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1. Introduction
The seismic proofs in Japan of bridges and buildings

subjected by a strong earthquake are permitted to be over 
the yielding but must not be brought to the ultimate. The 
proofs need to evaluate the inelastic seismic responses of 
the structures [1], [2]. Therefore, many experimental 
researches on RC structures and steel structures were 
conducted for developing exact inelastic models of them. 
It has been, however, occasionally heard that the dynamic 
responses experimentally measured of real structures over 
the yielding disagreed with the computational results. 
This indicates that the algorithm of a numerical 
integration, that has not so far paid attention to, may be 
inappropriate in the computation.  

Many methods of numerical integrations have been 
proposed for solving equations of motions. If we address 
methods for computing the inelastic seismic response of 
structures, the method of Newmark β=1/4 is the most 
popular method [4]. The method has no condition for 
computational stability, so that the method can directly 
and stably solve the equations of the motions. Further, 
when the method is applied to a linear problem filtering 
high frequency response, the result computed by enough 
short using time interval is almost equal to the result by 
the method of Newmark β=1/6. Since the method of 
β=1/6 applied to linear problems surely gives exacter 
responses than that by the method of β=1/4, this may be 
giving the method of β=1/4 assurance. However, there is 
a possibility that the response considerably includes 

accumulative errors produced from high frequency 
components that do not diverge in the method of β=1/4 
but surly possess errors, because of solving directly the 
equation of the motion unrestricted by frequency area.  

The paper develops an algorithm for filtering high 
frequency components. The algorithm enables the method 
of numerical integration that is accurate but restricted 
within very small time interval for stably computing the 
inelastic seismic responses. The paper applies the method 
of modal analysis to the algorithm. The method of 
Newmark β=1/6 stably gives the inelastic seismic 
response without leading to divergence. The comparison 
between several seismic responses indicates that directly 
solving the equation of the motions will be inappropriate. 

2. Modal Analysis for Computing Inelastic
Seismic Response 

The equation of the motion expressing the seismic 
response at the time mt   of an inelastic structure in three-

dimensional space is, 

,  (1) 

where M : the mass matrix of the structure,  C : the
damping matrix possible to be arbitrarily composed, 
though the paper uses the Rayleigh damping 
C  M  Km , where ν and μ are constants.

Moreover, Se, m : the end force vector of the element e, 
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 e : the transforming matrix that changes the end forces 

to the forces in the universal coordinate, : the input 

acceleration at all the nodes,  : the three components 

of the ground acceleration,  : the nodal acceleration 

vector,  : the nodal velocity vector. 
Differentiating the third term in equation (1) gives the 

tangent stiffness Km   at the time tm , that is, 
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where um   is the infinitesimal increment of the nodal 
displacement. 

If we assume that the equation of the motion during 
the time interval Δt from mt  to 1mt  is linear by using the 

tangent stiffness Km , the method of modal analysis can 
be applied to the equation of the motion. The eigenvalue 
analysis of the free vibration expressed by M   and Km   

yields the diagonal matrix  m  consisting of the square 

of the natural circular frequencies and the modal matrix 
Xm  composed by the displacement modes dominating 
the responses of the structure. 

The increment of the nodal displacement u  in Δt 
is expressed from the modal analysis, as follows: 

u  Xm  Xm (m1  m ) ,              (3) 

where   is the increment of the normal coordinate 

vector in Δt. 
The increment of the nodal velocity and that of the 

nodal acceleration are similarly obtained by 
differentiating equation (3).  

Changing the increments of the nodal response into 
the increments of the normal coordinates yields the 
differential equation of the normal coordinates, as 
follows: 

,     (4) 

where I  is the unit matrix and m is the matrix 

composed by the participation factors. 
When the method of Newmark β is applied to 

equation (4), the increments of the normal coordinates is, 
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Since the structure is inelastic, the increment  (0)  

in equation (5) obtained from the linear analysis does not 
generally fulfill the equation of the motion at the time 

1mt .  Therefore, adding corrections to the prediction 

 (0)  yields more accurate response. The correction is 

derived from the following. The prediction determines the 

nodal displacement at the time 1mt , and the 

displacement changes the tangent stiffness to Km1
(1) . The 

eigenvalue analysis of M and Km1
(1)  gives the new 

diagonal matrix m1
(1)  and the new modal matrix Xm1

(1) . 

When the modal matrix changes, the normal coordinates 

change from  (0)  to  (1)  by applying the 

normalization. 

The correction  (1)  added to the increment of the 

normal coordinates  (1)  is obtained as the solution of 

the following linear equation, 
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(6) 

where Um1
(1)  expressing the unbalanced force vector at 

the time 1mt  is, 

 (7) 

If the equivalent force Xm1
(1)TUm1

(1)  becomes less 

than the allowable value, we can estimate the solution to 
be convergent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.   Computational Example and Discussion 

3.1 Computational model 
The proposed method is applied to the frame structure 

of the steel pier shown in Fig. 1. The pier fixed at the 
base plate is 11m in height and 126kN of the weight of 
the upper part on the ground. The top of the pier supports 
the girder of 957kN in weight. The computational model 
is the steel pier divided into 19 elements in the 
computation. Each element is the bar model that the 
bending deformation is only inelastic and the others are 
elastic. The elongation stiffness of the column part is 
64312.5MN, and the shearing stiffness is 12290MN.  

The bending stiffness before/after the yielding are 

49021.56 2MNm  and 5071.8 2MNm  respectively, and 

Fig. 1 Steel pier used in the computation. 
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the bending moment at the yielding is 5MNm. The 
hysteresis loop of the bending behavior of inelasticity is 
defined as shown in Fig. 2 that expresses the relation 
between the bending moment and the curvature. Fig. 2 
itself is the hysteresis loop in the bending behavior of the 
element on the base obtained from computing the 
response of the steel pier subjected by the earthquake.  

The paper uses a uniform curvature element that 
would be the simplest model in various inelastic models 
already proposed. Even if the inelastic model is simple 
but appropriate, the frame model composed of plenty of 
fine elements will simulate nearly real phenomena. 
Further, since the purpose of the paper is to estimate 
algorithms of numerical integrations, it is allowable to 
select the simplest inelastic model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The damping constant existing during the oscillation 
of the steel pier except the damping resulted from the 
inelasticity is defined as the Rayleigh damping in the 
computation, and the constants are 0.114ν   1/sec. and 

0.001157μ  sec.. These constants give the pier the 

damping effect nearly equal to the damping constant 0.02 
in the frequency area from 0.5Hz to 10Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.2 Input acceleration of earthquake 

The input acceleration used in computing the 
inelastic seismic response of the pier is shown in Fig. 3 
that is NS component in the acceleration records of 
Hyogo-ken Nanbu Earthquake (1995) measured at Kobe 
station of Japan Meteorological Agency. The acceleration 
record is commonly being used for seismic proofs of 
bridges and buildings in Japan [1], [2]. The study also 
used some other strong-motion records obtained from 
National Research Institute for Earth Science and 
Disaster Resilience, NRIESDR’s home page [5] and 
computed the responses of the pier. Since those 
computational results were qualitatively similar to the 
following results, the paper is missing them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Algorithms of numerical integration 

compared 

The paper compares the three algorithms that are the 
modal analysis with β=1/6, the modal analysis with β=1/4 
and the direct solution with β=1/4 that is the method 
solving directly equation (1). All the conditions except 
the algorithms of numerical integration are the same in 
the computations. 

The natural frequencies in the lateral motion of the 
pier in the elastic state are the first of 4.899Hz, the second 
of 37.24Hz and the third of 124.3Hz. Fig. 4 shows the 
change of the first natural frequency during the oscillation 
of the pier. Naturally, the deterioration of the bending 
stiffness decreases the natural frequencies. The first 
natural frequency decreases from 4.899Hz to around 
1.9Hz.  Since main frequency area of earthquakes is 
generally less than 10Hz, the modal analysis uses only the 
first mode enough. Even if the pier was over the yielding, 
the natural frequency of the second mode was over 10Hz. 
Therefore, the method of the modal analysis did not need 
the modes over the first mode in this example. 

The direct solution with β=1/4 does not use an 
algorithm of prediction/correction, but use the secant 
stiffness obtained from the two states of the bending at 
the times of mt  and 1mt . The direct solution iteratively 

changes the secant stiffness from the state of the time 
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1mt  renewed, and the unbalanced forces of equation (7) 

more steadily converge in the iteration than using any 
algorithm of prediction/correction. The allowable 
unbalanced force in the direct solution is 0.01N. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4 Computational results 

Fig. 5 shows the time-history responses of the 
displacement at the top of the pier computed by the three 
methods. The time interval is Δt=0.001 seconds, and the 
response by the modal analysis of β=1/4 almost agrees 
with that by the modal analysis of β=1/6, while does not 
agree with the response by the direct solution by β=1/4. 
The phases in the response wave by the direct solution 
seem to agree with that by the modal analysis, but the 
maximum peak by the direct solution is not only larger 
than those by the modal analysis but the latter part in the 
response is also. 

Fig. 6 shows the maximum of the lateral 
displacement at each node during the oscillation. The 
computation uses the time interval Δt=0.001 seconds, 

because the time interval or less gives exact results, as 
shown by the following figures. The deformation by the 
displacement is similar to the first mode of the 
displacement. Comparison of the displacements by the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
three methods reveals that the response by the direct 
solution is largest and that the two methods of modal 
analysis agree with each other. 

Fig. 7 shows variations of the maximums of the 
displacement at the top of the pier according to the time 
interval. When the time interval becomes smaller and 
smaller, the maximums by the two methods of modal 
analysis are gradually close and converge on nearly the 
identical value. However, the maximum by the direct 
solution in Fig. 7 changes also, but the fluctuation is 
small. This convergent process to the time interval 
indicates that the maximums by the modal analysis will 
be exacter than that by the direct solution. Because, when 
we apply the two methods of Newmark β=1/4 and β=1/6 
to the sinusoidal responses of a system of one degree of  

Fig. 5 The time-history responses of the displacement at the top in the pier. 
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freedom, both responses with sufficiently small interval 
of time agree well with the analytical solution that is 
exact. Since the modal analysis uses only the first mode 
in the computation in consideration of the frequency area 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of the earthquake, the computation removes modes with 
high frequency. 

On the other hand, the response by the direct 
solution implicitly includes components of high 
frequency. The errors caused by the components of high 
frequency will not be so small, because the maximum by 
the direct solution is so different from that by the modal 
analysis. 

Fig. 8 showing the maximum of the acceleration at 
the top of the pier indicates that the acceleration by the 
direct solution agrees well with that by the modal 
analyses. If using another seismic wave to the 
computation, however, we obtained different results from    
Fig. 8. Therefore, when the maximum of the response 
early appears in the time-history, the value of the 
maximum by the direct solution will be accurate. 

In the residual displacement at the top of the pier 
after the oscillation over shown in Fig. 9, the variations 
according to the time interval are large, but the results of 
the modal analysis agree with each other at Δt=0.001 
seconds. On the other hand, the result of the direct 
solution does not seem to be convergent. This may be 
why the errors caused by high frequency gradually 
accumulate together with the procession of time. 
 
4.   Conclusion 

Although the accuracy of seismic inelastic responses 
depends on the two factors of using the proper inelastic 
model and applying the correct method of numerical 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
integration, many researches published on the responses 
do not pay attention to numerical integrations but 
concentrically inelastic models only. 

The paper proposed a method enabling the numerical 
integrations, that were correct but with conditions of the 
time interval, to be applied to the inelastic responses. 
Though we cannot obtain the exact solution of the 
seismic inelastic response so that cannot directly prove 
the proposed method to be valid, the convergent process 
of the responses according to the time interval shows that 
the proposed method will yield exacter results than the 
direct solution with Newmark β=1/4. 
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