
International Journal of Integrated Engineering:
Special Issue 2018: Data Information Engineering, Vol. 10 No. 6 (2018) p. 176-182.
© Penerbit UTHM DOI: https://doi.org/10.30880/ijie.2018.10.06.025

Self-adaptive Based Model for Ambiguity Resolution of The
Linked Data Query for Big Data Analytics

Nurfadhlina Mohd Sharef1*, Yasser M. Shafazand1, Mohd Zakree Ahmad
Nazri1, Nor Azura Husin1
1Intelligent Computing Research Group
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, MALAYSIA.

Received 28 June 2018; accepted 5 August 2018, available online 24 August 2018

1. Introduction
Big data analytics involves complex query which

requires the fusion or integration of heterogeneous
information which are typically of various types,
domains, vocabulary, granularity and structure [1].
Intelligence through complex queries on Big Data
involves semantic operations including (i) data
integration, (ii) data ingestion in structured data (schema
existed), unstructured data (through annotation and
extraction), ontology (expression of data relations across
schema) and semantic enrichment (expression of data
relations within and across schema), (iii) data indexing
and search, and (iv) data analytics.

The Linked Open Data (LOD) is an example of big
data structure which makes integration of heterogeneous
sources feasible because the data on the web is formatted
in a machine readable way (i.e., Resource Description
Framework (RDF) and ontology language (OWL)) with
typed links between related entities [2-3]. An LOD
infrastructure influences how query processing can be
implemented on top of several characteristics namely
central or distributed data storage, central or distributed
data indexing, and independent or cooperative data
sources.

However, answering complex queries that requires
heterogeneous big data integration (BDI) is challenging
because domain heterogeneity prevents users from
manually translating queries due to their limited domain
knowledge. Besides, users may not be aware that their
query requires multiple sources aggregation, which
results to multiple databases with potential duplicates,
varying answers, and collection of different subsets of
relevant data [4]. Therefore, an assistive query interface

for big data is needed, which allows the users to input the
query in natural language (NL) form [5]. We will refer to
the assistive query interface for big data as natural
language interface (NLI) henceforth. In order to compute
the translation process, ambiguity issue occurs due to (i)
variants in the user’s terms in the query, (ii) degree of
matching between user’s terms with the data structure,
and (iii) granularity within structure of the integrated data
sources.

The existing disambiguation approaches for big data
assistive query interface [6–10] have mainly exploited
synonym based matching, reasoning through OWL and
RDF’s concepts linking mechanism (e.g., the same As
function), similarity scoring functions, and depending on
the user’s intervention for the consolidation through
clarification dialogues. However, the synonym-based
matching, OWL and RDF’s concept linking mechanism,
and similarity scoring function do not guarantee
contextual and structural understanding of the user’s
query and therefore returning low precision. User’s based
consolidation method can confuse users who are
unfamiliar with the data structure being queried and may
have limited knowledge on the formal query language.
Therefore, a self-adaptive method that addresses the
disambiguation of the complex query over big data
structure is needed. This paper extends the Self-Adaptive
Natural Language Interface (SANLI) model for question
answering [11] scenario based on the dynamic concept-
type identification and resolution.

The paper is organized as follows. The first part
introduces the background of the research. The second
part describes our perspectives on big data analytics and
focus on the structured and unstructured data analysis

Abstract: Integration of heterogeneous data sources is a crucial step in big data analytics, although it creates
ambiguity issues during mapping between the sources due to the variation in the query terms, data structure and
granularity conflicts. However, there are limited researches on effective big data integration to address the
ambiguity issue for big data analytics. This paper introduces a self-adaptive model for big data integration by
exploiting the data structure during querying in order to mitigate and resolve ambiguities. An assessment of a
preliminary work on the Geography and Quran dataset is reported to illustrate the feasibility of the proposed model
that motivates future work such as solving complex query.

Keywords: Self-adaptive model, Ambiguity Resolution, Link Data Query, Big data, Heterogeneous Data
Integration

*Corresponding author:nurfadhlina@upm.edu.my
2018UTHM Publisher. All right reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

176

https://doi.org/10.30880/ijie.xx.xx.xxxx.xx.xxxx

N.M. Sharef et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) 176-182

issues. This is followed by the details of the self-adaptive
model in section three and result in section four.

2. Big Data Analytics
The emergence of Big Data has become a new source of
opportunity for Semantic Computing researches. Open
source frameworks in Big Data including Apache Hadoop
and design patterns such as Map–Reduce present unique
challenges for semantic technologies to provide a
promising means for publishing, sharing, and interlinking
data to facilitate data reuse [12-13]. However, even when
these data become discoverable and accessible,
significant challenges remain in achieving intelligent
understandings of the anticipated data and scientific
discoveries.
The LOD paradigm is the semantic technology to cope
with Big Data, as it advances the hypertext principle from
a web of documents to a web of rich data. Linked Data
enables semantically interconnected, well structured,
syntactically interoperable datasets that are distributed
among several repositories either inside or outside
organizations. The linking component of Linked Data,
however, puts an additional focus on the variety issue;
specifically the integration and conflation of data across
multiple sources. The variety dimension associates the
data heterogeneity both at the schema and instance level
[14].
Querying LOD knowledge requires proficiency with the
schema structure, formal query language (i.e. SPARQL)
and understanding of semantic knowledge bases (KB)
such as RDF and ontologies. Therefore, a tool that can
assist the smart big data manipulation and querying is
vital. Users prefer NL interfaces as compared to keyword,
GUI or partial sentence based interfaces [15]. In a natural
language interface (NLI) system, the NL input query
should be translated into formal semantic query i.e.,
SPARQL. There are several efforts to assist querying the
data such as the Query Wizard which is based on
keyword search as an entry point and tabular interfaces
for filtering and exploration [3].
However, this inherits the BDI ambiguity challenges. The
magnitude of conceptual ambiguity increases when
heterogeneous KB is queried due to variation of data type
and data structure. Recent research studies on big data
(e.g., DBPedia and Yago) querying tool have emphasized
the deep analysis of queries and the techniques involved
to translate to the NL query into a SPARQL equivalent
[16–18]. There are generally two steps for BDI based on
assistive query interface (as shown in Figure 1) which are
(i) query decomposition, concept equivalence, schema
mapping, ontology alignment/reconciliation, and (ii)
query aggregation, aggregation rewriting, query
federation.
Very limited work in NLI except [6–10] focused on the
ambiguity problem in the query translation process.
Ambiguity in complex query processing occurs when
there is no exact matching or more than one possible
matching between entity names or terms hence requires
consolidation and approximation. Ambiguity can be
classified into (i) linguistic, which happened due to the
variation of the terms used in the user’s query compared
to the terms in the structure of the queried, and (ii)
conceptual ambiguity which occurs during the mapping

between several concepts in the queried data. The
magnitude of ambiguity increases when heterogeneous
KB is queried [19]. This paper will be evaluated against
the ambiguity resolution as performed in [6] which has
implemented clarification dialogue. On the contrary, this
paper adopts the SANLI model that does not require
interaction for the disambiguation.

Fig 1. Semantic Analysis Querying on Big Data

Several researches have studied on various issues to

map and fuse data on multiple sources as a means to
translate the user query. The efforts include user interface
design [20-21], usability [5], data management model
[22–26], query language format (i.e., SPARQL) [27-28],
query expressivity [4], [29-30], mapping [9], [26], [31-
32], fusing [33–35] and ranking [3], [36–38]. Most of
these approaches rely on linguistic triple (Subject-
Predicate-Object) identification [38] which may be
grammar and language dependent. Besides answering the
queries require many customizations when involving
untrained domain and dataset. This linguistic triple then
provides the basis for translation to SPARQL. However,
generating linguistic triples from NL queries is not a
straightforward task due to the complexities of NL
question patterns.

Also relying just on linguistic triples is not sufficient,
as complex questions may contain queries for FILTER
expressions, arithmetic operations (e.g. count, sum etc.),
comparison (e.g. sorting), and negation (e.g. not, outside
etc.). This is because triples should be uniquely identified
while keeping the originality of query in consideration
with linguistic ambiguity (e.g. lexical semantics
ambiguity) resolution. The relations among different
triples need to be identified and disambiguated as
complex queries may contain multiple triples related to
each other. Second, these triples need to be mapped with
ontology triples (concepts and properties). This mapping
also poses ambiguities when more than one linguistic
triples are candidates for one ontology triple or vice
versa. Besides, more than one KB can be a candidate for
the retrieval of one concept.

 177

N.M. Sharef et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) 176-182

3. Self-adaptive model for ambiguity

resolution in big data integration
Impressive achievements of query disambiguation

can be regarded as the clarification dialogue technique,
disambiguation graph [18], [40], and the conjunctive
SPARQL queries over a set of interlinked data sources
[41]. However, it is found that there is a need to improve
the ambiguity resolution through an adaptive model [41].

Therefore, we extend a self-adaptive model called the
SANLI which was first introduced in [11]. The previous
version of SANLI is limited compared to the version
presented in this paper because it employed dice
similarity matching, one-way traversing of the ontology
graph and linguistic rules to find matching triples before
proceeding with the SPARQL construction.

Fig 2. SANLI Algorithm.

The previous version of SANLI is called the

MyAutoSPARQL [39] which has relied on the dice
similarity matching technique to construct SPARQL
queries. In this paper, we address the automatic mapping
of the input with the data source, consolidate the
ambiguity between sources granularity and construct the
SPARQL by iterative querying of the KB structure before
constructing the final SPARQL. This also allows SANLI
to be domain and language independent. The algorithm to

find the possible triples for the SPARQL is shown in
Figure 2. The SANLI model is developed using the Java
language and JENA as the reasoning engine.

The algorithm in Figure 2 starts by reading an
ontology file and creating a memory structure of the
classes, object properties and instances. Having an in
memory structured copy benefits in later searching
through the ontology, as shown in Figure 3. The first step
is saving the NL query in a tokenized structure (as shown
in Figure 4), which includes a matrix representation based
on the concept type’s annotations.

Fig 3. A graphical interface to browse and load ontology
files.

Fig 4. Gazetteer based matching.
In the second and third steps, the dictionary of

probable concepts and relationships is created. The
dictionaries are a structured array of relations found
between each meaningful term in the NL query and its
relevant object found in the ontology. The query is
annotated with this dictionary. By annotating the query,
we will have possible patterns of annotations for it. For
example in the geography ontology, the query “What
states border Oklahoma?” has a possible <s, p,o> pattern
regarding <state:subject, borders:predicate,
oklahoma:object>. Or for example the query “what is the
capitol of Oklahoma” has a <p, o> pattern

1. Read sentence and create a set of tokens
 .

2. Find the set of concepts similar to the set of tokens by
searching the ontology concepts, . We now have the
probable concept set:

where is the similarity weight and is a predefined
constant.

3. Find the set of similar relationships in the query by
searching the ontology relationships, . We now have
the probable relationships set:

where is the similarity weight and is a predefined
constant.

4. Create the initial SPARQL template with the initial
triplet: .

5. for each of the i members of set do:
a. substitute ?o with and run the query.
b. if query has results do:

i. for each of the j members of set do:
1. substitute ?p with and run query
2. if query has results save

triplet in possible answer set.
c. else, substitute ?s with and run the query.
d. if query has results do:

i. for each of the j members of set do:
1. substitute ?p with and run query
2. if query has results save

triplet in possible answer set.
6. Return answer which has the maximum sum of weights.
7. Select best answer set with the highest sum of

concept|relationship similarity weight values

 178

N.M. Sharef et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) 176-182

(<isCapitolOf:predicate, Oklahoma:object>). Another
example is provided in Figure 5.

Fig 5. Triplets Generation.

In step 4, a general SPARQL template is initialized so
that its elements could later be replaced and substituted.
In step 5, we iterate through the relations to find the
possibilities for each relation. In each iteration, possible
concepts are substituted and tested to see if any results
could be obtained. The ones giving results would be
saved in the result answer set. In the last step, the
SPARQL answer that has the maximum sum of weights
would be returned Figure 6.

Fig 6. The SPARQL query executed run against the
ontology file.

Fig 7. Results Generation.

Later, predefined rules specify if a triplet, filter or

optional statement has to be included. For example, if a
statement has negative words like “not”, “don’t” or other
similar words, then the negation rules is applied. The
negation rules is based on the filter operator on the object
instance which is extracted from the input. Another
example is when the input is a complex query which is
characterized by the word “and”; where the rules utilize
the optional operator. Figure 7 shows the answer from
the generated SPARQL query. This approach is an
improvement compared to the previous version of SANLI
as proposed by [38], [39]. The new SANLI model is more
flexible because of the disambiguation technique based
on the dynamic concept-type identification and
resolution.

4. Result

There are several levels of query complexity in BDI
[39], [44-45] such as visualization, selection, path,
negation, arithmetic, auxiliary and composition. In this
paper we present the result of extended SANLI
application on the visualization query type, which
classifies queries that can be sufficiently answered
through facet hierarchy, selection query type, which
requires deeper processing and asks for count or list of
items with a particular feature, and path query type, in
which a path of properties is followed to retrieve answer,
disjunction category which requires union (or "OR"
conditions). Two different datasets namely the Mooney’s
Geography ontology [42] and a Quran structure ontology
[43] are used as preliminary assessment. Table 1 shows
the examples of NL to SPARQL translation.

Table 1. Examples of automatic generated SPARQL
queries for the Geography and Quran ontology dataset.

Ontology Natural
Language
Query

Generated
SPARQL

Geography What is
the lowest
point in
kansas?

SELECT ?c0
WHERE {
?c0 ?p0 ?i0 . ?c0 a
geo:LoPoint .
filter (?i0 =
geo:kansas) .
filter (?p0 =
geo:isLowestPointOf
) .
}

What is SELECT ?i0

 179

N.M. Sharef et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) 176-182

the area of
idaho?

WHERE {
?c0 ?p0 ?i0 .
filter (?c0 =
geo:idaho) .
filter (?p0 =
geo:stateArea) .
}

Quran Which
Surahs
were
revealed in
Medina?

SELECT ?c0
WHERE {
?c0 ?p0 ?i0 . ?c0 a
quran:Surah .
filter (?i0 =
quran:Medina) .
filter (?p0 =
quran:revealedIn) .
}

Which
verses
belongs to
surah 101?

SELECT ?c0
WHERE {
?c0 ?p0 ?i0 . ?c0 a
quran:Verse .
filter (?i0 =
quran:101) .
filter (?p0 =
quran:belongToSura
h) .
}

There are 106 questions used in the Geography

dataset while 30 are used in the Quran dataset. Table 2
shows the number of correct concepts identified in each
dataset. In this experiment, the maximum number of
concepts that exist in the questions in the Geography
dataset is 3 while, in the Quran dataset up to 5 concepts
can be utilized to answer the questions. The results
indicate that SANLI has been able to identify the
concepts for all questions in both dataset.

Table 2. Correct Concepts Identified.
Correct #
concepts
identified

Geography Quran

0 0 0
1 18 2
2 88 11
3 N/A 13
4 N/A 3
5 N/A 1

Total 106 30

Table 3 shows the number of correct SPARQL

constructed; which is determined based on the
combination of correct concept names and type
assignment. The results indicate that SANLI has better

performance in constructing the SPARQL for the
geography ontology compared to the Quran’s dataset.

Table 3. Correct Concepts Names and Type
Assignment in the Constructed SPARQL.

Correct
SPARQL

Geography % Quran %

0 23 21.70 6 20.00
1 23 21.70 11 36.67
2 60 56.60 13 43.33

Total 106 30

The SANLI average precision in the geography

dataset is also better compared to the Quran dataset, as
shown in Table 4. This is because the queries in the
Quran dataset are more complex.

Table 4. Average SANLI Precision in Concepts

Identification and SPARQL Construction.
Dataset Concepts

Identification
SPARQL

Construction
Geography 0.9191 0.6990

Quran 0.8889 0.6167

The SANLI model is the continuation of semantic

concept ambiguity resolution from our previous works
such as MyAutoSPARQL [38], [39]. The previous
approaches used are solely based on linguistic rules
which demand many customizations for new semantic
KB to be queried. Therefore, SANLI model is introduced
which allows self-adaptive semantic resolution. However,
the performance in terms of precision by the SANLI
model is 4% lower as compared to MyAutoSPARQL
model [38], as shown in Table 5. This is most probably
due to SANLI’s lacking in identifying the answer type of
the queries which leads to inaccurate concepts
incorporation in the translated SPARQL. In SANLI, the
concepts are identified by continuous resolving of
concepts which have active relationships in the ontology.
Nevertheless, the SANLI performance is better compared
to FREyA [38] which depends on user’s manual
resolution.

Table 5. Comparison of Semantic Concept Ambiguity
Resolution.

System Precision
MyAutoSPARQL[38] 0.7453

SANLI 0.6990
FREyA[38] 0.6887

5. Conclusion

The SW leverages the sophisticated analytics in big
data by allowing data to be linked which can then be
integrated for aggregative results. Applications like NLI
are then introduced to assist the big data semantic
querying. However, limited works have addressed the
ambiguity problem in the NLI. This is crucial so that high
precision of results can be generated. This paper
introduces the extended SANLI, a self-adaptive based
model for disambiguation in BDI scenario which exploits
the triples identification in the natural language question

 180

N.M. Sharef et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) 176-182

and semantic KB structure through iterative querying to
construct the final SPARQL queries. This is useful for
application such as question answering and semantic
search. SANLI improves the previous work on semantic
search [11], [38], [39] by offering a more flexible
SPARQL construction technique. The planned future
work is to improve the SANLI model to include
translation of questions containing arithmetic expressions
and more complex questions in the BDI setting.

Acknowledgment

This study is sponsored by the Ministry of Higher
Education Malaysia. The authors would like to thank the
colleagues and researchers whom have contributed in this
research such as Professor Dr. Shahrul Azman Mohd
Noah, Assoc. Professor Dr. Masrah Azrifah, Dr. Rabiah
Abdul Kadir, Dr. Danica Damljanovic, Mrs. Hazrina
Sofian, Mr. Aliyu Elwa and Mr. Mutee Rahman. Your
brilliant ideas and fruitful discussions are highly
appreciated.

References
[1] V. Lopez, A. Nikolov, M. Sabou, and V. Uren,

“Scaling Up Question-Answering to Linked Data,” in
Knowledge Engineering and Management by the
Masses, 2010, pp. 193–210.

[2] O. Gorlitz and S. Staab, “Federated Data Management
and Query Optimization for Linked Open Data,” in
New Directions inWeb DataManagement 1, 2011, pp.
109–137.

[3] P. Hoefler, “Linked Data Interfaces for Non-expert
Users,” in 2013 European Semantic Web Conference,
2013, pp. 702–706.

[4] J. Xu and R. Pottinger, “Integrating domain
heterogeneous data sources using decomposition
aggregation queries,” Inf. Syst., vol. 39, pp. 80–107,
Jan. 2014.

[5] E. Kaufmann and A. Bernstein, “How useful are
natural language interfaces to the semantic web for
casual end-users?,” in The Semantic Web, 6th
International Semantic Web Conference, 2nd Asian
Semantic Web Conference, 2007, pp. 281–294.

[6] D. Damljanovic, M. Agatonovic, and H. Cunningham,
“FREyA: an Interactive Way of Querying Linked
Data Using Natural Language,” in Proceedings of the
8th international conference on The Semantic Web,
2011, pp. 125–138.

[7] G. Correndo, M. Salvadores, I. Millard, H. Glaser,
and N. Shadbolt, “SPARQL query rewriting for
implementing data integration over linked data,”
Proc. 1st Int. Work. Data Semant. - DataSem ’10, p.
1, 2010.

[8] A. Hogan, A. Harth, J. Umbrich, S. Kinsella, A.
Polleres, and S. Decker, “Searching and browsing
Linked Data with SWSE: The Semantic Web Search
Engine,” Web Semant. Sci. Serv. Agents World Wide
Web, vol. 9, no. 4, pp. 365–401, Dec. 2011.

[9] S. Hakimov, H. Tunc, M. Akimaliev, and E. Dogdu,
“Semantic question answering system over linked

data using relational patterns,” Proc. Jt. EDBT/ICDT
2013 Work. - EDBT ’13, p. 83, 2013.

[10] A. Hogan, A. Zimmermann, J. Umbrich, A.
Polleres, and S. Decker, “Scalable and distributed
methods for entity matching, consolidation and
disambiguation over linked data corpora,” Web
Semant. Sci. Serv. Agents World Wide Web, vol. 10,
pp. 76–110, Jan. 2012.

[11] Nurfadhlina Mohd Sharef and M. Y. Shafazand,
“Self-Adaptive Based Natural Language Interface for
Disambiguation of Semantic Search,” in Malaysian
National Conference of Databases 2014 (MaNCoD
2014), 2014, pp. 87–92.

[12] M. Chen, S. Mao, and Y. Liu, “Big Data: A
Survey,” Mob. Networks Appl., vol. 19, no. 2, pp.
171–209, Jan. 2014.

[13] C. L. Philip Chen and C.-Y. Zhang, “Data-
intensive applications, challenges, techniques and
technologies: A survey on Big Data,” Inf. Sci. (Ny).,
vol. 275, pp. 314–347, Aug. 2014.

[14] A. Anjomshoaa and A. M. Tjoa, “Towards
Semantic Mashup Tools for Big Data Analysis,” in
ICT-EurAsia, 2014, pp. 129–138.

[15] E. Kaufmann and A. Bernstein, “Evaluating the
usability of natural language query languages and
interfaces to Semantic Web knowledge bases,” Web
Semant. Sci. Serv. Agents World Wide Web, vol. 8, no.
4, pp. 377–393, Nov. 2010.

[16] D. Damljanovic, M. Agatonovic, and H.
Cunningham, “Natural Language Interfaces to
Ontologies : Combining Syntactic Analysis and
Ontology-based Lookup through the User
Interaction,” in Proceedings of the 7th Extended
Semantic Web Conference (ESWC 2010), 2010, pp. 1–
15.

[17] C. Unger, P. Cimiano, S. Computing, G. Citec,
and U. Bielefeld, “Pythia: Compositional meaning
construction for question answering,” in 16th
International Conference on Applications of Natural
Language to Information Systems, NLDB 2011, 2011,
pp. 153–160.

[18] M. Yahya, K. Berberich, S. Elbassuoni, M.
Ramanath, V. Tresp, and G. Weikum, “Deep answers
for naturally asked questions on the web of data,”
Proc. 21st Int. Conf. Companion World Wide Web -
WWW ’12 Companion, pp. 445–448, 2012.

[19] X. L. Dong and D. Srivastava, “Big data
integration,” Proc. VLDB Endow., vol. 6, no. 11, pp.
1188–1189, Aug. 2013.

[20] A. Freitas, J. G. Oliveira, S. O’Riain, E. Curry,
and J. C. P. da Silva, “Treo : Best-Effort Natural
Language Queries over Linked Data,” in International
Conference on Applications of Natural Language to
Information Systems, 2011, pp. 286–289.

[21] M. Gärtner, A. Rauber, and H. Berger, “Bridging
structured and unstructured data via hybrid semantic
search and interactive ontology-enhanced query
formulation,” Knowl. Inf. Syst., Sep. 2013.

[22] W. Lehner and K.-U. Sattler, Web-Scale Data
Management for the Cloud. New York, NY: Springer

 181

N.M. Sharef et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) 176-182

New York, 2013.

[23] U. Data and I. Patterns, “Data Modeling
Approaches for Big Data and Analytics Solutions,”
pp. 155–195.

[24] K. T. Sridhar and M. A. Sakkeer, “Optimizing
Database Load and Extract for Big,” pp. 503–512,
2014.

[25] R. Gupta, H. Gupta, and S. Gupta, “A
Middleware for Managing Big-Data Flows,” pp. 410–
424, 2013.

[26] C. Sauer and T. Härder, “Compilation of Query
Languages into MapReduce,” Datenbank-Spektrum,
vol. 13, no. 1, pp. 5–15, Jan. 2013.

[27] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle,
and M. Grossniklaus, “C-SPARQL: a continuous
query language for RDF data streams,” Int. J. Semant.
Comput., vol. 4, no. 1, pp. 3–25, 2010.

[28] S. Madria, K. Passi, and S. Bhowmick, “An
XML Schema integration and query mechanism
system,” Data Knowl. Eng., vol. 65, no. 2, pp. 266–
303, May 2008.

[29] W. Fan, “Querying Big Social Data,” pp. 14–28,
2013.

[30] M. a. Martínez-Prieto, C. E. Cuesta, M. Arias,
and J. D. Fernández, “The Solid architecture for real-
time management of big semantic data,” Futur.
Gener. Comput. Syst., Oct. 2014.

[31] K. Makris, N. Bikakis, N. Gioldasis, and S.
Christodoulakis, “S PARQL-RW: Transparent Query
Access over Mapped RDF Data Sources,” in 15th
International Conference on Extending Database
Technology, 2012, no. c, pp. 610–613.

[32] A. Margara, J. Urbani, F. van Harmelen, and H.
Bal, “Streaming the Web: Reasoning over dynamic
data,” Web Semant. Sci. Serv. Agents World Wide
Web, vol. 25, pp. 24–44, Mar. 2014.

[33] F. Xhafa and L. Barolli, “Semantics, intelligent
processing and services for big data,” Futur. Gener.
Comput. Syst., vol. 37, pp. 201–202, Jul. 2014.

[34] Z. Qu, “AISC 129 - Semantic Processing on Big
Data,” vol. 2, pp. 43–48, 2011.

[35] A. I. Torre-bastida, “Incremental SPARQL
Query Processing,” pp. 712–716, 2013.

[36] A. Lausch, A. Schmidt, and L. Tischendorf,
“Data mining and linked open data – New
perspectives for data analysis in environmental
research,” Ecol. Modell., no. 2014, Sep. 2014.

[37] A. Gyrard, “An Architecture to Aggregate
Heterogeneous State of the Art,” in 2013, 2013, no. 1,
pp. 697–701.

[38] N. M. Sharef and S. A. Mohd Noah, “Natural
Language Query Translation for Semantic Search,” J.
Digit. Content, Technol. Appl., vol. 7, no. 13, pp. 53–
63, 2013.

[39] N. M. Sharef and S. A. M. Noah, “Linguistic
Patterns-Based Translation for Natural Language
Interface,” in 2014 International Conference on
Information Science and Applications (ICISA), 2014,
pp. 1–5.

[40] S. Ferre and A. Hermann, “Semantic Search:
Reconciling Expressive Querying and Exploratory
Search,” in ISWC’11 Proceedings of the 10th
International Conference on The Semantic Web, 2011,
pp. 177–192.

[41] N. M. Sharef and S. A. Mohd, “Soft Queries
Processing In Natural Language,” in International
Conference on Ubiquitous Information Management
and Communication, 2012, pp. 1460–1466.

[42] L. R. Tang and R. J. Mooney, “Using Multiple
Clause Constructors in Inductive Logic Programming
for Semantic Parsing,” in 12th European Conference
on Machine Learning (ECML-2001), Freiburg,
Germany, 2001, pp. 466–477.

[43] R. Iqbal, A. Mustapha, and Z. M. Yusoff, “An
experience of developing Quran ontology with
contextual information support,” Multicult. Educ.
Technol. J., vol. 7, no. 4, pp. 333–343, 2013.

.

 182

