Investigating the Potential of Nanomaterials for Enhanced Oil Recovery: State of Art

Adel Moh. Salem Ragab

Abstract


Petroleum industry has been changed by the introduction of the nanotechnology. Nanotechnology has been tried in exploration. Drilling, production, and finally in enhanced oil recovery. For EOR, nanomaterials are considered an additive to the fluid used to displace the residual oil from the reservoir, which changes the characteristics of these solutions. These nano solutions have unique properties for a wide range of applications in oil field industry.

 

There are several approaches for preparations of the nanomaterials; namely chemical and mechanical methods. Of course there a big difference between both of them and one can detect these variations by measuring its characterization and properties. From these methods, SEM, TEM, and EDX. The size and shape of the powder particles normally examined by x-ray diffraction (XRD) and scanning electron microscope (SEM) while their microanalysis are normally measured energy dispersive system (EDX).

 

The initial stage used to investigate the performance of the nano materials for improving the oil recovery is normally done by displacing the crude oil in a flooding system and compare the final recovery factor to that of other EOR techniques such as water flooding or polymer flooding. The second step is to try to explain and interpret the results.

 

This work offers an extensive literature review for assessing the applications of nano materials for improving oil recovery and investigating the current recovery problems, and then evaluating the potential technical and economic benefits that nanomaterials could provide to the reservoir engineering. Several nano materials are addressed and discussed. Moreover, it investigates the effect of nano materials on the relative permeability, the retention and loss of these materials inside the formation, and the numerical simulation of the nano material flowing in the pores. 


Keywords


Nanomaterials, Smart Fluids, EOR/IOR

Full Text:

PDF


Copyright (c)

ISSN : 2229-8460

jst@uthm.edu.my

Creative Commons License
This OJS site and its metadata are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.