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1. Introduction

Cloud computing is a new technology in academic 

world. In a cloud platform, resources are provided as 

service under a predefined Service Level Agreement 

(SLA) [1]. But, since the resources are shared, subscribers' 

requirements have big dynamic heterogeneity; the 

resource may be wasted if they cannot be assigned 

properly [2]. As other systems, dynamically balancing the 

load among the servers improves resource utility and the 

overall cloud performance in the cloud environment. 

Therefore, an important problem to be solved is how to 

dynamically and efficiently manage resources to meet the 

subscribers' requirements and to maximize the overall 

performance. 

The main result of the load balancing is to speed up 

the execution of applications on resources whose 

workload varies at run time in unpredictable way [3]. 

Load balancing techniques are widely discussed in 

homogeneous as well as heterogeneous environments such 

as grids. There are basically two kinds of load balancing 

techniques, namely, static and dynamic. 

Static load balancing algorithms assign the tasks to 

the nodes based only on the ability of the node to process 

new requests. The process is based solely on prior 

knowledge of the nodes’ properties and capabilities. These 

would include the node’s processing power, memory and 

storage capacity, and most recent known communication 

performance. Although they may include knowledge of 

the communication prior performance, static algorithms 

generally do not consider dynamic changes of these 

attributes at run-time. In addition, these algorithms cannot 

adapt to load changes during run-time. Dynamic load 

balancing algorithms take into account the different 

attributes of the nodes’ capabilities and network 

bandwidth. Most of these algorithms rely on a 

combination of knowledge based on prior gathered 

information about the nodes in the cloud and run-time 

properties collected as the selected nodes process the 

task’s components. These algorithms assign the tasks and 

may dynamically reassign them to the nodes based on the 

attributes gathered and calculated. Such algorithms require 

constant monitoring of the nodes and task progress and are 

usually harder to implement. However, they are more 

accurate and could result in more efficient load balancing. 

In cloud computing environments, whenever a VM is 

heavily loaded with multiple tasks, these tasks have to be 

removed and submitted to the under loaded VMs of the 

same data center. In this case, when we remove more than 

one task from a heavy loaded VM and if there is more 

than one VM available to process these tasks, the tasks 

have to be submitted to the VM such that there will be a 

good mix of priorities i.e., no task should wait for a long 

time in order to get processed. Load balancing is done at 

virtual machine level i.e., at intra-data center level. 

We suggest that load balancing in cloud computing 

can be formulated as a multi-criteria decision making 

(MCDM) problem and then use PROMETHEE decision 

making algorithm to solve it. The proposed algorithm uses 

resources' information to compute the desired criteria 

(load balancing) and solve the problem. Then it directs the 
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virtual infrastructure manager to provide an appropriate 

allocation. This allocation is actually a choice between 

existing processing nodes based on various resources' 

specifications and users' requirements. The specific 

contributions of this paper include: 

 An algorithm for scheduling and load balancing of 

non-preemptive independent tasks in cloud 

computing environments inspired by 

PROMETHEE decision making method. 

 Correlation of the proposed PLB 1 algorithm with 

actual PROMETHEE decision making method. 

 A clear flow diagram showing the PROMETHEE 

load balancing algorithm. 

 An analysis and systematic study with 

mathematical evidence to show how the 

PROMETHEE decision making method is helpful 

for load balancing in the cloud computing 

environments. 

Rest of this paper is organized as follows; Section 2 

reviews the related works on existing load balancing 

techniques. Section 3 brings PROMETHEE decision-

making method and explains it. Section 4 employs 

PROMETHEE to design a scheduling algorithm and 

presents its detailed algorithm. Section 5 presents the 

experimental results for performance evaluation of the 

algorithm in comparison with existing algorithms. Finally 

we conclude this paper highlighting the contributions and 

future enhancements in Section 6. 

 

2. Related Works 

Load balancing is removing tasks from over loaded 

VMs and assigning them to under loaded VMs. It can affect 

the overall performance of a system executing an 

application. Load balancing algorithms can be classified in 

to dynamic and static algorithms [4]: 

Static algorithms work properly only when nodes 

have a low variation in the load. Therefore, these 

algorithms are not suitable for cloud environments where 

load will be varying at varying times. Dynamic load 

balancing algorithms are advantageous over static 

algorithms. But to gain this advantage, we need to consider 

the additional cost associated with collection and 

maintenance of the load information. 

DDFTP algorithm [5] performs load balancing by 

dividing the file of size n into n/2 divisions. Then, each 

server node starts processing the task assigned for it based 

on a certain pattern. When the two servers download two 

consecutive blocks, the task is considered as finished and 

other tasks can be assigned to the servers. This minimizes 

the node communication, thereby reducing the network 

overhead which further eliminates the need for run-time 

supervision of nodes. But attaching file divisions imposes 

some time complexity into the network. The proposed 

method finds the best server for the job taking into account 

all the aspects, instead of splitting the file between multiple 

servers. 

                                                 
1 Promethee Load Balancing 

LBMM algorithm solves the bottleneck problem, 

minimize execution time of each task; also avoid 

unnecessary replication of task on the node thereby 

minimizing overall completion time. In this algorithm the 

request manager assigning receiving task to service 

manager. Then service manager divide received task into 

subtasks. After that LBMM assigns sub-tasks to the node 

which requires minimum execution time [6]. In this 

method, several VMs are involved in the execution of a 

task, but in the proposed method, only one VM is used to 

run each task, which prevents other servers from wasting 

time. 

In ACO
2
 algorithm when the request in initiated the 

ant start its movement [7]. Ant’s Movement is of two ways: 

forward movement and backward movement. This 

algorithm reduced the unnecessary backward movement 

overcome heterogeneity is excellent in fault tolerance.  

forward movement means the ant in continuously moving 

from one overloaded node to another node and check it is 

overloaded or under loaded, if ant find an over loaded node 

it will continuously moving in the forward direction and 

check each nodes .Backward movement: If an ant find an 

over loaded node the ant will use the backward movement 

to get to the previous node, in the algorithm if ant finds the 

target node then ant will commit suicide [8].  

D. Babu et al [9] proposed a Honey Bee Behavior 

inspired Load Balancing [HBB-LB] technique which helps 

to achieve even load balancing across virtual machine to 

maximize throughput. It considers the priority of task 

waiting in queue for execution in virtual machines. After 

that work load on VM calculated decides whether the 

system is overloaded, under loaded or balanced. And based 

on this VMs are grouped. New according to load on VM 

the task is scheduled on VMs. Task which is removed 

earlier. To find the correct low loaded VM for current task, 

tasks which are removed earlier from over loaded VM are 

helpful. Forager bee is used as a Scout bee in the next steps. 

In this method, the waiting time may be increased slightly, 

which is solved in the proposed method because the 

Promethee technique has a high speed in finding the most 

suitable VM for the input task. 

MapReduce algorithm adds one more load balancing 

level between the map job and the reduce job to decrease 

the overload on these jobs. The load balancing in the 

middle divides only the large jobs into smaller jobs and 

then the smaller blocks are sent to the reduce jobs based on 

their availability. There are three methods (part, comp and 

group) in this model [10]. This algorithm initiate the 

mapping of jobs by executes the part method. At this step 

the request entity is partitioned into parts using the map 

jobs. Then, the key of each part is saved into a hash key 

table and the comp method does the comparison between 

the parts. After that, the group method groups the parts of 

similar entities using the reduce jobs. Since several map 

jobs can read entities in parallel and process them, this will 

cause the reduce jobs to be overloaded. Stochastic hill 

climbing approach proposed to the load balancing for 

                                                 
2 Ant Colony Optimization 
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maximum optimization of available resources. A local 

optimization approach Stochastic Hill climbing is used for 

allocation of incoming jobs to the servers or virtual 

machines (VMs) [11, 12]. 

 A stochastic and Local Optimization algorithm is 

simply a loop that continuously moves in the direction of 

increasing value, which is uphill. It maps assignments to a 

set of assignments by making minor changes to the original 

assignment. Algorithm stops when it reaches a ”peak” 

where no neighbor has a higher value. This variant chooses 

at random from among the uphill moves and the probability 

of selection can vary with the steepness of the uphill move.  

The WRR3 is similar to the Round Robin in a sense 

that the manner by which requests are assigned to the nodes 

is still cyclical, albeit with a twist. The node with the higher 

specs will be apportioned a greater number of requests. 

This method focus in particular on algorithms based on 

closed queuing networks for multi-class workloads, which 

can be used to describe application with service level 

agreements differentiated across users [13].  

 

3. Proposed algorithm: 

3.1 Cloud Environment Model 

The defined space of cloud computing consists of K 

clusters for processing (service) .m is the number of 

physical servers that are shown as S= {S1,S2,…,Sm}. Let  

VM(Sf)= {VM1, VM2,…,VMn}, f∈[1,m] be the set of m 

virtual machines per physical server which should process 

z tasks represented by the set T = {T1, T2, . . ., Tz}. We 

denote sending time of a task Ti by STi (0≤STj≤T). 

Each processing node rj (physical server or VM) has 

five characteristics which can be denoted as VMj= (rcpj, 

rmj, rIOj, rcj, rnj). rcpj 
is processing power of each node in 

other words the number of executed instructions by each 

node processing elements. rmj and rIOj respectively 

represent the rate of utilization of memory and I/O. rcj is 

the resource price and finally rnj is the amount of delay 

(traffic) on the network to achieve a processing node. 

Each Tj task has five characteristics in this 

environment which can be denoted as Tj= (cpi, mi, IOi, bi, 

di). Where containing element, cpi is the rate of CPU 

utilization for task Ti, mi is the rate of memory utilization 

for task Ti, IOi is the rate of I/O utilization for task Ti, bi is 

the fund allocated to the task Ti and di is maturity of the 

task execution. 

Current workload of all available VMs can be 

calculated based on the information received from the 

datacenter. Based on this, standard deviation has to be 

calculated to measure deviations of load on VMs. 

 

3.2 Formulation of the problem  

3.2.1 Decision matrix 

As was said, load balancing in cloud computing can 

be formulated as a multi-criteria decision making 

(MCDM) problem. As shown in figure 1, the multi-

criterion decision problem can be expressed in the form of 

                                                 
3Weighted Round Robin 

a decision matrix (n*5) where alternatives (a1,…, an) are 

VMs which must be ordered and criteria (f1,…, f5) are 

(rcpj, rmj, rIOj, rcj, rnj) which must be optimized. 
,5nr is 

assigned value of 5th criteria for nth VM.  

 

3.2.2 Normalized decision matrix 

This step transforms various attribute dimensions into 

non-dimensional attributes, which allows comparisons 

across criteria. Normalize scores or data as follows: 

2
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


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r ij
N ij

n
r ij

i              (1)                 

3.2.3 Criteria’s weights 

In this paper, weight of criteria is calculated based on 

entropy method [14]. 

 

1. Definition of the entropy 

In the 5 indicators, n evaluating objects evaluation 

problem, the entropy of ith indicator is defined as: 
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2. Definition of the weights of entropy for processing 

node’s criteria: 

The weight of entropy of ith indicator could be defined 

as: 
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3. Definition of the final weights of task’s criteria  

By considering the following vector which is shown in 

figure 2, final weight of criteria will be calculated as 

follows: 
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Fig.1 Initial Matrix P 

 

 

                    

 

 

 

 

    
 

Fig.2  

 

                                                                            Fig.2 vector J 

 

 

3.2.4 Final Ranking with PROMETHEE  

PROMETHEE Decision Making Method algorithm can 

be summarized as follows [15]: 

 

1. To indicate for each criterion fj(a) generalized 

preference function Pj(ai,ak) = fj(ai)- fj(ak) , fj(a) is the 

value of jth criterion for ath alternative.  

 

2.  To define for all the alternatives ai, ak A the preference 

relation P: 

1

* [0,1]

:
( , ) ( ( ) ( )

n

i k j j j i j k

j

A A

a a w P f a f a








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


          (5)                                                                                                

The preference index p(ai,ak) is an intensity 

measurement of the total preference of the decision maker 

for an alternative ai compared to an alternative ak and that 

by taking into account all the criteria simultaneously.  

 

3. To calculate outgoing flow which is a measure of 

alternative force ai∈A like: 

1

1
( ) ( , )

n

i i k

i
i k

a a a
n

 




                          (6)                                                                                                                                

4. To calculate entering flow which is a measure of the 

outclassed character of an alternative ai∈A, as: 

1

1
( ) ( , )

n

i k i

i
i k

a a a
n

 




                          (7)                                                                                                                                    

5.  Preference relation evaluation. 

Basically, more the outgoing flow is large and more the 

entering flow is weak, better is the alternative. 

PROMETHEE-I method lead to a partial pre-order which is 

obtained by comparing the outgoing–entering flows and by 

carrying out the intersection between the two total pre-

orders (obtained by leaving and entering flows) what makes 

it possible to emphasize incomparable alternatives. If a 

complete pre-order is necessary, PROMETHEE-II method 

calculates net flow like the difference between entering and 

outgoing flows; thus, we must avoids all incomparability 

between two alternatives. The alternative with the highest 

value of ϕ is the best option is to choose. 

( ) ( ) ( )i i ia a a               (8)                                                                                                                                              

 

3.3 Standard deviation of load 

Current workload of all available VMs can be calculated 

based on the information received from the datacenter. 

Based on this, standard deviation has to be calculated to 

measure deviations of load on VMs. 
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3.3.1 Capacity of a VM 

 

i numi mipsi bwiC Pe Pe VM                                                                                                                     

(9) 
Where processing element, Penumi is the number 

processors in VMi, Pemipsi is million instructions per second 

of all processors in VMi and VMbwi is the communication 

bandwidth ability of VMi. 
 

3.3.2  Capacity of all VMs 

1

n

i

i

C C


                                                                                                                                             

(10) 
Summation of capacity of all VMs is the capacity of 

data center. 

 

3.3.3  Load on a VM 

Total length of tasks that are assigned to a VM is 

called load. 

,

( , )

( , )iVM t

i

N T t
L

S VM t
                                                                                                                              

(11) 
Load of a VM can be calculated as the number of 

tasks at time t on service queue of VMi  divided by the 

service rate of VMi at time t. load of all VMs in a data 

center is calculated as: 

,

1
i t

m

VM

i

L L


                                                                                                                                                                    

(12) 
Processing time of a VM: 

,iVM t

i

i

L
PT

C
                                                                                                                                                                      

(13) 
Processing time of all VMs: 

L
PT

c
                                                                                                                                                                             

(14) 

Standard deviation of load: 

 2

1

1
( )

m

i

i

PT PT
m




                                                                                                                                                    

(15) 

 

3.4 Load balancing decision 

After finding the workload and standard deviation, the 

system should decide whether to do load balancing or not. 

For this, there are two possible situations i.e., (1) Finding 

whether the system is balanced (2) Finding whether the 

whole system is saturated or not (The whole group is 

overloaded or not). If overloaded, load balancing is 

meaningless. Decision maker is faced with a finite n 

option: 

VM={VMi | i=1, 2,…, n}                                               

 

a.  Finding State of the VM group 
If the standard deviation of the VM load (𝜎) is under 

or equal to the threshold condition set (Ts) [0–1] then the 

system is balanced [17]. Otherwise system is in an 

imbalance state. It may be overloaded or under loaded. 

if Ts

System is balanced

Exit

 
 

 
b. Finding Overloaded Group 

When the current workload of VM group exceeds the 

maximum capacity of the group, then the group is 

overloaded. Load balancing is not possible in this case. 
maximumif L capacity

Load balancing is not possible

else

Trigger load balancing



 

 

3.4.1 PLB 

In this work, each server is responsible for balancing 

the load of its VMs and other servers. In each server, 

virtual infrastructure manager is responsible for allocating 

resources to tasks and VMs. Therefore, the amount of 

server resources is always busy for that server and 

infrastructure manager use this resource for the 

calculation. The proposed method is a dynamic method 

that decides simultaneously to get tasks and according to 

dynamic information of resource. 

On each server, the virtual infrastructure manager sets 

two tables, one is load table and another is server table, 

load table is the table that amount of load available for all 

VMs on the server and also its overall load on the server is 

located in. To determine the amount of the load for each 

resource of a processing node, Total tasks in the queue 

resources (CPU, Memory, I/O) is divided into the speed of 

each source which is obtained by following equation: 

1

_ _ ( )( )
( ) (

_ ( )
Sec

m

i

i

job cpu length i MI
load cpu

MI
computing capacity

             

                    

(16) 

1
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m
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i
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load Mem
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Memory bandwidth
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(17) 

1

_ _ ( )( )
( ) (

_ ( )
Sec

m

i

i

task IO length i MB
load cpu

MB
IO bandwidth


              

                  
(18) 

 

Where j is the number of processing node Total 

obtained for each of the available resources divided into 

the speed of the source until time it takes to process the 
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tasks in the queue that source is calculated. If this value is 

greater than a threshold value (T) that means this resource 

is over loaded and otherwise it will be a light loaded 

resource. This concept is defined in pseudo-code: 

     , , /

    

    

If max CPU Mem I O T

utilization Level is High

else

utilization Level is Low

endif



 

      
      In the server table, information of servers providing a 

service is existing. With addition of each physical server 

to cloud, this table is updated. Two main scenarios have 

been considered in this simulation. In the first scenario, 

tasks are one by one and consecutive in to a cloud (in a 

moment of time, there is only one task for a service and 

the input for other services, zero) this scenario is used to 

set simulation environment and the values obtained are 

more realistic. Servers in the cloud can provide one or 

more services simultaneously. If the server can provide 

only one service this means that all existing VMs on that 

server are located in a cluster and if a server 

simultaneously provides more than one service this means 

that as the number of services provided by this server, 

groups of VMs are existing. 

With the arrival of each task to a server, infrastructure 

manager of that server finds the best VM for allocating the 

task in corresponding cluster with using the 

PROMETHEE decision making method. If the capacity of 

all VMs is full on the cluster servers using to decide the 

action to select the best server for the transfer of other 

VM's to the server for create a capacity to creation new 

VM.Since the proposed method uses the PROMETHEE 

decision making’s method for load balancing it called 

PLB. In this method, instead of defining an objective 

function to compare the resources and decision-making 

matrix is used. 

 

3.4.2 Two Level Load Balancing  

In this work 3PCS [18] model is considered for 

heterogeneous cloud computing environment, Figure 3 

shows this model. The PLB load balancing algorithm is 

represented in two levels: 

a. VM Level:  

When a task reaches to the source server, virtual 

infrastructure manager of source server calls for the 

collection of load tables from other servers within a cluster 

according to server table. Servers within a cluster are 

servers that provide the desired service by the number of 

VMs. Servers with receiving this call at first edit 

information of that part of load table that service provider 

VMs are there, and then send to the source server. This 

edition is that eliminates all VM's that are overload from 

table and only VMs who have a light load (load is less 

than T) sends to the source server. Source server receives 

all the load tables that were edited as well as measuring 

the average maturity time for each server, make the 

Prometheus Matrix decision, then According to the 

criteria, produce weight vector (eq.4) and specifies the 

best VM for the allocation of input task. 

 
b.  Physical Server Level:  

After entering the task and calling the source server to 

collect load tables, if no VM is found, In other words, if 

the load tables received by the source server are empty, it 

Means  all the VM's on the cluster are over load. At this 

time, the entire cluster is over load. To fix the problem, 

the new processing capacity (VM) should create in cluster, 

as part of the cluster load is transferred to it. For do this, 

the source server checks the amount of load of each 

servers in the received load tables. Servers that have 

empty capacity should create VM, If the server was not 

found to create VM, other VMs of Available servers in the 

cluster attempt to migrate (from other clusters) to servers 

of that clusters. To do this, the servers need to choose the 

best server to migrate the other their VM to it. Thus, the 

servers according to PROMETHEE algorithm and entropy 

weighting method (eq.3) try to choose the best server. 

Fig.3 shows the flowchart of two level load balancing of 

our algorithm. 

 

4. Experimental results  

A cloud computing system has to handle several 

hurdles like network flow, load balancing on virtual 

machines, federation of clouds, scalability and trust 

management and so on. Research in cloud computing 

generally focus on these issues with varying importance. 

Cloud services have to handle the temporal variation in 

demand through dynamic provisioning or de provisioning 

from clouds. Considering all these, we can’t directly use 

the cloud computing system. In this section, we have 

analyzed the performance of our algorithm based on the 

results of simulation done using CloudSim. We have 

extended the classes of CloudSim simulator to simulate 

our algorithm. 

Doing the simulation in cloud environment requires 

information about physical servers and VMs capacity. 

Two types of references are used to determine this values, 

first type is available resources in [19, 20] references 

which have been used in the distributed processing (Grid). 

Second type is used resources in the CloudSim tools. 

Examples of these tools represent the amount of CPU 

processing power, memory and I/O which have been 

mentioned in table 1. 
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Fig.3 Flow diagram of two level Load balancing (physical server and VM levels). 
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When servers are purchased for a database, they are 

usually have the same genre and the same processing 

capacity. Over time, with the placement of servers, new 

servers with a different processing capacity may enter into 

the database, thus, the selection of servers has been used 

the normal distribution in the simulation [21]. 

In this simulation, fifty servers are intended that 

According to Table 2, resources capacity on each server is 

obtained by using normal distribution and the listed 

specifications in Table 3. 

Ten services are provided by cloud, each of these 

services are different from each other, that means the 

consumption of processor resources for each of them is 

different, which requires  considering the different levels 

of service mean (µ) and variance (σ2) in the normal 

distribution to produce VMs of services [22]. As a result, 

on each server, different VM groups with different 

resources will be placed, the mean and variance of each 

service is shown in Table 4. After the VMs distribution on 

servers, on average 514 numbers of VM is obtained. 

 

Table 2 Resource specifications in the CloudSim tools                Table 3 Servers specifications used in the simulation
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      Table 4 VMs Specification used in each service                    Table 5: Submitted tasks properties to the cloud 
 

Type 

of 

Service 

VM capacity 

CPU (MIPS) 
Mem. 

(MB/S) 
I/O (B/S) 

µ 2σ µ 2σ µ 2σ 

1 200 50 2 0.5 500 50 

2 250 40 3 0.5 400 50 

3 300 50 2 0.5 600 40 

4 270 30 3 0.5 500 50 

5 325 20 2 0.5 450 50 

6 350 10 3 0.5 550 50 

7 200 60 2 0.4 470 40 

8 370 20 2 0.3 500 30 

9 400 10 2 0.4 550 40 

10 300 20 2 0.5 600 20 

 

Rate of utilization of resources for any work has been 

obtained by the uniform distribution. For each task, level 

of utilization of CPU within the range (20-40) (MIPS), 

utilization of memory within the range (0.05-0.5) and 

utilization of I/O within the range (60-80) have been 

considered. As shown in table 6. The total number of 

submitted tasks to the cloud is considered equal to 

100,000. The amount of funding and maturity of any task 

is obtained by a normal distribution function, which is 

mean and standard deviation is shown in Table 5. 

In the following illustrations, we have compared the 

makespan of WRR, FIFO, Ant Colony Optimization 

(ACO) [7, 13, 23, and 24] and our algorithm (PLB) in 

different low and over loaded ratios. Fig.4 shows the 

comparison of makespan for PLB, FIFO and WRR, ACO. 

The X-axis shows the number of tasks and the Y-axis 

shows makespan in seconds. It is clearly evident from the 

graph that PLB is more efficient when compared with 

other 3 algorithms. Fig.5 illustrates the response time of 

VMs in seconds for PLB, ACO, FIFO and WRR 

Algorithms. The X-axis represents number of tasks and 

the Y-axis represents time in seconds. It is evident that 

PLB is more efficient compared with other three methods. 

 

a. Load Balancing Index (LBI): 
To evaluate the performance metric of our load 

balancing algorithm (PLB), In order to decide whether the 

network needs to be balanced, it uses the load 

balancing index (LBI), which is calculated by the 

following equation: 

2

1

2

1

( )
n

i

i

n

i

i

U

LBI

N U










           (19)                                        

                                             

Where N is the number of VMs and Ui is utilization 

of VMi. The purpose of PLB algorithm is to distribute the 

query load L fairly among the virtual machines. Figure 7 

shows the relation of the VM numbers and the LBI. The 

value of the fairness index ranges between 0 and 1. A 

totally fair load distribution has a fairness index of 1 and 

the fairness index of a totally unfair load distribution is 

0.Given the above definition, one can verify that if the 

VMs have the same utilization, workload is distributed to 

nodes proportional to their capacities; this distribution of 

workload is totally fair. In FIFO and ACO and WRR 

algorithms, when the VM number increases, the total 

traffic load will increase. However, the LBI is not growing 

worse significantly. That is, our proposed PLB schemes 

cloud maintain almost ideal load-balanced state and 

perform better load balancing than FIFO and ACO and 

WRR do. In addition, the LBIs of ACO and WRR will 

increase a little when the node number increases. Figure 6 

and 7 shows the LBI for WRR, ACO, FIFO and our 

algorithm.  

b. VM Load Variation: 
To better test the stability of the algorithm, we define 

VM load variation rate as α which indicates the variation 

range of VM load. Suppose the initial VM load deployed 

is LVMi,t0 and the current VM load is LVMi,t, From Eq. (11) 

we can imply Eq. (20), where ∝ is VM load variation: 

0

0

, ,

,

i i

i

VM t VM t

VM t

L L

L



             (20)                                                 

The experiment mainly analyzes the load balancing 

effect of the algorithm and the migration cost to realize the 

system load balancing after scheduling by the algorithm, 

and makes relevant comparisons between this algorithm 

and the current VM balancing scheduling methods 

including the Rotation scheduling algorithm and Least 

Connection Scheduling. 

On some special occasions, there is a big increase of 

the load of some nodes in the system due to frequent 

access thus leads to the load imbalance of the whole 

system. Under this situation, usually the system cannot 

realize the system load balancing through only one-time 

scheduling so it must do it through VM migration. 

However, the cost of VM migration cannot be neglected. 

Thus where the VM should be migrated and how to 

Number of 

tasks 

Price (G$) (Sec) Maturity 

µ 2σ µ 2σ 

100000 5 2 600 100 
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migrate the least number of VM are also the problems that 

need consideration during VM scheduling. The algorithm 

of this paper takes historical factors into consideration. It 

computes the situation of the whole system after 

scheduling in advance through PROMETHEE algorithm 

and then chooses the scheduling solution with the lowest 

cost. Figure 8 shows the average VM migration ratio 

while the VM load variation rate α is changing. It can be 

seen that the method of this paper shows conspicuous 

advantage. The experiment shows that the method of this 

paper can greatly bring down the migration cost. Figure 

9(a)–(d) shows the comparisons of task migration vs. 

number of virtual machines when numbers of tasks are 

varied from 10 to 80. Results illustrate that PLB is more 

efficient with lesser number of task migrations when 

compared with LCS and RSC [25] techniques. 

 

5. Conclusion  

This paper presented a scheduling strategy on VM 

load balancing based on PROMETHEE decision making 

method for cloud computing environments. In this 

algorithm, this allocation is a choice between existing 

processing nodes that is proposed for the task, which uses 

various specifications of quality and quantity of resources 

based on user needs can be done. The weight of criteria is 

calculated based on entropy method which is effective for 

all the positive and negative aspect. The best appropriate 

VM or physical server selects based on the value of the 

criteria’s weights. We have compared our proposed 

algorithm with other existing techniques. Results show our 

algorithm can better realize load balancing and proper 

resource utilization and stands good without increasing 

additional overheads for balancing non-preemptive 

independent tasks. This load balancing technique provides 

minimum node idle time, handle heterogeneous resources 

and works well for heterogeneous cloud computing 

systems, the 3PCS model is considered for this 

environment. In future work, we plan to use learning 

algorithms such as the neural network, instead of using the 

entropy method to abtain criteria’s weight. Certainly, in 

this section, the training of the neural network will be 

important. In addition to the criteria in this project, we can 

include criteria such as bandwidth, etc. in the decision 

matrix. This will make the decisions made more accurate. 
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Fig.9 (a) Comparison of number of task migrations vs. number of virtual machines for a set of 10 tasks. (b) Comparison 

of number of task migrations vs. number of virtual machines for a set of 20 tasks. (c) Comparison of number of task 

migrations vs. number of virtual machines for a set of 40 tasks. (d) Comparison of number of task migrations vs. 

number of virtual machines for a set of 80 tasks. 

 
Fig. 4 Comparison of makespan for PLB, FIFO, WRR 

and ACO algorithms. 

 

 
Fig. 5 Response time of VMs in seconds for PLB, ACO, 

FIFO and WRR 

 

 

 

 
Fig.7 LBI for PLB, ACO, FIFO and WRR. 

 

 
Fig.8 VM load variation for PLB, ACO, FIFO and 

WRR. 

 


