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1. Introduction
Big data analytics involves complex query which 

requires the fusion or integration of heterogeneous 
information which are typically of various types, 
domains, vocabulary, granularity and structure [1]. 
Intelligence through complex queries on Big Data 
involves semantic operations including (i) data 
integration, (ii) data ingestion in structured data (schema 
existed), unstructured data (through annotation and 
extraction), ontology (expression of data relations across 
schema) and semantic enrichment (expression of data 
relations within and across schema), (iii) data indexing 
and search, and (iv) data analytics. 

The Linked Open Data (LOD) is an example of big 
data structure which makes integration of heterogeneous 
sources feasible because the data on the web is formatted 
in a machine readable way (i.e., Resource Description 
Framework (RDF) and ontology language (OWL)) with 
typed links between related entities [2-3]. An LOD 
infrastructure influences how query processing can be 
implemented on top of several characteristics namely 
central or distributed data storage, central or distributed 
data indexing, and independent or cooperative data 
sources. 

However, answering complex queries that requires 
heterogeneous big data integration (BDI) is challenging 
because domain heterogeneity prevents users from 
manually translating queries due to their limited domain 
knowledge. Besides, users may not be aware that their 
query requires multiple sources aggregation, which 
results to multiple databases with potential duplicates, 
varying answers, and collection of different subsets of 
relevant data [4]. Therefore, an assistive query interface 

for big data is needed, which allows the users to input the 
query in natural language (NL) form [5]. We will refer to 
the assistive query interface for big data as natural 
language interface (NLI) henceforth. In order to compute 
the translation process, ambiguity issue occurs due to (i) 
variants in the user’s terms in the query, (ii) degree of 
matching between user’s terms with the data structure, 
and (iii) granularity within structure of the integrated data 
sources. 

The existing disambiguation approaches for big data 
assistive query interface [6–10] have mainly exploited 
synonym based matching, reasoning through OWL and 
RDF’s concepts linking mechanism (e.g., the same As 
function), similarity scoring functions, and depending on 
the user’s intervention for the consolidation through 
clarification dialogues. However, the synonym-based 
matching, OWL and RDF’s concept linking mechanism, 
and similarity scoring function do not guarantee 
contextual and structural understanding of the user’s 
query and therefore returning low precision. User’s based 
consolidation method can confuse users who are 
unfamiliar with the data structure being queried and may 
have limited knowledge on the formal query language. 
Therefore, a self-adaptive method that addresses the 
disambiguation of the complex query over big data 
structure is needed. This paper extends the Self-Adaptive 
Natural Language Interface (SANLI) model for question 
answering [11] scenario based on the dynamic concept-
type identification and resolution. 

The paper is organized as follows. The first part 
introduces the background of the research. The second 
part describes our perspectives on big data analytics and 
focus on the structured and unstructured data analysis 
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issues. This is followed by the details of the self-adaptive 
model in section three and result in section four. 

 
2. Big Data Analytics 
The emergence of Big Data has become a new source of 
opportunity for Semantic Computing researches. Open 
source frameworks in Big Data including Apache Hadoop 
and design patterns such as Map–Reduce present unique 
challenges for semantic technologies to provide a 
promising means for publishing, sharing, and interlinking 
data to facilitate data reuse [12-13]. However, even when 
these data become discoverable and accessible, 
significant challenges remain in achieving intelligent 
understandings of the anticipated data and scientific 
discoveries. 
The LOD paradigm is the semantic technology to cope 
with Big Data, as it advances the hypertext principle from 
a web of documents to a web of rich data. Linked Data 
enables semantically interconnected, well structured, 
syntactically interoperable datasets that are distributed 
among several repositories either inside or outside 
organizations. The linking component of Linked Data, 
however, puts an additional focus on the variety issue; 
specifically the integration and conflation of data across 
multiple sources. The variety dimension associates the 
data heterogeneity both at the schema and instance level 
[14]. 
Querying LOD knowledge requires proficiency with the 
schema structure, formal query language (i.e. SPARQL) 
and understanding of semantic knowledge bases (KB) 
such as RDF and ontologies. Therefore, a tool that can 
assist the smart big data manipulation and querying is 
vital. Users prefer NL interfaces as compared to keyword, 
GUI or partial sentence based interfaces [15]. In a natural 
language interface (NLI) system, the NL input query 
should be translated into formal semantic query i.e., 
SPARQL. There are several efforts to assist querying the 
data such as the Query Wizard which is based on 
keyword search as an entry point and tabular interfaces 
for filtering and exploration [3].  
However, this inherits the BDI ambiguity challenges. The 
magnitude of conceptual ambiguity increases when 
heterogeneous KB is queried due to variation of data type 
and data structure. Recent research studies on big data 
(e.g., DBPedia and Yago) querying tool have emphasized 
the deep analysis of queries and the techniques involved 
to translate to the NL query into a SPARQL equivalent 
[16–18]. There are generally two steps for BDI based on 
assistive query interface (as shown in Figure 1) which are 
(i) query decomposition, concept equivalence, schema 
mapping, ontology alignment/reconciliation, and (ii) 
query aggregation, aggregation rewriting, query 
federation. 
Very limited work in NLI except [6–10] focused on the 
ambiguity problem in the query translation process. 
Ambiguity in complex query processing occurs when 
there is no exact matching or more than one possible 
matching between entity names or terms hence requires 
consolidation and approximation. Ambiguity can be 
classified into (i) linguistic, which happened due to the 
variation of the terms used in the user’s query compared 
to the terms in the structure of the queried, and (ii) 
conceptual ambiguity which occurs during the mapping 

between several concepts in the queried data. The 
magnitude of ambiguity increases when heterogeneous 
KB is queried [19]. This paper will be evaluated against 
the ambiguity resolution as performed in [6] which has 
implemented clarification dialogue. On the contrary, this 
paper adopts the SANLI model that does not require 
interaction for the disambiguation. 

 
Fig 1. Semantic Analysis Querying on Big Data 

 
Several researches have studied on various issues to 

map and fuse data on multiple sources as a means to 
translate the user query. The efforts include user interface 
design [20-21], usability [5], data management model 
[22–26], query language format (i.e., SPARQL) [27-28], 
query expressivity [4], [29-30], mapping [9], [26], [31-
32], fusing [33–35] and ranking [3], [36–38]. Most of 
these approaches rely on linguistic triple (Subject-
Predicate-Object) identification [38] which may be 
grammar and language dependent. Besides answering the 
queries require many customizations when involving 
untrained domain and dataset. This linguistic triple then 
provides the basis for translation to SPARQL. However, 
generating linguistic triples from NL queries is not a 
straightforward task due to the complexities of NL 
question patterns.  

Also relying just on linguistic triples is not sufficient, 
as complex questions may contain queries for FILTER 
expressions, arithmetic operations (e.g. count, sum etc.), 
comparison (e.g. sorting), and negation (e.g. not, outside 
etc.). This is because triples should be uniquely identified 
while keeping the originality of query in consideration 
with linguistic ambiguity (e.g. lexical semantics 
ambiguity) resolution. The relations among different 
triples need to be identified and disambiguated as 
complex queries may contain multiple triples related to 
each other. Second, these triples need to be mapped with 
ontology triples (concepts and properties). This mapping 
also poses ambiguities when more than one linguistic 
triples are candidates for one ontology triple or vice 
versa. Besides, more than one KB can be a candidate for 
the retrieval of one concept. 
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3. Self-adaptive model for ambiguity 

resolution in big data integration 
Impressive achievements of query disambiguation 

can be regarded as the clarification dialogue technique,  
disambiguation graph [18], [40], and the conjunctive 
SPARQL queries over a set of interlinked data sources 
[41]. However, it is found that there is a need to improve 
the ambiguity resolution through an adaptive model [41].  

Therefore, we extend a self-adaptive model called the 
SANLI which was first introduced in [11]. The previous 
version of SANLI is limited compared to the version 
presented in this paper because it employed dice 
similarity matching, one-way traversing of the ontology 
graph and linguistic rules to find matching triples before 
proceeding with the SPARQL construction.  

 
Fig 2. SANLI Algorithm. 

 
The previous version of SANLI is called the 

MyAutoSPARQL [39] which has relied on the dice 
similarity matching technique to construct SPARQL 
queries. In this paper, we address the automatic mapping 
of the input with the data source, consolidate the 
ambiguity between sources granularity and construct the 
SPARQL by iterative querying of the KB structure before 
constructing the final SPARQL. This also allows SANLI 
to be domain and language independent. The algorithm to 

find the possible triples for the SPARQL is shown in 
Figure 2. The SANLI model is developed using the Java 
language and JENA as the reasoning engine. 

The algorithm in Figure 2 starts by reading an 
ontology file and creating a memory structure of the 
classes, object properties and instances. Having an in 
memory structured copy benefits in later searching 
through the ontology, as shown in Figure 3. The first step 
is saving the NL query in a tokenized structure (as shown 
in Figure 4), which includes a matrix representation based 
on the concept type’s annotations.  
 

 
Fig 3. A graphical interface to browse and load ontology 
files. 
 

Fig 4. Gazetteer based matching. 
In the second and third steps, the dictionary of 

probable concepts and relationships is created. The 
dictionaries are a structured array of relations found 
between each meaningful term in the NL query and its 
relevant object found in the ontology. The query is 
annotated with this dictionary. By annotating the query, 
we will have possible patterns of annotations for it. For 
example in the geography ontology, the query “What 
states border Oklahoma?” has a possible <s, p,o> pattern 
regarding <state:subject, borders:predicate, 
oklahoma:object>. Or for example the query “what is the 
capitol of Oklahoma” has a <p, o> pattern 

1. Read sentence and create a set of tokens 
 .  

2. Find the set of concepts similar to the set of tokens by 
searching the ontology concepts,  . We now have the 
probable concept set: 

 

where  is the similarity weight and  is a predefined 
constant.  

3. Find the set of similar relationships in the query by 
searching the ontology relationships,  . We now have 
the probable relationships set: 

 

where  is the similarity weight and  is a predefined 
constant. 

4. Create the initial SPARQL template with the initial 
triplet:  . 

5. for each of the i members of set  do:  
a. substitute ?o with  and run the query.  
b. if query has results do:  

i. for each of the j members of set  do:  
1. substitute ?p with  and run query  
2. if query has results save 

triplet  in possible answer set. 
c. else, substitute ?s with  and run the query.  
d. if query has results do:  

i. for each of the j members of set  do:  
1. substitute ?p with  and run query  
2. if query has results save 

triplet  in possible answer set. 
6. Return answer which has the maximum sum of weights. 
7. Select best answer set with the highest sum of 

concept|relationship similarity weight values  
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(<isCapitolOf:predicate, Oklahoma:object>). Another 
example is provided in Figure 5.  
 

 
Fig 5. Triplets Generation. 
 

In step 4, a general SPARQL template is initialized so 
that its elements could later be replaced and substituted. 
In step 5, we iterate through the relations to find the 
possibilities for each relation. In each iteration, possible 
concepts are substituted and tested to see if any results 
could be obtained. The ones giving results would be 
saved in the result answer set. In the last step, the 
SPARQL answer that has the maximum sum of weights 
would be returned Figure 6. 
 

 
Fig 6. The SPARQL query executed run against the 
ontology file. 

 

 
Fig 7. Results Generation. 

 
Later, predefined rules specify if a triplet, filter or 

optional statement has to be included. For example, if a 
statement has negative words like “not”, “don’t” or other 
similar words, then the negation rules is applied. The 
negation rules is based on the filter operator on the object 
instance which is extracted from the input. Another 
example is when the input is a complex query which is 
characterized by the word “and”; where the rules utilize 
the optional operator.  Figure 7 shows the answer from 
the generated SPARQL query. This approach is an 
improvement compared to the previous version of SANLI 
as proposed by [38], [39]. The new SANLI model is more 
flexible because of the disambiguation technique based 
on the dynamic concept-type identification and 
resolution. 

 
4. Result 

There are several levels of query complexity in BDI 
[39], [44-45] such as visualization, selection, path, 
negation, arithmetic, auxiliary and composition. In this 
paper we present the result of extended SANLI 
application on the visualization query type, which 
classifies queries that can be sufficiently answered 
through facet hierarchy, selection query type, which 
requires deeper processing and asks for count or list of 
items with a particular feature, and path query type, in 
which a path of properties is followed to retrieve answer, 
disjunction category which requires union (or "OR" 
conditions). Two different datasets namely the Mooney’s 
Geography ontology [42] and a Quran structure ontology 
[43] are used as preliminary assessment. Table 1 shows 
the examples of NL to SPARQL translation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Examples of automatic generated SPARQL 
queries for the Geography and Quran ontology dataset. 

Ontology Natural 
Language 
Query 

Generated 
SPARQL 

Geography  What is 
the lowest 
point in 
kansas? 

SELECT ?c0 
WHERE { 
?c0 ?p0 ?i0 .  ?c0 a 
geo:LoPoint . 
filter (?i0 = 
geo:kansas) . 
filter ( ?p0 = 
geo:isLowestPointOf 
) . 
} 

What is SELECT ?i0 
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the area of 
idaho? 

WHERE { 
?c0 ?p0 ?i0 . 
filter (?c0 = 
geo:idaho) . 
filter ( ?p0 = 
geo:stateArea ) . 
} 

Quran  Which 
Surahs 
were 
revealed in 
Medina? 

SELECT ?c0 
WHERE { 
?c0 ?p0 ?i0 .  ?c0 a 
quran:Surah . 
filter (?i0 = 
quran:Medina) . 
filter ( ?p0 = 
quran:revealedIn ) . 
} 

Which 
verses 
belongs to 
surah 101? 

SELECT ?c0 
WHERE { 
?c0 ?p0 ?i0 .  ?c0 a 
quran:Verse . 
filter (?i0 = 
quran:101) . 
filter ( ?p0 = 
quran:belongToSura
h ) . 
} 

 
There are 106 questions used in the Geography 

dataset while 30 are used in the Quran dataset. Table 2 
shows the number of correct concepts identified in each 
dataset. In this experiment, the maximum number of 
concepts that exist in the questions in the Geography 
dataset is 3 while, in the Quran dataset up to 5 concepts 
can be utilized to answer the questions. The results 
indicate that SANLI has been able to identify the 
concepts for all questions in both dataset.  

 
 
 
 
 
 
 
 
Table 2. Correct Concepts Identified. 
Correct # 
concepts 
identified 

Geography Quran 

0 0 0 
1 18 2 
2 88 11 
3 N/A 13 
4 N/A 3 
5 N/A 1 

Total 106 30 
 
Table 3 shows the number of correct SPARQL 

constructed; which is determined based on the 
combination of correct concept names and type 
assignment. The results indicate that SANLI has better 

performance in constructing the SPARQL for the 
geography ontology compared to the Quran’s dataset. 

 
Table 3. Correct Concepts Names and Type 
Assignment in the Constructed SPARQL. 

# Correct 
SPARQL 

Geography % Quran % 

0 23 21.70 6 20.00 
1 23 21.70 11 36.67 
2 60 56.60 13 43.33 

Total 106  30  
 
The SANLI average precision in the geography 

dataset is also better compared to the Quran dataset, as 
shown in Table 4. This is because the queries in the 
Quran dataset are more complex. 

 
Table 4. Average SANLI Precision in Concepts 

Identification and SPARQL Construction. 
Dataset Concepts 

Identification 
SPARQL 

Construction 
Geography 0.9191 0.6990 

Quran 0.8889 0.6167 
 
The SANLI model is the continuation of semantic 

concept ambiguity resolution from our previous works 
such as MyAutoSPARQL [38], [39]. The previous 
approaches used are solely based on linguistic rules 
which demand many customizations for new semantic 
KB to be queried. Therefore, SANLI model is introduced 
which allows self-adaptive semantic resolution. However, 
the performance in terms of precision by the SANLI 
model is 4% lower as compared to MyAutoSPARQL 
model [38], as shown in Table 5. This is most probably 
due to SANLI’s lacking in identifying the answer type of 
the queries which leads to inaccurate concepts 
incorporation in the translated SPARQL. In SANLI, the 
concepts are identified by continuous resolving of 
concepts which have active relationships in the ontology. 
Nevertheless, the SANLI performance is better compared 
to FREyA [38] which depends on user’s manual 
resolution.  

 
Table 5. Comparison of Semantic Concept Ambiguity 
Resolution. 

System Precision 
MyAutoSPARQL[38] 0.7453 

SANLI 0.6990 
FREyA[38] 0.6887 

 
5. Conclusion 
 

The SW leverages the sophisticated analytics in big 
data by allowing data to be linked which can then be 
integrated for aggregative results. Applications like NLI 
are then introduced to assist the big data semantic 
querying. However, limited works have addressed the 
ambiguity problem in the NLI. This is crucial so that high 
precision of results can be generated. This paper 
introduces the extended SANLI, a self-adaptive based 
model for disambiguation in BDI scenario which exploits 
the triples identification in the natural language question 
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and semantic KB structure through iterative querying to 
construct the final SPARQL queries. This is useful for 
application such as question answering and semantic 
search. SANLI improves the previous work on semantic 
search [11], [38], [39] by offering a more flexible 
SPARQL construction technique.  The planned future 
work is to improve the SANLI model to include 
translation of questions containing arithmetic expressions 
and more complex questions in the BDI setting. 
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