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1. Introduction
WATERFALL has been well-known as one of the

traditional software engineering process model. The 
model arranges the phases according to linear sequence 
[1], namely concept definition, requirement, design, code, 
testing and maintenance phases [2]. Early testing has 
been put into emphasis when the improved model of 
Waterfall referred as V-model was introduced [3]. In V-
model, early testing means every phase has to undergo 
rigour verification and validation (V&V) activities before 
releasing the software to end-users or its operational 
environment. These activities may include the following, 
but not limited to requirement review, design review, 
code inspection and corresponding test level: unit test, 
integration test, system test as well as acceptance test [4]. 
This allows defects to be discovered hence fixed as early 
as possible in the life cycle.  

System testing is executed when all required 
subsystems are fully integrated into one system [5] that 
consists of wider range of functional and non-functional 
testing. Typically, independent testing team is responsible 
for carrying out system testing to ensure software under 
test meet user’s requirement and expectation. The defects 

found either functional or non-functional defects are sent 
back to developers for fixing and then retested again for 
confirmation. One of the challenges faced by team in 
completing test execution is making sure all defects have 
been found by testers and fixed by developers within the 
timeline. Furthermore, it is also expected that when all 
defects have been detected and fixed during system 
testing in which the environment setup mimics the 
production environment, the same defects should not be 
re-introduced and detected again in the end-user’s 
environment. However, this might not be the ideal case 
since there is no clear mechanism or measurement to help 
the team in giving such confirmation.  Thus, early and 
reliable indicator is essential in helping testing team to 
know the predicted total number of defects to be found at 
the start of system testing execution.  

It is important to have prediction of defects 
specifically for system testing. Testing team could use the 
prediction as the guide on the number of defects that they 
should find in the software under test. The more the 
defects could be found, the lesser or zero-known defects 
escapes to end-users. From management point of view, 
the right number of testers could be allocated across 
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multiple test projects by comparing historical data on 
testers per total defects found in previous projects against 
the current prediction. Realistic number of days for test 
execution could also be scheduled by referring to this 
information. All these shall contribute towards the 
completion of system testing within the time frame. 
Defect prediction also influences the test strategy 
employed by testing team in finding defects. Putting the 
prediction in place allows the team to plan and adopt 
most effective test types and techniques so that the 
defects found are closer enough with the prediction due to 
understanding that it is difficult to have 100% accuracy in 
predicting defects. This will increase the coverage of 
testing and lead to the production of high quality 
software. Therefore, in order to predict defects in system 
testing, a right and systematic approach is required for 
developing the prediction model. In this research context, 
the focus is to analyze, utilize and select significant 
metrics collected from development and testing-related 
activities taking place before system testing as predictors 
for defects.  As mentioned earlier, V-model is chosen as 
the process model for the research since V & V activities 
are heavily carried out from requirement to deployment 
phase involving the collection and monitoring of various 
metrics. 

This discussion in this paper is organized into several 
sections. Section II describes the related works while 
Section III highlights about testing and V-model. Section 
IV discusses the findings of the proposed model followed 
by Section V, which illustrates the implementation of the 
proposed model in case study. Section VI summarizes the 
key contributions of the research together with the 
opportunities for future works 

 
 

2. Related Works 
Although defect prediction is not a new area of 

interest, there is limited information on how prediction of 
defects is done specifically for system testing. Among the 
earliest works on defect prediction was done by [6] which 
used cyclomatic complexity and lines of code (LOC) as 
defect predictors. [7] demonstrated that predictors for 
defects can be categorized into project management, 
process improvement and work product assessment. [8] 
took similar approach by using review, code testing, code 
peer review, product release usage and defect validation 
metrics to formulate prediction model via regression 
analysis. Software defects could also be predicted by 
adopting mathematical distributions [9] or applying 
Defect Type Model (DTM) which relies on defect 
severity based on Bayesian Network [10]. In different 
perspective, [11] viewed defect prediction as defect 
inflow prediction that could be obtained by employing 
multivariate linear regression. Quality Function 
Deployment (QFD) and transfer function in Six Sigma 
were another techniques used to predict defects in 
software [12]. Apart from that, instead of predicting total 
number of software defects, [13] approached it in 
different ways by utilizing COnstructive QUALity Model 
(COQUALMO) to predict defect density. 

Software defect prediction can be observed from 
various angles. [14] viewed defect prediction as the area 
of remaining defect when testing activities are still on-
going. On the other hand, defects found in e-mail and 
website of open source software became the area of 
concern for [15]. Under the study using Rayleigh model, 
[16] consider each phase in software life cycle as the area 
of defect prediction. This supported by similar effort by 
[17] and [18] via the use of Bemar and CDM model, 
respectively. 

Choosing and using the right predictors serve as the 
crucial element in prediction as this will determine how 
significant the predictors are in discovering defects. [15] 
believed object-oriented metrics serve as good predictors 
for defects while [19] were more comfortable in using 
developer-related metrics to predict software defects. 
These involve metrics on number of developers who 
made modification prior to release, during the release and 
all releases. Metrics from historical were also used as 
defect predictors [20]. This is similar to the work by [21] 
that used detailed requirements and potential defects from 
each phase in development to develop the prediction 
model. Furthermore, [22] managed to develop an 
effective defect prediction model by adopting only three 
software metrics as significant predictors. 

Performance and accuracy of the formulated model is 
important to ensure the model can successfully predict the 
correct or acceptable number of defects. Percentage of 
faults found was one of the good measures for a 
successful prediction [23].  In other forms, a defect 
prediction is said to successful when the prediction result 
could be used for software maintenance in the future [24]. 
Number of commit data can also serve as good 
measurement for prediction performance [25]. However, 
regardless of any method or result of the prediction, it can 
only serve as a good benchmark if the data set used is 
significantly huge [26]. 

Several areas of concern have been addressed by 
several recent studies on predictors for defect. One of 
them is about categorization of data for generating the 
defect prediction into qualitative and quantitative [27], 
which is more focused on early stage defects in 
development life cycle. Qualitative data can be found in 
COQUALMO. For quantitative data, it can be referred to 
team size, effort, test cases and software size. Both 
categories of data exist as product and process metrics 
which are employed in this research. Apart from that, 
defect prediction should also address various context and 
nature of software. [28] proposed phases of preparation, 
model creation and model usage to form the framework 
for context-specific prediction towards producing reliable 
software defect prediction. It is also important to use finer 
granularity of metrics, tackle new ‘customers’ for 
prediction and deal with prediction noise [29]. By 
incorporating such aspects, a practical model of defect 
prediction can be established and serves as the basis for 
the term called “Defect Prediction 2.0”. The works on 
future defect prediction should also address various 
challenges such as prediction for new areas, fast pace 
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development and understanding of ways for fixing 
defects (30). 

Considering all those prior efforts, this research has 
been undertaken with the emphasis on establishing a 
systematic model to formulate realistic prediction for 
defects to be found in system testing by making use of 
development and testing-related metrics in prior phases. 
The focus is only for software projects that adopt V-
model as the development process. 
 
 
3. Testing and V-Model 
Generally, the introduction of V-Model is to show 
corresponding test activities for each phase of 
development [4]. The left ‘V’ represents the typical 
waterfall phases while the right ‘V’ depicts the related 
test levels. [3] added smaller details in between the left 
and right ‘Vs’ by putting planning activities for each test 
level. [3] described the phases for left ‘V’ as requirement, 
analysis, high-level design and low-level design while [4] 
refer those phases as requirement specification, functional 
specification, technical specification and program 
specification.  But, both refer to the same understanding 
of typical waterfall phases comprise of user requirement, 
system requirement, system design and component or unit 
design, respectively. The V-model diagram as illustrated 
by [3] can be represented below in Figure 1: 
 

 

Fig. 1: V-model development process. It clearly shows 
each waterfall phase with its corresponding test level. 

 
From Fig. 1, there is no detail description on how V&V 
activities are incorporated and integrated into the V-
model process. Thus, the diagram is revisited and 
reconstructed to illustrate these activities. The revised 
diagram also includes the area of defect prediction. This 
is represented below in Figure 2: 
 

 
Fig. 2: Verification and validation activities in V-model 
development process. Note the testing phase as area of 
prediction, which is highlighted in dotted-square area. 
 
 
The diagram divides the V&V activities into upper part 
for development-related activities while the lower part for 
testing-related activities that take place in parallel 
throughout the software life cycle. Development-related 
activities under V&V can include but not limited to 
requirement review, high-level design review low-level 
design review and Graphical User Interface (GUI) design 
review. In parallel, V&V activities related to testing are 
also carried out including test planning and review, test 
cases design and review, test scripts design and review, 
sanity testing, system testing as well as post-testing 
activities such as user acceptance test (UAT), beta testing, 
pilot implementation and software release. However, 
post-testing activities are not considered in this research 
as the scope is up to system testing phase only. 
Each activity is tracked and measured by collecting 
metrics, either by developer or tester. These details are 
summarized in Table 1. As for Table 2, it outlines the 
possible metrics to be collected for each phase. 
 

Table 1: V-model phases, activities and metrics 
Phase Activities Role 

Requirement Requirement analysis 
and development 

Developer 

Requirement review Developer 
Design Design development Developer 

Design review (high-
level design, low-level 
design, database design, 
GUI design) 

Developer 

Test plan development Tester 
Test plan review Tester 

Construction
/ 
Coding 

Coding Developer 
Code inspection Developer 
Unit testing Developer 
Integration testing Developer 
Test cases development Tester 
Test cases review Tester 

Testing System testing Tester 
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Table 2: V-model phases and metrics 
Phase Metrics 
Requirement Number of requirement pages 

Defects in requirement 
Effort in requirement  

Design Number of high-level design pages 
Number of low-level design pages 
Number of database design pages 
Number of GUI design pages 
Effort in design 
Defects in high-level design 
Defects in low-level design 
Defects in database design 
Defects in GUI design 
Number of test plan pages 
Defects in test plan 
Effort in test plan 

Construction/ 
Coding 

Defects in code 
Lines of code 
Cyclomatic complexity of code 
Effort in coding 
Defects in unit testing 
Defects in integration testing 
Number of test cases 
Defects in test cases 
Effort in test cases design 
Defects in sanity testing 

Testing Defects in system testing 
Effort in system testing 

 
 
Since the focus is to predict defects in system testing, 
metrics collected in prior phases to testing are considered 
as independent variables that will serve as potential 
predictors for the model while metrics in testing phase are 
treated as dependent variables. The actual metrics that 
will be finally used in the model could only be obtained 
once the analysis is completed. Further explanation is 
provided later in the Case Study section. 
 
  
4. Findings of Proposed Model 

The model of using prior phases metrics to formulate 
the prediction for system testing incorporates process and 
practices of executing development and testing-related 
activities, collecting metrics, storing metrics, analyzing 
metrics, verifying results and implementing the verified 
prediction model. The whole comprehensive model for 
formulating and implementing this defect prediction is 
represented in Figure 3. Important note here is that the 
model involves historical data as well as new data. 

 
Metrics are collected for related activities in every 

development phase and stored into their own repository, 
which can be referred as logical repository. All these 
logical repositories make up the master repository of 
product and process metrics that can be decomposed 
further into defect-related metrics, size-related metrics 
and effort-related metrics. They are differentiated based 
on type of software project and the methodology used. 

This model will then use this repository as the main 
source for creating the prediction model. Once the data 
are extracted, they are filtered so that only accurate data 
are used for further analysis, in which only metrics from 
software projects that adopt V-model are considered. 

 
During the analysis stage, statistical analysis 

techniques are applied to the metrics. The interactions 
between metrics for independent variables and metrics for 
dependent variables are observed to determine which set 
of independent variables can serve as significant 
predictors for the discovery of defects in system testing 
phase. Several mathematical equations are produced as 
the results of the statistical analysis, which are also kept 
in own repository for future reference. These equations 
can be referred as candidates of defect prediction model 
for system testing. In order to verify which equation is fit 
for final implementation, every prediction model 
candidate is applied into fresh new projects which are yet 
to enter system testing phase. These projects should not 
be part of the set metrics used for generating the 
equations. During this verification stage, actual defects 
found are compared against defects predicted by each 
equation for each project. The suitable equation for defect 
prediction model is selected from the equation that 
produces the most significant prediction result, in which 
it could predict the defects within the specified prediction 
range. This equation is then finally incorporated and 
implemented back into the software development process. 
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Fig. 3: Proposed model of formulating prediction for 
system testing defects by exploiting metrics in prior 
phases. It shows the cycle that need to be followed for 
generating the model and implementing back into V-
model software process 
. 

In this research perspective, only multiple regression 
analysis is adopted as the statistical technique to generate 
the prediction equation. The reason being is to 
demonstrate that this model works and able to produce 
reliable prediction. 

In the proposed model, there is a stage of conducting 
statistical analysis, in which several mathematical 
equations are formulated. In more detail, this stage 
involves following procedures: 

1. Identify metrics to be collected from each phase in 
V-model: requirement, design, construction or 
coding and testing. Metrics from phases prior to 
testing are put as independent variables while 
metrics in testing phase are treated as dependent 
variables. 

2. Collect the identified metrics from development 
and testing repositories. 

3. Filter and validate the metrics data to ensure only 
accurate metrics are used. 

4. Perform statistical analysis by using the validated 
metrics interchangeably, in which in this research 

context multiple regression analysis. During this 
analysis, observe the interaction between various 
independent variables and dependent variables to 
determine which set of interactions produce the 
best mathematical prediction equation.  

5. Acceptance criteria for selecting the mathematical 
equation as prediction equation candidate is based 
on R-squared and R-squared (adjusted) values of 
at least 90% as well as P-value of less than 0.05. 
This is to make sure the equation is a strong 
equation. Therefore, for this statistical analysis 
exercise, if the formulated equation satisfies all 
three aspects in the acceptance criteria, the 
equation could be considered as candidate for 
defect prediction model. Otherwise, if it fails to 
meet the acceptance criteria, revise the predictors 
(independent variables) used and perform 
regression analysis again. 

6. Apply the selected candidates of prediction 
equation into new testing projects as explained 
earlier. Compare the actual defects found against 
predicted defects. Select the best defect prediction 
model when the actual defects found is between 
the specified range of 95% Prediction Interval (PI) 
for that particular equation. Otherwise, revise the 
selection of metrics if the actual defects found are 
out the PI range and repeat the analysis process. 

 
The above procedures are depicted below in Figure 4: 
 

 
Fig. 4: The statistical analysis procedures in formulating 
prediction model for defects in system testing. The 
procedures need to be repeated in the event when the 
acceptance criteria are not satisfied. 

 
As mentioned previously, the mathematical equation 

that has been selected as the final defect prediction model 
is incorporated back as part of the V-model software 
development process for actual implementation. The 
prediction model is still subjected for further refinement 
should the actual defects found do not fall within PI 
range. Figure 5 shows the implementation of the final 
prediction model. 
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Fig. 5: Implementation of final defect prediction model 
for system testing back into the V-model software 
development process. Comparison between actual defects 
found and predicted defect is done throughout the testing 
phase. 
 
5. Case Study 

One organization was selected to conduct the case 
study. It is a research and development (R&D) 
organization that heavily involves in applied research 
activities, both in software and hardware. The interest is 
in their software development activities, which allow the 
demonstration of suitability for this model into real 
implementation. Furthermore, most software projects in 
the organization adopted V-model as their methodology 
or process model. 

Historical data were collected from all completed 
projects, which comprise of following types of software: 
standalone or desktop-based, web-based and web-service. 
These projects were developed using various 
programming languages, namely PHP, Java and .NET. 
From the master repositories hold all metrics from 
requirement, design, coding and testing phase, following 
metrics were collected: 

• Number of requirement pages 
• Number of design pages 
• Code size – kilo lines of code (KLOC) 
• Number of test cases 
• Effort in test cases design 
• Effort in phases prior to system testing 
• Defects in requirement 
• Defects in design 
• Defects in code and unit testing 
• Defects in test cases 
• Defects in system testing (for every software 

project) 
 
Data for each metric were validated so that only 

accurate data are used for statistical analysis. For final set 
of data, fourteen (14) software projects were selected. For 
dependent variable, it is differentiated by either all 
defects in system testing or functional defects in system 
testing. The analysis used these two defects 
interchangeably to determine which category of defects 
can be closely predicted. Same thing for effort-related 

metrics used for independent variables. Effort spent in 
test cases design and total effort spent for activities in 
requirement, design and coding phases that also include 
effort in test cases design were also used interchangeably 
so that the right effort-related predictor is used during the 
analysis. Table 3 outlines the final data set used in 
statistical analysis, which is regression analysis. 
 

Table 3: Data set used for statistical analysis 

 
 
Several sets of independent variables (predictors) and 

dependent variable (target/prediction) were used to 
conduct the regression analysis. The results of the 
analysis present the predictors that could be significant in 
predicting either functional defects only or all defects. 

 
Table 4: Sets of independent and dependent variables for  

regression analysis 
Set Independent 

Variables (Predictors) 
Dependent 

Variable (Target/ 
Prediction) 

Set A • Requirement defects 
• Code defects 
• KLOC 
• Requirement pages 
• Design pages 
• Total test cases 
• Total effort 

Functional defects 

Set B • Requirement defects 
• Code defects 
• KLOC 
• Requirement pages 
• Design pages 
• Total test cases 
• Total effort 

All defects 

Set C • Requirement defects 
• Code defects 
• KLOC 
• Requirement pages 
• Design pages 
• Total test cases 
• Effort in test design 

Functional defects 

Set D • Requirement defects 
• Code defects 
• KLOC 
• Requirement pages 
• Design pages 
• Total test cases 
• Effort in test design 

All defects 
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The results of regression analysis for each set in 

Table 4 are presented below in Figure 6, Figure 7, Figure 
8 and Figure 9, respectively. Take note that there were 
slight differences in terms notation used when the data 
were put in the statistical software. Requirement error 
was used to refer to requirement defects, code and unit 
testing (CUT) error refers to code defects, effort days for 
total effort, effort test design refers to test cases design 
effort and total TC for total test cases. 

 

 
Fig. 6: Regression analysis result for Set A 

 

 
Fig. 7: Regression analysis result for Set B 

 

 
Fig. 8: Regression analysis result for Set C 

 

 
Fig. 9: Regression analysis result for Set D 

 
The reasons for having four (4) sets of regression 

analysis were to determine whether the equations could 
better predict all defects or functional defects only, and 
whether effort for test case design or all efforts in phases 
prior to system testing should be considered as one of the 
predictors.  

In general, all equations produced R-Squared and R-
Squared (adjusted) of at least 90% while the P-value for 
each predictor was less than 0.05. For further 
confirmation on which equation should be selected as the 
defect prediction model, all equations were verified by 
applying them into new and fresh projects that have not 
yet entered system testing phase, in which their data were 
not part of the analysis. Prediction Interval (PI) for each 
equation was used as guidance for the range of prediction. 
PI of 95% specified the minimum and maximum number 
of defects that should be found by that particular 
equation. The verification results are presented below in 
Table 5: 

 
Table 5: Verification results for each equation 

 
E

qu
at

io
n 

Pr
oj

ec
t 

Pr
ed

ic
tio

n 

D
ef

ec
ts

 
Fo

un
d 

95
%

 P
I 

(m
in

, 
m

ax
) 

A Project 1 182 187 (155, 210) 
Project 2 6 1 (0, 14) 
Project 3 1 1 (0, 6) 

B Project 1 298 230 (241, 356) 
Project 2 9 9 (0, 24) 
Project 3 2 1 (0, 12) 

C Project 1 183 187 (201, 392) 
Project 2 8 1 (0, 19) 
Project 3 2 1 (0, 9) 

D Project 1 296 230 (142, 225) 
Project 2 11 9 (0, 37) 
Project 3 3 1 (0, 19) 

 
Based on the verification result, it is clear that 

Equation A demonstrated the most promising prediction 
within the specified PI range. This means that by using 
requirement defects, code defects, KLOC, requirement 
pages, design pages, total test cases and total effort spent 
by testers in phases prior to testing, functional defects for 
software under test adopting V-model process could be 
predicted. Besides that, this final result also explained 
that due to limited number of data used for analysis, the 
proposed model could only generate one generalized 
defect prediction that is only able to predict functional 
defects for any software under test. Thus, this proposed 
model is subjected to more improvements in the future to 
make it more robust and reliable in predicting defects for 
different type and nature of software produced. 
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6. Conclusion 
This effort has successfully proposed, established 

and demonstrated a systematic model of formulating 
prediction for system testing defects by using prior 
phases’ metrics, specifically for software adopting V-
model development process. Metrics associated with 
development and testing activities collected during 
requirement, design and construction phases had been 
analyzed and exploited in order to discover the most 
significant predictors for system testing defects. 
Statistical analysis via regression analysis had served as 
useful and powerful technique in coming out with such 
mathematical equation for predicting defects. 
Furthermore, this had helped in proposing a model that 
predicts defects within a specified minimum and 
maximum range, not by absolute numbers. 

As future measures for improving the proposed 
model, more metrics need to be considered in 
determining the suitable predictors. This shall include 
more product metrics rather than process metrics and also 
metrics granularity. Apart from this, this model could also 
look into ways of predicting defects beyond than just 
functional defects, such as performance defects, usability 
defects, and security defects. It is also expected that this 
model shall cater for formulating different defect 
prediction for different types of software. Obviously, any 
mechanism is welcomed to see the procedures introduced 
in this model can be automated for dynamically 
generating defect prediction for system testing in real-
time. 
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