
International Journal of Integrated Engineering, Vol. 10 No. 8 (2018) p. 80-90

© Penerbit UTHM

 DOI: https://doi.org/10.30880/ijie.2018.10.08.012

*Corresponding author: jamali@uma.ac.ir
2011 UTHM Publisher. All right reserved.

penerbit.uthm.edu.my/ojs/index.php/ijie

80

Load Balancing in Heterogeneous Cloud Environments by

Using PROMETHEE Method

Samira Hourali1, Shahram Jamali2

1, 2 Computer Engineering Department

 University of Mohaghegh Ardabili, Ardabil, Iran
1Electrical and Computer Engineering Department

Non Benefit University of Shahrood Shahrood, Iran

Received 18 August 2017; accepted 29 October 2018, available online 31 December 2018

1. Introduction

Cloud computing is a new technology in academic

world. In a cloud platform, resources are provided as

service under a predefined Service Level Agreement

(SLA) [1]. But, since the resources are shared, subscribers'

requirements have big dynamic heterogeneity; the

resource may be wasted if they cannot be assigned

properly [2]. As other systems, dynamically balancing the

load among the servers improves resource utility and the

overall cloud performance in the cloud environment.

Therefore, an important problem to be solved is how to

dynamically and efficiently manage resources to meet the

subscribers' requirements and to maximize the overall

performance.

The main result of the load balancing is to speed up

the execution of applications on resources whose

workload varies at run time in unpredictable way [3].

Load balancing techniques are widely discussed in

homogeneous as well as heterogeneous environments such

as grids. There are basically two kinds of load balancing

techniques, namely, static and dynamic.

Static load balancing algorithms assign the tasks to

the nodes based only on the ability of the node to process

new requests. The process is based solely on prior

knowledge of the nodes’ properties and capabilities. These

would include the node’s processing power, memory and

storage capacity, and most recent known communication

performance. Although they may include knowledge of

the communication prior performance, static algorithms

generally do not consider dynamic changes of these

attributes at run-time. In addition, these algorithms cannot

adapt to load changes during run-time. Dynamic load

balancing algorithms take into account the different

attributes of the nodes’ capabilities and network

bandwidth. Most of these algorithms rely on a

combination of knowledge based on prior gathered

information about the nodes in the cloud and run-time

properties collected as the selected nodes process the

task’s components. These algorithms assign the tasks and

may dynamically reassign them to the nodes based on the

attributes gathered and calculated. Such algorithms require

constant monitoring of the nodes and task progress and are

usually harder to implement. However, they are more

accurate and could result in more efficient load balancing.

In cloud computing environments, whenever a VM is

heavily loaded with multiple tasks, these tasks have to be

removed and submitted to the under loaded VMs of the

same data center. In this case, when we remove more than

one task from a heavy loaded VM and if there is more

than one VM available to process these tasks, the tasks

have to be submitted to the VM such that there will be a

good mix of priorities i.e., no task should wait for a long

time in order to get processed. Load balancing is done at

virtual machine level i.e., at intra-data center level.

We suggest that load balancing in cloud computing

can be formulated as a multi-criteria decision making

(MCDM) problem and then use PROMETHEE decision

making algorithm to solve it. The proposed algorithm uses

resources' information to compute the desired criteria

(load balancing) and solve the problem. Then it directs the

Abstract: Efficient Scheduling of tasks in a cloud environment improves resources utilization thereby meeting

users' requirements. One of the most important objectives of a scheduling algorithm in cloud environment is a

balanced load distribution over various resources for enhancing the overall performance of the cloud. Such a

scheduling is complex in nature due to the dynamicity of resources and incoming application specifications. In this

paper, we employ PROMETHEE decision making model to design a scheduling algorithm, called PROMETHEE

Load Balancing (PLB).This paper formulates the load balancing issue as a multi-criteria decision making problem

and aims to achieve well-balanced load across virtual machines for maximizing the overall throughput of the cloud.

Extensive simulation results in CloudSim environment show that the proposed algorithm outperforms existing

algorithms in terms of load balancing index (LBI), VM load variation, makespan, average execution time and

waiting time.

Keywords: Load balancing, PROMETHEE method, Cloud computing, task, VM

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 81

virtual infrastructure manager to provide an appropriate

allocation. This allocation is actually a choice between

existing processing nodes based on various resources'

specifications and users' requirements. The specific

contributions of this paper include:

 An algorithm for scheduling and load balancing of

non-preemptive independent tasks in cloud

computing environments inspired by

PROMETHEE decision making method.

 Correlation of the proposed PLB 1 algorithm with

actual PROMETHEE decision making method.

 A clear flow diagram showing the PROMETHEE

load balancing algorithm.

 An analysis and systematic study with

mathematical evidence to show how the

PROMETHEE decision making method is helpful

for load balancing in the cloud computing

environments.

Rest of this paper is organized as follows; Section 2

reviews the related works on existing load balancing

techniques. Section 3 brings PROMETHEE decision-

making method and explains it. Section 4 employs

PROMETHEE to design a scheduling algorithm and

presents its detailed algorithm. Section 5 presents the

experimental results for performance evaluation of the

algorithm in comparison with existing algorithms. Finally

we conclude this paper highlighting the contributions and

future enhancements in Section 6.

2. Related Works

Load balancing is removing tasks from over loaded

VMs and assigning them to under loaded VMs. It can affect

the overall performance of a system executing an

application. Load balancing algorithms can be classified in

to dynamic and static algorithms [4]:

Static algorithms work properly only when nodes

have a low variation in the load. Therefore, these

algorithms are not suitable for cloud environments where

load will be varying at varying times. Dynamic load

balancing algorithms are advantageous over static

algorithms. But to gain this advantage, we need to consider

the additional cost associated with collection and

maintenance of the load information.

DDFTP algorithm [5] performs load balancing by

dividing the file of size n into n/2 divisions. Then, each

server node starts processing the task assigned for it based

on a certain pattern. When the two servers download two

consecutive blocks, the task is considered as finished and

other tasks can be assigned to the servers. This minimizes

the node communication, thereby reducing the network

overhead which further eliminates the need for run-time

supervision of nodes. But attaching file divisions imposes

some time complexity into the network. The proposed

method finds the best server for the job taking into account

all the aspects, instead of splitting the file between multiple

servers.

1 Promethee Load Balancing

LBMM algorithm solves the bottleneck problem,

minimize execution time of each task; also avoid

unnecessary replication of task on the node thereby

minimizing overall completion time. In this algorithm the

request manager assigning receiving task to service

manager. Then service manager divide received task into

subtasks. After that LBMM assigns sub-tasks to the node

which requires minimum execution time [6]. In this

method, several VMs are involved in the execution of a

task, but in the proposed method, only one VM is used to

run each task, which prevents other servers from wasting

time.

In ACO
2
 algorithm when the request in initiated the

ant start its movement [7]. Ant’s Movement is of two ways:

forward movement and backward movement. This

algorithm reduced the unnecessary backward movement

overcome heterogeneity is excellent in fault tolerance.

forward movement means the ant in continuously moving

from one overloaded node to another node and check it is

overloaded or under loaded, if ant find an over loaded node

it will continuously moving in the forward direction and

check each nodes .Backward movement: If an ant find an

over loaded node the ant will use the backward movement

to get to the previous node, in the algorithm if ant finds the

target node then ant will commit suicide [8].

D. Babu et al [9] proposed a Honey Bee Behavior

inspired Load Balancing [HBB-LB] technique which helps

to achieve even load balancing across virtual machine to

maximize throughput. It considers the priority of task

waiting in queue for execution in virtual machines. After

that work load on VM calculated decides whether the

system is overloaded, under loaded or balanced. And based

on this VMs are grouped. New according to load on VM

the task is scheduled on VMs. Task which is removed

earlier. To find the correct low loaded VM for current task,

tasks which are removed earlier from over loaded VM are

helpful. Forager bee is used as a Scout bee in the next steps.

In this method, the waiting time may be increased slightly,

which is solved in the proposed method because the

Promethee technique has a high speed in finding the most

suitable VM for the input task.

MapReduce algorithm adds one more load balancing

level between the map job and the reduce job to decrease

the overload on these jobs. The load balancing in the

middle divides only the large jobs into smaller jobs and

then the smaller blocks are sent to the reduce jobs based on

their availability. There are three methods (part, comp and

group) in this model [10]. This algorithm initiate the

mapping of jobs by executes the part method. At this step

the request entity is partitioned into parts using the map

jobs. Then, the key of each part is saved into a hash key

table and the comp method does the comparison between

the parts. After that, the group method groups the parts of

similar entities using the reduce jobs. Since several map

jobs can read entities in parallel and process them, this will

cause the reduce jobs to be overloaded. Stochastic hill

climbing approach proposed to the load balancing for

2 Ant Colony Optimization

https://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 82

maximum optimization of available resources. A local

optimization approach Stochastic Hill climbing is used for

allocation of incoming jobs to the servers or virtual

machines (VMs) [11, 12].

 A stochastic and Local Optimization algorithm is

simply a loop that continuously moves in the direction of

increasing value, which is uphill. It maps assignments to a

set of assignments by making minor changes to the original

assignment. Algorithm stops when it reaches a ”peak”

where no neighbor has a higher value. This variant chooses

at random from among the uphill moves and the probability

of selection can vary with the steepness of the uphill move.

The WRR3 is similar to the Round Robin in a sense

that the manner by which requests are assigned to the nodes

is still cyclical, albeit with a twist. The node with the higher

specs will be apportioned a greater number of requests.

This method focus in particular on algorithms based on

closed queuing networks for multi-class workloads, which

can be used to describe application with service level

agreements differentiated across users [13].

3. Proposed algorithm:

3.1 Cloud Environment Model

The defined space of cloud computing consists of K

clusters for processing (service) .m is the number of

physical servers that are shown as S= {S1,S2,…,Sm}. Let

VM(Sf)= {VM1, VM2,…,VMn}, f∈[1,m] be the set of m

virtual machines per physical server which should process

z tasks represented by the set T = {T1, T2, . . ., Tz}. We

denote sending time of a task Ti by STi (0≤STj≤T).

Each processing node rj (physical server or VM) has

five characteristics which can be denoted as VMj= (rcpj,

rmj, rIOj, rcj, rnj). rcpj
is processing power of each node in

other words the number of executed instructions by each

node processing elements. rmj and rIOj respectively

represent the rate of utilization of memory and I/O. rcj is

the resource price and finally rnj is the amount of delay

(traffic) on the network to achieve a processing node.

Each Tj task has five characteristics in this

environment which can be denoted as Tj= (cpi, mi, IOi, bi,

di). Where containing element, cpi is the rate of CPU

utilization for task Ti, mi is the rate of memory utilization

for task Ti, IOi is the rate of I/O utilization for task Ti, bi is

the fund allocated to the task Ti and di is maturity of the

task execution.

Current workload of all available VMs can be

calculated based on the information received from the

datacenter. Based on this, standard deviation has to be

calculated to measure deviations of load on VMs.

3.2 Formulation of the problem

3.2.1 Decision matrix

As was said, load balancing in cloud computing can

be formulated as a multi-criteria decision making

(MCDM) problem. As shown in figure 1, the multi-

criterion decision problem can be expressed in the form of

3Weighted Round Robin

a decision matrix (n*5) where alternatives (a1,…, an) are

VMs which must be ordered and criteria (f1,…, f5) are

(rcpj, rmj, rIOj, rcj, rnj) which must be optimized.
,5nr is

assigned value of 5th criteria for nth VM.

3.2.2 Normalized decision matrix

This step transforms various attribute dimensions into

non-dimensional attributes, which allows comparisons

across criteria. Normalize scores or data as follows:

2

1






r ij
N ij

n
r ij

i (1)

3.2.3 Criteria’s weights

In this paper, weight of criteria is calculated based on

entropy method [14].

1. Definition of the entropy

In the 5 indicators, n evaluating objects evaluation

problem, the entropy of ith indicator is defined as:

1

ln , 1,2,...,5


  
n

j ij ij
j

k iH f f
 (2)

In which

1

1
,

ln

ij

ij n

ij

j

N
f k

n
N



 



, and suppose

when 0, ln 0ij ij ijf f f  .

2. Definition of the weights of entropy for processing

node’s criteria:

The weight of entropy of ith indicator could be defined

as:

5

1

1

5
'








j

j

j
j

H
w

H
 (3)

3. Definition of the final weights of task’s criteria

By considering the following vector which is shown in

figure 2, final weight of criteria will be calculated as

follows:
'

5
'

1

i i
i

i i

i

p w
W

p w






(4)

In which 0 1
iw  ,

5

1

1


 i
i

w
 (4)

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 83

Fig.1 Initial Matrix P

Fig.2

 Fig.2 vector J

3.2.4 Final Ranking with PROMETHEE

PROMETHEE Decision Making Method algorithm can

be summarized as follows [15]:

1. To indicate for each criterion fj(a) generalized

preference function Pj(ai,ak) = fj(ai)- fj(ak) , fj(a) is the

value of jth criterion for ath alternative.

2. To define for all the alternatives ai, ak A the preference

relation P:

1

* [0,1]

:
(,) (() ()

n

i k j j j i j k

j

A A

a a w P f a f a









 



 (5)

The preference index p(ai,ak) is an intensity

measurement of the total preference of the decision maker

for an alternative ai compared to an alternative ak and that

by taking into account all the criteria simultaneously.

3. To calculate outgoing flow which is a measure of

alternative force ai∈A like:

1

1
() (,)

n

i i k

i
i k

a a a
n

 




  (6)

4. To calculate entering flow which is a measure of the

outclassed character of an alternative ai∈A, as:

1

1
() (,)

n

i k i

i
i k

a a a
n

 




  (7)

5. Preference relation evaluation.

Basically, more the outgoing flow is large and more the

entering flow is weak, better is the alternative.

PROMETHEE-I method lead to a partial pre-order which is

obtained by comparing the outgoing–entering flows and by

carrying out the intersection between the two total pre-

orders (obtained by leaving and entering flows) what makes

it possible to emphasize incomparable alternatives. If a

complete pre-order is necessary, PROMETHEE-II method

calculates net flow like the difference between entering and

outgoing flows; thus, we must avoids all incomparability

between two alternatives. The alternative with the highest

value of ϕ is the best option is to choose.

() () ()i i ia a a     (8)

3.3 Standard deviation of load

Current workload of all available VMs can be calculated

based on the information received from the datacenter.

Based on this, standard deviation has to be calculated to

measure deviations of load on VMs.

f1 f2 …. f5

Criteria

Alternatives

a1

a2

 .

 .

 .

an

r1,1

r2,1

 .

 .

 .
rn,1

r2,1

r2,2

 .

 .

 .
rn,2

r1,5

r2,5
 .

 .

 .
rn,5

…

…

…

C1 C2 C3 C4 C5

Criteria

Alternative

P1 P2 P3 P4 P5

J

Ti

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 84

3.3.1 Capacity of a VM

i numi mipsi bwiC Pe Pe VM  

(9)
Where processing element, Penumi is the number

processors in VMi, Pemipsi is million instructions per second

of all processors in VMi and VMbwi is the communication

bandwidth ability of VMi.

3.3.2 Capacity of all VMs

1

n

i

i

C C




(10)
Summation of capacity of all VMs is the capacity of

data center.

3.3.3 Load on a VM

Total length of tasks that are assigned to a VM is

called load.

,

(,)

(,)iVM t

i

N T t
L

S VM t


(11)
Load of a VM can be calculated as the number of

tasks at time t on service queue of VMi divided by the

service rate of VMi at time t. load of all VMs in a data

center is calculated as:

,

1
i t

m

VM

i

L L




(12)
Processing time of a VM:

,iVM t

i

i

L
PT

C


(13)
Processing time of all VMs:

L
PT

c


(14)

Standard deviation of load:

 2

1

1
()

m

i

i

PT PT
m




 

(15)

3.4 Load balancing decision

After finding the workload and standard deviation, the

system should decide whether to do load balancing or not.

For this, there are two possible situations i.e., (1) Finding

whether the system is balanced (2) Finding whether the

whole system is saturated or not (The whole group is

overloaded or not). If overloaded, load balancing is

meaningless. Decision maker is faced with a finite n

option:

VM={VMi | i=1, 2,…, n}

a. Finding State of the VM group
If the standard deviation of the VM load (𝜎) is under

or equal to the threshold condition set (Ts) [0–1] then the

system is balanced [17]. Otherwise system is in an

imbalance state. It may be overloaded or under loaded.

if Ts

System is balanced

Exit

 

b. Finding Overloaded Group

When the current workload of VM group exceeds the

maximum capacity of the group, then the group is

overloaded. Load balancing is not possible in this case.
maximumif L capacity

Load balancing is not possible

else

Trigger load balancing



3.4.1 PLB

In this work, each server is responsible for balancing

the load of its VMs and other servers. In each server,

virtual infrastructure manager is responsible for allocating

resources to tasks and VMs. Therefore, the amount of

server resources is always busy for that server and

infrastructure manager use this resource for the

calculation. The proposed method is a dynamic method

that decides simultaneously to get tasks and according to

dynamic information of resource.

On each server, the virtual infrastructure manager sets

two tables, one is load table and another is server table,

load table is the table that amount of load available for all

VMs on the server and also its overall load on the server is

located in. To determine the amount of the load for each

resource of a processing node, Total tasks in the queue

resources (CPU, Memory, I/O) is divided into the speed of

each source which is obtained by following equation:

1

_ _ ()()
() (

_ ()
Sec

m

i

i

job cpu length i MI
load cpu

MI
computing capacity



(16)

1

_ _ ()()
() (

_ ()
Sec

m

i

i

job Mem length i MB
load Mem

MB
Memory bandwidth



(17)

1

_ _ ()()
() (

_ ()
Sec

m

i

i

task IO length i MB
load cpu

MB
IO bandwidth



(18)

Where j is the number of processing node Total

obtained for each of the available resources divided into

the speed of the source until time it takes to process the

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 85

tasks in the queue that source is calculated. If this value is

greater than a threshold value (T) that means this resource

is over loaded and otherwise it will be a light loaded

resource. This concept is defined in pseudo-code:

  , , /

If max CPU Mem I O T

utilization Level is High

else

utilization Level is Low

endif



 In the server table, information of servers providing a

service is existing. With addition of each physical server

to cloud, this table is updated. Two main scenarios have

been considered in this simulation. In the first scenario,

tasks are one by one and consecutive in to a cloud (in a

moment of time, there is only one task for a service and

the input for other services, zero) this scenario is used to

set simulation environment and the values obtained are

more realistic. Servers in the cloud can provide one or

more services simultaneously. If the server can provide

only one service this means that all existing VMs on that

server are located in a cluster and if a server

simultaneously provides more than one service this means

that as the number of services provided by this server,

groups of VMs are existing.

With the arrival of each task to a server, infrastructure

manager of that server finds the best VM for allocating the

task in corresponding cluster with using the

PROMETHEE decision making method. If the capacity of

all VMs is full on the cluster servers using to decide the

action to select the best server for the transfer of other

VM's to the server for create a capacity to creation new

VM.Since the proposed method uses the PROMETHEE

decision making’s method for load balancing it called

PLB. In this method, instead of defining an objective

function to compare the resources and decision-making

matrix is used.

3.4.2 Two Level Load Balancing

In this work 3PCS [18] model is considered for

heterogeneous cloud computing environment, Figure 3

shows this model. The PLB load balancing algorithm is

represented in two levels:

a. VM Level:

When a task reaches to the source server, virtual

infrastructure manager of source server calls for the

collection of load tables from other servers within a cluster

according to server table. Servers within a cluster are

servers that provide the desired service by the number of

VMs. Servers with receiving this call at first edit

information of that part of load table that service provider

VMs are there, and then send to the source server. This

edition is that eliminates all VM's that are overload from

table and only VMs who have a light load (load is less

than T) sends to the source server. Source server receives

all the load tables that were edited as well as measuring

the average maturity time for each server, make the

Prometheus Matrix decision, then According to the

criteria, produce weight vector (eq.4) and specifies the

best VM for the allocation of input task.

b. Physical Server Level:

After entering the task and calling the source server to

collect load tables, if no VM is found, In other words, if

the load tables received by the source server are empty, it

Means all the VM's on the cluster are over load. At this

time, the entire cluster is over load. To fix the problem,

the new processing capacity (VM) should create in cluster,

as part of the cluster load is transferred to it. For do this,

the source server checks the amount of load of each

servers in the received load tables. Servers that have

empty capacity should create VM, If the server was not

found to create VM, other VMs of Available servers in the

cluster attempt to migrate (from other clusters) to servers

of that clusters. To do this, the servers need to choose the

best server to migrate the other their VM to it. Thus, the

servers according to PROMETHEE algorithm and entropy

weighting method (eq.3) try to choose the best server.

Fig.3 shows the flowchart of two level load balancing of

our algorithm.

4. Experimental results

A cloud computing system has to handle several

hurdles like network flow, load balancing on virtual

machines, federation of clouds, scalability and trust

management and so on. Research in cloud computing

generally focus on these issues with varying importance.

Cloud services have to handle the temporal variation in

demand through dynamic provisioning or de provisioning

from clouds. Considering all these, we can’t directly use

the cloud computing system. In this section, we have

analyzed the performance of our algorithm based on the

results of simulation done using CloudSim. We have

extended the classes of CloudSim simulator to simulate

our algorithm.

Doing the simulation in cloud environment requires

information about physical servers and VMs capacity.

Two types of references are used to determine this values,

first type is available resources in [19, 20] references

which have been used in the distributed processing (Grid).

Second type is used resources in the CloudSim tools.

Examples of these tools represent the amount of CPU

processing power, memory and I/O which have been

mentioned in table 1.

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 86

Fig.3 Flow diagram of two level Load balancing (physical server and VM levels).

Start (With coming task)

Creating VM

on selected

server and

assigning task

to it.

End

Yes

No

Yes

No

Collecting the load tables from

other cluster by a server within

the cluster, choosing the best

server by PROMETHEE

method and migrating VM to it.

Creating the VM

on selected server

and assigning task

to it.

Collecting server tables

and Remove the

overloaded servers

Remains a
server?

Choosing the best

server by

PROMETHEE.

Collecting load tables, and

removing VMs with high

cost and delay

Remains

a VM?

Choosing the

best VM by

PROMETHEE

method and

assigning task

to it.

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 87

 Table 1 Resources specification

R
es

o
u

rc
e

S
y

st
em

Resource

characteristics:

The type of resource,

operating system, the

number of

computational

components

S
p

ee
d

 r
at

e
o

f

co
m

p
u

ta
ti

o
n

al

co
m

p
o
n

en
ts

 S
P

E
C

/M
IP

S

P
ri

ce

(G
$

/P
E

 u
n

it
)

R1 M1
Compaq, AlphaSrever,

CPU, OSFI, 4
515 8

R2

M2 Sun, Ultra, Solaris, 4 377 3

M3 Sun, Ultra, Solaris, 4 377 3

M4 Sun, Ultra, Solaris, 4 377 3

R3 M5
Intel, Pentiun/VC820,

Linux, 2
380

3

R4

M6
SGI, Origin 3200, IRIX,

6
410

3

M7
SGI, Origin 3200, IRIX,

16
410

3

R5 M8
SGI, Origin 3200, IRIX,

6
410 4

R6 M9
Intel, Pentiun/VC820,

Linux, 2
380 1

R7 M10
SGI, Origin 3200, IRIX,

4
410 6

R8 M11 Sun, Ultra, Solaris, 8 377 3

When servers are purchased for a database, they are

usually have the same genre and the same processing

capacity. Over time, with the placement of servers, new

servers with a different processing capacity may enter into

the database, thus, the selection of servers has been used

the normal distribution in the simulation [21].

In this simulation, fifty servers are intended that

According to Table 2, resources capacity on each server is

obtained by using normal distribution and the listed

specifications in Table 3.

Ten services are provided by cloud, each of these

services are different from each other, that means the

consumption of processor resources for each of them is

different, which requires considering the different levels

of service mean (µ) and variance (σ2) in the normal

distribution to produce VMs of services [22]. As a result,

on each server, different VM groups with different

resources will be placed, the mean and variance of each

service is shown in Table 4. After the VMs distribution on

servers, on average 514 numbers of VM is obtained.

Table 2 Resource specifications in the CloudSim tools Table 3 Servers specifications used in the simulation

E
x

am
p

le
 n

u
m

b
er

 h
o

st
 (

se
rv

er
)

n
u

m
b

er

Host specifications

VM

(s)specifications on

the host

T
h

e
p

ri
ce

 o
f

h
o

st

C
P

U
 (M

IP
S

)

M
em

.

(M
B

)

I/
O

 (B
/S

ec
)

C
P

U
 (M

IP
S

)

M
em

.

(M
B

)

I/
O

 (B
/S

ec
)

1 0 1000 2048
1000

0
1000 512 1000 3

2 0 1000 2048
1000

0

250 512 1000
3

250 512 1000

3

0 1000 2048
1000

0
250 2048

1000

5

1 1000 2048
1000

0
500 2048

1000

N
u

m
b

er
 o

f

se
rv

re
s

S
el

ec
ti

o
n

 t
h

e

ty
p

e
o

f
se

rv
ic

es

p
ro

v
id

ed
 b

y
 t

h
e

se
rv

er

Server capacity

P
ri

ce
 (

G
$

)
 D

el
ay

 (
S

ec
)

C
P

U
 (M

IP
S

)

M
em

.

(M
B

)

I/
O

 (B
/S

ec
)

50 Random

µ 2σ µ 2σ µ 2σ µ 2σ µ
2

σ

5
0

0
0

5
0

0

4
0

1
0

 1
0

0
0

0

1
0

0
0

5

2
 5

0
0

1
0

0

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 88

 Table 4 VMs Specification used in each service Table 5: Submitted tasks properties to the cloud

Type

of

Service

VM capacity

CPU (MIPS)
Mem.

(MB/S)
I/O (B/S)

µ 2σ µ 2σ µ 2σ

1 200 50 2 0.5 500 50

2 250 40 3 0.5 400 50

3 300 50 2 0.5 600 40

4 270 30 3 0.5 500 50

5 325 20 2 0.5 450 50

6 350 10 3 0.5 550 50

7 200 60 2 0.4 470 40

8 370 20 2 0.3 500 30

9 400 10 2 0.4 550 40

10 300 20 2 0.5 600 20

Rate of utilization of resources for any work has been

obtained by the uniform distribution. For each task, level

of utilization of CPU within the range (20-40) (MIPS),

utilization of memory within the range (0.05-0.5) and

utilization of I/O within the range (60-80) have been

considered. As shown in table 6. The total number of

submitted tasks to the cloud is considered equal to

100,000. The amount of funding and maturity of any task

is obtained by a normal distribution function, which is

mean and standard deviation is shown in Table 5.

In the following illustrations, we have compared the

makespan of WRR, FIFO, Ant Colony Optimization

(ACO) [7, 13, 23, and 24] and our algorithm (PLB) in

different low and over loaded ratios. Fig.4 shows the

comparison of makespan for PLB, FIFO and WRR, ACO.

The X-axis shows the number of tasks and the Y-axis

shows makespan in seconds. It is clearly evident from the

graph that PLB is more efficient when compared with

other 3 algorithms. Fig.5 illustrates the response time of

VMs in seconds for PLB, ACO, FIFO and WRR

Algorithms. The X-axis represents number of tasks and

the Y-axis represents time in seconds. It is evident that

PLB is more efficient compared with other three methods.

a. Load Balancing Index (LBI):
To evaluate the performance metric of our load

balancing algorithm (PLB), In order to decide whether the

network needs to be balanced, it uses the load

balancing index (LBI), which is calculated by the

following equation:

2

1

2

1

()
n

i

i

n

i

i

U

LBI

N U










 (19)

Where N is the number of VMs and Ui is utilization

of VMi. The purpose of PLB algorithm is to distribute the

query load L fairly among the virtual machines. Figure 7

shows the relation of the VM numbers and the LBI. The

value of the fairness index ranges between 0 and 1. A

totally fair load distribution has a fairness index of 1 and

the fairness index of a totally unfair load distribution is

0.Given the above definition, one can verify that if the

VMs have the same utilization, workload is distributed to

nodes proportional to their capacities; this distribution of

workload is totally fair. In FIFO and ACO and WRR

algorithms, when the VM number increases, the total

traffic load will increase. However, the LBI is not growing

worse significantly. That is, our proposed PLB schemes

cloud maintain almost ideal load-balanced state and

perform better load balancing than FIFO and ACO and

WRR do. In addition, the LBIs of ACO and WRR will

increase a little when the node number increases. Figure 6

and 7 shows the LBI for WRR, ACO, FIFO and our

algorithm.

b. VM Load Variation:
To better test the stability of the algorithm, we define

VM load variation rate as α which indicates the variation

range of VM load. Suppose the initial VM load deployed

is LVMi,t0 and the current VM load is LVMi,t, From Eq. (11)

we can imply Eq. (20), where ∝ is VM load variation:

0

0

, ,

,

i i

i

VM t VM t

VM t

L L

L



 (20)

The experiment mainly analyzes the load balancing

effect of the algorithm and the migration cost to realize the

system load balancing after scheduling by the algorithm,

and makes relevant comparisons between this algorithm

and the current VM balancing scheduling methods

including the Rotation scheduling algorithm and Least

Connection Scheduling.

On some special occasions, there is a big increase of

the load of some nodes in the system due to frequent

access thus leads to the load imbalance of the whole

system. Under this situation, usually the system cannot

realize the system load balancing through only one-time

scheduling so it must do it through VM migration.

However, the cost of VM migration cannot be neglected.

Thus where the VM should be migrated and how to

Number of

tasks

Price (G$) (Sec) Maturity

µ 2σ µ 2σ

100000 5 2 600 100

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 89

migrate the least number of VM are also the problems that

need consideration during VM scheduling. The algorithm

of this paper takes historical factors into consideration. It

computes the situation of the whole system after

scheduling in advance through PROMETHEE algorithm

and then chooses the scheduling solution with the lowest

cost. Figure 8 shows the average VM migration ratio

while the VM load variation rate α is changing. It can be

seen that the method of this paper shows conspicuous

advantage. The experiment shows that the method of this

paper can greatly bring down the migration cost. Figure

9(a)–(d) shows the comparisons of task migration vs.

number of virtual machines when numbers of tasks are

varied from 10 to 80. Results illustrate that PLB is more

efficient with lesser number of task migrations when

compared with LCS and RSC [25] techniques.

5. Conclusion

This paper presented a scheduling strategy on VM

load balancing based on PROMETHEE decision making

method for cloud computing environments. In this

algorithm, this allocation is a choice between existing

processing nodes that is proposed for the task, which uses

various specifications of quality and quantity of resources

based on user needs can be done. The weight of criteria is

calculated based on entropy method which is effective for

all the positive and negative aspect. The best appropriate

VM or physical server selects based on the value of the

criteria’s weights. We have compared our proposed

algorithm with other existing techniques. Results show our

algorithm can better realize load balancing and proper

resource utilization and stands good without increasing

additional overheads for balancing non-preemptive

independent tasks. This load balancing technique provides

minimum node idle time, handle heterogeneous resources

and works well for heterogeneous cloud computing

systems, the 3PCS model is considered for this

environment. In future work, we plan to use learning

algorithms such as the neural network, instead of using the

entropy method to abtain criteria’s weight. Certainly, in

this section, the training of the neural network will be

important. In addition to the criteria in this project, we can

include criteria such as bandwidth, etc. in the decision

matrix. This will make the decisions made more accurate.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith,

Anthony D. Joseph, Randy Katz, Andy

Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, and Matei Zaharia, Above the

clouds: A berkeley view of cloud computing, UC

Berkeley Technical Report UCB/EECS-2009-28,

February (2009).

[2] Borja Sotomayor, Kate Keahey, and Ian Foster,

Overhead matters: A model for virtual resource

management, In VTDC '06: Proceedings of the 1st

International Workshop on Virtualization

Technology in Distributed Computing, Washington,

DC, USA (2006), page 5.

[3] D.L. Eager, E.D. Lazowska, J. Zahorjan, Adaptive

load sharing in homogeneous distributed systems,

The IEEE Transactions on Software Engineering 12,

Volume (5), (1986), pp.662–675.

[4] A. Revar, M. Andhariya, D. Sutariya, M. Bhavsar,

Load balancing in grid environment using machine

learning-innovative approach, International Journal of

Computer Applications, Volume 8, (10 (Oct)) (2010),

pp. 975–8887.

[5] J. Al-Jaroodi, and N. Mohamed, DDFTP: Dual-

Direction FTP, 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing

(CCGrid), IEEE (2011), pp. 504-503.

[6] S. C. Wang, K. Q. Yan, W. P. Liao and S. S. Wang,

Towards a load balancing in a three-level cloud computing

network, 3rd International Conference on. Computer

Science and Information Technology (ICCSIT), IEEE,

Volume 1, July (2010), pp. 108-113.

[7] Ren Gao, and Juebo Wu, Dynamic Load Balancing Strategy

for Cloud Computing with Ant Colony Optimization,

Future Internet , Volume 7, (2015), pp. 465-483.

[8] Z. Zhang, X. Zhang, A Load Balancing Mechanism Based

on Ant Colony and Complex Network Theory in Open

Cloud Computing Federation, Proceedings of 2nd

International Conference on Industrial Mechatronics and

Automation (ICIMA), Wuhan, China, (2010), pp. 240-243.

L.D. DhineshBabu, P. Venkata Krishna, Honey Bee

behavior inspired load balancing of tasks in cloud

computing environments, Applied Soft Computing 13,

(2013), pp. 2292–2303.
[9] T. Gunarathne, T-L. Wu, J. Qiu and G. Fox, MapReduce in

the Clouds for Science, in proc. 2nd International

Conference on Cloud Computing Technology and Science

(Cloud Com), IEEE (2010), pp. 565-572.
[10] V. P. Shilpa, T. S. Shilpa, Survey on Load Balancing in

Cloud Computing, International Conference on Computing,

Communication and Energy Systems (ICCCES-2014),

(2014).

[11] B. M. K. Dasguptaa, P. Duttab, Load Balancing in Cloud

Computing using Stochastic Hill Climbing-A Soft

Computing Approach, Procedia Technology 4 (2012)

2212-0173 © 2012 Published by Elsevier Ltd.

doi:10.1016/j.protcy.2012.05.128 C3IT-(2012), pp. 783 –

789.
[12] Wang W, Casale G, Evaluating weighted round robin load

balancing for cloud web services, Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 2014 16th

International Symposium on, (2014).

[13] Xiaona Ren, Rongheng Lin,Hua Zou, a dynamic load

balancing strategy for cloud computing platform based on

exponential smoothing forecast, Proceedings of IEEE

CCIS2011, (2011), pp.220-224.

[14] Zhi-hong.Z, Y. Yi, S. Jing-nan, Entropy method for

determination of weight of evaluating in fuzzy synthetic

evaluation for water quality assessment, Journal fo environ

mental science, Volume 18, No. 5, (2006), pp.1020-1023.

[15] J. P. Brans, PH.Vincke, a Preference Ranking Organization

method (The PROMETHEE Methos for Multiple Criteria

Decision-Making), Management Science, volume 31,

(1985), pp. 647-656.

[16] R.F. de Mello, L.J. Senger, L.T. Yang, A routing load

balancing policy for grid computing environments, in: 20th

International Conference on Advanced Information

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031476
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031476
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7031476

Hourali et al., Int. J. of Integrated Engineering Vol. 10 No. 8 (2018) p. 80-90

 90

Networking and Applications, AINA(2006) 6, volume 1,

(2006), pp.18–20 April,.

[17] S. Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski, N. Beck,

L. Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson,

M.D. Theys, B. Yao, Characterizing Resource Allocation

Heuristics for Heterogeneous Computing Systems,

Proceeding of Advances in Computers in Parallel,

Distributed, and Pervasive Computing, (2005), pp. 91-128.

[18] Dumitrescu, C., Foster, I. Gangsim: A simulator for grid

scheduling studies, Proceedings of the IEEE International

Symposium on Cluster Computing and the Grid, (2005), pp.

26-34.

[19] Sulistio, A., Buyya, R. A grid simulation infrastructure

supporting advance reservation, Proceedings of the 16th

International Conference on Parallel and Distributed

Computing Systems, (2004), pp. 1-7.

[20] Braun, T.D., Siegel, H.J., Maciejewski, A.A.. Static

Mapping Heuristics for Tasks with Dependencies,

Priorities, Deadlines, and Multiple Versions in

Heterogeneous Environments, Proceedings of the 16th

International Parallel and Distributed Processing

Symposium, (2002) , pp. 161-168.

[21] Nahir, A., Orda, A., Raz, D. Distributed Oblivious Load

Balancing Using Prioritized Job Replication, Proceeding of

Network and service management (cnsm), (2012), pp. 55-

63.

[22] B. Yagoubi, Y. Slimani, Task load balancing strategy for

grid computing, Journal of Computer Science 3 (3), (2007)

pp. 186–194.

[23] B. Yagoubi, Y. Slimani, Dynamic load balancing strategy

for grid computing, transactions on engineering, Computing

and Technology 13 (May) (2006), pp. 260–265.

[24] Geetha C. Megharaj, Dr. Mohan K.G., Two Level

Hierarchical Model of Load Balancing in Cloud,

International Journal of Emerging Technology and

Advanced Engineering, Volume 3, Issue 10, (2013).

Fig.9 (a) Comparison of number of task migrations vs. number of virtual machines for a set of 10 tasks. (b) Comparison

of number of task migrations vs. number of virtual machines for a set of 20 tasks. (c) Comparison of number of task

migrations vs. number of virtual machines for a set of 40 tasks. (d) Comparison of number of task migrations vs.

number of virtual machines for a set of 80 tasks.

Fig. 4 Comparison of makespan for PLB, FIFO, WRR

and ACO algorithms.

Fig. 5 Response time of VMs in seconds for PLB, ACO,

FIFO and WRR

Fig.7 LBI for PLB, ACO, FIFO and WRR.

Fig.8 VM load variation for PLB, ACO, FIFO and

WRR.

