalotiopsis sp.	UMAS 1705	Shorea macrophylla (Malaysia)	KT337373
29	Pestalotiopsis sp.	UMAS P11	Shorea macrophylla (Malaysia)	KT337381
30	Pestalotiopsis sp.	UMAS P4	Macaranga triloba (Malaysia)	KT337387
31	Pestalotiopsis telopeae	CBS 113606	Telopea sp. (Australia)	KM199295
32	*Pestalotiopsis telopeae	CBS 114161	<i>Telopea</i> sp. (Australia)	KM199296
33	Pestalotiopsis theae	P145	Pharus latifolius (USA)	EF423551
34	Pestalotiopsis vismiae	R11	<i>Glycine max</i> cultivar <i>Monarca</i> (Brazil)	KM980000
35	Pestalotiopsis vismiae	UMAS P9	Shorea macrophylla (Malaysia)	KT337390
36	Pseudopestalotiopsis cocos	CBS 272.29	<i>Cocos nucifera</i> (Indonesia)	KM199378
37	Pseudopestalotiopsis indica	CBS 459.78	Hibiscus rosa-sinensis (India)	KM199381
38	Pseudopestalotiopsis kubahensis	UMAS KUB- P20	<i>Macaranga</i> sp. (Malaysia)	KT006749
39	Pseudopestalotiopsis theae	BPC50	Mango leaf (Malaysia)	KM510412
40	Pseudopestalotiopsis theae	UMAS 2005	<i>Macaranga</i> sp. (Malaysia)	KT337379
41	Seiridium cardinale (Outgroup)	ICMP 7323	-	AF409995

*means sequence is from the type material.

The aligned sequences were then used for maximum parsimony analysis using PAUP (Phylogenetic Analysis Using Parsimony) software v.4.0b10 [18]. For the parsimony analysis, all characters were equally weighted and gaps were treated as missing data. Parsimonious trees were inferred using the heuristic search option with tree-bisection reconnection (TBR) branch swapping and 1,000 random sequence additions. Max trees were set up to 10,000, branches of zero length were collapsed and all multiple parsimonious trees were saved. The robustness of the most parsimonious tree was evaluated by 1,000 bootstrap replications, each with 10 replicates of random stepwise addition of taxa [19]. Tree descriptive statistics, such as tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were also calculated for each Maximum Parsimonious Tree (MPT) generated. The Kishino-Hasegawa tests [20] were performed to determine whether the trees inferred under different optimality criteria were significantly different from each other.

The phylogenetic trees generated were viewed and edited in TreeGraph2 version 2.10.1-641 beta [21].

3. Results and Discussion Molecular identification and phylogenetics

The sequences of the ITS region of the isolates from this study ranged from 546 - 617 bp. From the phylogenetic analysis using (Phylogenetic PAUP Analysis Using Parsimony) software version 4.0b10, the aligned sequence matrix consists of 41 taxa (including the outgroup taxon Seiridium cardinale), 577 characters including gaps treated as missing data, 465 characters are constant, 44 variable characters are parsimonyuninformative and 68 characters are parsimony informative. The parsimony analysis yielded 10,000 Most Parsimonious Trees (MPT) with the strict consensus tree having tree length (TL) = 132, consistency index (CI) = 0.9167, homoplasy index (HI) = 0.0833, retention index (RI) = 0.9818 and rescaled consistency index (RC) = 0.9000. The bootstrap majorityrule consensus tree is shown in Fig. 1, showing the clustering and identification of the isolates separated mainly into three clades corresponding to the morphology and pigmentation of their conidia.

In total, 18 isolates were identified using the ITS region sequence data. The result of the phylogenetic analysis showed that all the isolates from this study, highlighted in Fig. 1 were clustered in different clades across the phylogenetic tree with three main clades recognised; clade A, B and C. All the clades with high bootstrap support values. From the phylogenetic tree, clade A, with a bootstrap support value of 96 % had two of our isolates (Ps. theae & Ps. kubahensis) clustering in this clade. The isolates from this study that clustered in this clade were those with concolourous darkly pigmented conidia (Fig. 2A). Concolourously dark pigmented *Pestalotiopsis*-like species have been recently named а new as genus bv Maharachchikumbura, Hyde, Groenewald, Xu, & Crous (2014) as *Pseudopestalotiopsis*.

Clade B, with a bootstrap value of 100 % had three of our isolates in this clade, representing isolates with versicolourous pigmented conidia. In this clade, the two upper median cells of their conidia are more darkly pigmented than the third median cell (Fig. 2B) and this clade represents the *Neopestalotiopsis* which was also recently separated from the genus *Pestalotiopsis* [3].

In clade C, majority of the isolates in this study clustered here with a bootstrap value of 100 %, representing the concolourously lightly pigmented isolates (Fig. 2C). This clade remains the monophyletic group of *Pestalotiopsis* species [3].

Clada		
Clade A	— Pseudopestalotiopsis kubahensis UMAS	
	78 Pseudopestalotiopsis theae UMAS 2005	5 KT337379
A 96	-Pestalotiopsis theae isolate P145	EF423551
	— Pseudopestalotiopsis cocos	KM199378
	— Pseudopestalotiopsis theae	KM510412
	— Pseudopestalotiopsis indica	KM199381
84	-Neopestalotiopsis eucalypticola	KM199376
Clade B	—Neopestalotiopsis clavispora	KM199374
Claue D	-Neopestalotiopsis sp. UMAS 2_23	KT337383
	– Neopestalotiopsis sp. UMAS P12	KT337385
	Neopestalotiopsis mesopotamica	KM199362
	-Neopestalotiopsis mesopotamica	KM199361
	-Neopestalotiopsis formicarum	KM199344
	-Neopestalotiopsis sp. UMAS 8_1	KT337378
	-Neopestalotiopsis surinamensis	KM199351
	Pestalotiopsis sp. UMAS 1705	KT337373
	Pestalotiopsis microspora UMAS P15	KT337388
95	-Pestalotiopsis diploclisia UMAS MP	KT337389
	⁸⁵ — <i>Pestalotiopsis disseminata</i> UMAS P13	KT337380
	–Pestalotiopsis disseminata	AY687869
68	Pestalotiopsis parva UMAS P5	KT337386
	Pestalotiopsis parva UMAS P6	KT337384
	Pestalotiopsis neglecta UMAS P10	KT337377
Clade C	Pestalotiopsis sp. UMAS P4	KT337387
	Pestalotiopsis biciliata UMAS P16	KT337374
100	Pestalotiopsis biciliata	KM199308
	–Pestalotiopsis biciliata	KM199309
	— Pestalotiopsis neglecta	AF409975
	— Pestalotiopsis parva	KM199313
	— Pestalotiopsis grevilleae	KM199300
	<i>Pestalotiopsis</i> sp. UMAS P14	KT337375
	—Pestalotiopsis telopeae	KM199296
	—Pestalotiopsis telopeae	KM199295
	—Pestalotiopsis kenyana	KM199302
75		KM199303
	—Pestalotiopsis oryzae	KM199299
	—Pestalotiopsis vismiae	KM980000
	–Pestalotiopsis vismiae UMAS P9	KT337390
	-Pestalotiopsis neglecta UMAS 7_2	KT337391
	-Pestalotiopsis sp. UMAS P11	KT337381
ι	——Seiridium cardinale	AF409995

Fig. 1 Bootstrap Majority-rule consensus tree of 10,000 equally parsimonious trees generated from the ITS (ITS1, 5.8S and ITS2) gene sequences of 41 strains showing the relationship of *Pestalotiopsis*, *Neopestalotiopsis* and *Pseudopestalotiopsis* species. Given at the nodes are the Maximum Parsimony Bootstrap support values (MPB) greater than 50%.

Fig. 2. Conidial morphology of A. *Pseudopestalotiopsis* sp B. *Neopestalotiopsis* sp. C. *Pestalotiopsis* sp. Scale bars A-C=50 μ m.

However, some *Pestalotiopsis* spp. in clade B and clade C were not able to be identified specifically due to unresolved distinctiveness and overlap on the phylogenetic tree and this can be attributed to the use of only ITS sequence data for the species identification.

Furthermore, a quick look at the cultural and conidial morphology of all isolates from this study will primarily indicate that they belong to the genus *Pestalotiopsis*, but a close look at their conidial morphology and use of molecular phylogenetic analysis will reveal that the isolates were different and belonged to three different genera, *Pseudopestalotiopsis*, *Neopestalotiopsis* and *Pestalotiopsis*. The isolates from this study were classified into these three genera in line with the recent taxonomic re-classification of the genus *Pestalotiopsis* [3].

Naming of species in the genus Pestalotiopsis have earlier been confused as a result of overlapping conidial characteristics description of species based and on morphology and host plant associations, without molecular sequence data. Also, the cultural morphology and growth rates of the isolates in this study were not informative for differentiating the species which have also been observed in many other studies on species of *Pestalotiopsis* [4, 5]. Conidial morphology combined with molecular analysis is recommended as the main distinguishing characters for the genus Pestalotiopsis. Based on this, [3] splitted the genus Pestalotiopsis and two new genera were carved out of the genus, namely Pseudopestalotiopsis and Neopestalotiopsis. Before the re-classification of Pestalotiopsis, Jeewon et al. [5]; Jeewon et al. [6]; Maharachchikumbura et al. [22], and Song et al., [23] have also reported a similar clustering of *Pestalotiopsis* spp. based on their median cell pigmentation. With the recent reclassification of Pestalotiopsis, it becomes more straight-forward to identify and name

Pestalotiopsis, *Neopestalotiopsis* and *Pseudopestalotiopsis* species, thereby avoiding the overlap and confusion in their nomenclature with a resultant improvement in their use for biotechnological use such as for metabolites production, as this will make their identification and communication between scientist unconfused.

Diversity and Distribution of *Pestalotiopsis*, *Neopestalotiopsis* and *Pseudopestalotiopsis* species on the host plants

In terms of the diversity and distribution of the *Pestalotiopsis*-like species on the four host plants, *S. macrophylla* in Kubah NP was host to nine taxa of the *Pestalotiopsis*-like fungi, all belonging to the genus *Pestalotiopsis* (Table 2). Four species each were isolated from *M. triloba* and *Macaranga* sp. while only one *Pestalotiopsis* taxa was isolated from *Syzygium* sp.

The isolation of *Pestalotiopsis neglecta*, *Pestalotiopsis Pestalotiopsis* biciliata, microspora, *Pestalotiopsis* disseminata. Pestalotiopsis vismiae including three other *Pestalotiopsis* sp. from S. macrophylla constitutes new records on this host plant for these species as they have not been earlier reported on this plant as well as from Sarawak. Likewise, Pestalotiopsis parva, Pestalotiopsis sp., Neopestalotiopsis sp. recorded on M. triloba; *Pseudopestalotiopsis* kubahensis, Neopestalotiopsis sp., Pseudopestalotiopsis theae on Macaranga sp.; and Pestalotiopsis diploclisia on Syzygium sp. are new records on their respective host plants.

Among the four host plants, *S. macrophylla* hosts the highest diversity of *Pestalotiopsis*-like species while *Syzygium* sp. had the lowest diversity of the microfungal group. [24, 25] have earlier reported the frequent occurrences of *Pestalotiopsis* spp. on decaying leaves of *Shorea obtusa* in Thailand.

S/N	Species name (Isolate)	Host Plant species	Frequency of occurrence	
1	Pestalotiopsis sp. (UMAS P4)	Macaranga triloba	0.2	
2	Pestalotiopsis parva (UMAS P5)	Macaranga triloba	0.2	
3	Pestalotiopsis parva (UMAS P6)	Macaranga triloba	0.12	
4	Pestalotiopsis vismiae (UMAS P9)	Shorea macrophylla	0.36	
5	Pestalotiopsis neglecta (UMAS P10)	Shorea macrophylla	0.08	
6	Pestalotiopsis sp. (UMAS P11)	Shorea macrophylla	0.06	
7	Neopestalotiopsis sp. (UMAS P12)	Macaranga triloba	0.2	
8	Pestalotiopsis disseminata (UMAS P13)	Shorea macrophylla	0.08	
9	Pestalotiopsis sp. (UMAS P14)	Shorea macrophylla	0.08	
10	Pestalotiopsis microspora (UMAS P15)	Shorea macrophylla	0.14	
11	Pestalotiopsis biciliata (UMAS P16)	Shorea macrophylla	0.08	
12	Pseudopestalotiopsis kubahensis (UMAS KUB P20)	Macaranga sp.	0.28	
13	Pestalotiopsis diploclisia (UMAS MP)	<i>Syzygium</i> sp.	0.48	
14	Pestalotiopsis sp. (UMAS 1705)	Shorea macrophylla	0.2	
15	Neopestalotiopsis sp. (UMAS 8_1)	Macaranga sp.	0.72	
16	Neopestalotiopsis sp. (UMAS 2_23)	Macaranga sp.	0.18	
17	Pseudopestalotiopsis theae (UMAS P2005)	Macaranga sp.	0.04	
18	Pestalotiopsis neglecta (UMAS 7_2)	Shorea macrophylla	0.36	
	Total=18 morpho-species	4 Host plants		

Table 2 Host plant affinities and isolation frequencies of *Pestalotiopsis*-like isolates obtained from this study.

4. Conclusion

With a total of 18 *Pestalotiopsis*-like microfungi from four host plants from Kubah and Gunung Gading National Parks in Sarawak, this study revealed the high diversity of these microfungi in Sarawak and also represents the first report to reveal the distribution and diversity as well as molecular phylogenetics of *Pestalotiopsis*, *Neopestalotiopsis* and *Pseudopestalotiopsis* species in Malaysia, with new records of microfungi on new host plants.

Acknowledgement

The first author is grateful to Universiti Malaysia Sarawak (UNIMAS) for the partial scholarship awarded. We are also grateful to the Sarawak government and to Sarawak Forestry Co-operation (SFC) for permission to collect samples from the National Park.

References

- Strobel, G. A., Yang, X., Sears, J., Kramer, R., Sidhu, R. S., and Hess, W. M. (1996) Taxol from *Pestalotiopsis microspora*, an endophytic fungus of *Taxus wallachiana*. *Microbiology*, Vol. 142 No. 2 pp. 435–440.
- [2] Shukla, S. T., Habbu, P. V., Kulkarni, V. H., Jagadish, K. S., Pandey, A. R., and Sutariya, V. N. (2014) Endophytic microbes: a novel source for biologically/pharmacologically active secondary metabolites. *Asian Journal of Pharmacology and Toxicology* Vol. 2 No. 3 pp. 1–16.
- [3] Maharachchikumbura, S. S. N., Hyde, K. D., Groenewald, J. Z., Xu, J., and Crous, P. W. (2014) *Pestalotiopsis* revisited. *Studies in Mycology*, Vol. 79 pp. 121–186.
- [4] Liu, A.-R., Chen, S.-C., Wu, S.-Y., Xu, T., Guo, L.-D., Jeewon, R., and Wei, J.-G. (2010) Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in *Pestalotiopsis* taxonomy. *Molecular Phylogenetics and Evolution*, Vol. 57 No. 2 pp. 528–535.
- [5] Jeewon, R., Liew, E. C. Y., Simpson, J. A., John Hodgkiss, I., and Hyde, K. D. (2003) Phylogenetic significance of morphological characters in the taxonomy of *Pestalotiopsis* species. *Molecular Phylogenetics and Evolution*, Vol. 27 No. 3 pp. 372–383.
- [6] Jeewon, R., Liew, E. C. Y., and Hyde, K. D. (2004) Phylogenetic evaluation of species nomenclature of *Pestalotiopsis* in relation to host association. *Fungal Diversity*, Vol. 17 No. 3 pp. 39–55.
- [7] Maharachchikumbura, S. S. N., Chukeatirote, E., Guo, L.-D., Crous, P. W., Mckenzie, E. H. C., and Hyde, K. D. (2013) *Pestalotiopsis* species associated with *Camellia sinensis* (tea). *Mycotaxon*, Vol. 123 No. 1 pp. 47–61.
- [8] Lateef, A., Sepiah, M., and Bolhassan, M. H. (2015) Microfungal diversity on leaves of *Eusideroxylon zwageri*, a threatened plant species in Sarawak, Northern Borneo. *Biodiversitas*, Journal of Biological Diversity, Vol. 16 No. 2 pp. 264–268.

- [9] Hata, K., and Futai, K. (1995) Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, *Thecodiplosis japonensis*. *Canadian Journal of Botany*, Vol. 73 No. 3 pp. 384-390.
- [10] Osono, T. (2008) Endophytic and epiphytic phyllosphere fungi of *Camellia japonica*: seasonal and leaf agedependent variations. *Mycologia*, Vol. 100 No. 3 pp. 387–391.
- [11] Murray, M. G., and Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Research*, Vol. 8 No. 19 pp. 4321-4325
- [12] White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990) Amplification and Direct Sequencing of fungal Ribosomal RNA genes for Phylogenetics In PCR Protocols: A Guide to methods and Applications. Academic Press, New York, USA, pp. 315–322.
- [13] Stucky, B. J. (2012) SeqTrace: A Graphical Tool for Rapidly Processing DNA Sequencing Chromatograms. *Journal of Biomolecular Techniques*, Vol. 23 No. 3 pp. 90–93.
- [14] Larsson, A. (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. *Bioinformatics* (Oxford, England), Vol. 30 No. 22 pp. 3276–3278.
- [15] Katoh, K., and Standley, D. M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. *Molecular Biology and Evolution*, Vol. 30 No. 4 pp. 772–780.
- [16] Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology and Evolution*, Vol. 17 No. 4 pp. 540–552.
- [17] Talavera, G., and Castresana, J. (2007) Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. *Systematic Biology*, Vol. 56 No. 4 pp. 564–577.
- [18] Swofford, D. L. (2002) Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates, Sunderland.
- [19] Felsenstein, J. (1985) Confidence Limits on Phylogenies: An Approach Using the

Bootstrap. *Evolution*, Vol. 39 No. 4 pp. 783.

- [20] Kishino, H., and Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data. *Journal of Molecular Evolution*, Vol. 29 pp. 170–179.
- [21] Stöver, B. C., and Müller, K. F. (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. *BMC Bioinformatics*, Vol. 11 No. 1 pp. 7-15.
- [22] Maharachchikumbura, S. S. N., Guo, L.-D., Cai, L., Chukeatirote, E., Wu, W. P., Sun, X., ... Hyde, K. D. (2012) A multilocus backbone tree for *Pestalotiopsis*, with a polyphasic characterization of 14 new species. *Fungal Diversity*, Vol. 56 No. 1 pp. 95–129.
- [23] Song, Y., Maharachchikumbura, S. S., Jiang, Y.-L., Hyde, K. D., and Wang, Y. (2014) *Pestalotiopsis keteleeria* sp. nov., Isolated from *Keteleeria* pubescens in China. *Chiang Mai Journal of Science*, Vol. 41 No. 4 pp. 885–893.
- [24] Harahap, I., Rahayu, G., and Hidayat, I.
 (2013) Community Structure of Sporulating Fungi on Decaying Litters of *Shorea* spp. *Microbiology Indonesia*, Vol. 7 No. 3 pp. 105–112.
- [25] Osono, T., Ishii, Y., Takeda, H., Seramethakun, T., Khamyong, S., To-Anun, C., Kakishima, M. (2009) Fungal succession and lignin decomposition on *Shorea obtuse* leaves in a tropical seasonal forest in northern Thailand. *Fungal Diversity*, Vol. 36 No. 10 pp. 101 -119.