Vol. 14 No. 1 (2023) 337-345

© Universiti Tun Hussein Onn Malaysia Publisher's Office

http://publisher.uthm.edu.my/ojs/index.php/ijscet ISSN : 2180-3242 e-ISSN : 2600-7959 International Journal of Sustainable Construction Engineering and Technology

An Estimation of the Safety Risk Factors Encountered During Tower Crane Installation and Dismantling on Construction Sites in Vietnam

Ngo Thanh-Long^{1*}

¹Department of Mechanical Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, 10000, VIETNAM

*Corresponding Author

DOI: https://doi.org/10.30880/ijscet.2023.14.01.031 Received 25 October 2022; Accepted 08 January 2023; Available online 14 February 2023

Abstract: The construction field has an important and meaningful role in the economy of any nation, especially developing nations. However, construction is one of the most dangerous fields and has the highest rate of accidents, including deaths and disabling injuries in the world. The construction field uses many tower cranes, especially for constructing multi-storey buildings, factories, or in urban areas, and requires an increasing number of tower cranes. Tower cranes certainly contribute to the high rate of construction injuries and fatalities, in which tower crane installation and dismantling take a high rate. Accidents during tower crane installation and dismantling can kill people (workers and citizens) as well as delays in construction schedules of project and/or damage to buildings and machines under construction. As a result, the cost of costruction projects can increase. In this paper, safety risk factors during tower crane installation and dismantling on construction sites in Vietnam are estimated by showing their likelihood of occurrence, degree of influence, and risk levels. A suitable-structured questionnaire was produced and sent to get data that had their likelihood of occurrence and degree of influence by applying a five-point Likert scale. The results showed that "Time constraints are requested by investor, principal contractor or employer" is the most likely factor with a mean value of 3.60 and "Break of a wire rope occurring on dismantling" has the highest degree of influence, with a mean value of 4.18. The result also showed that there are 15/21 factors with a moderate risk level that is acceptable but, requires suitable controls to maintain a safe working condition of tower crane installation and dismantling. The results of the paper may help managers as well as practicians with good understandings of how to advance the safety of tower crane installation and dismantling on construction sites in Vietnam.

Keywords: Tower crane, accident, installation, dismantling, construction safety, construction field

1. Introduction

Construction is one of the most dangerous fields, and the construction field has the highest rate of accidents including fatalities, disabling injuries and other serious damages around the world (Ahmed et. al., 2000; Fang, Song, & Huang, 1999; Koehn, Kothari, & Pan, 1995; Harper & Koehn, 1997; Sawacha, Naoum, & Fong, 1999; Tam & Fung, 2011; Farooqui, Arif, & Rafeeqi, 2008; Neitzel, Seixas, & Ren, 2001). In Vietnam, the construction field has many accidents and has a high rate of accidents including fatalities and disabling injuries with 15.6% total number of accidents in 2020 (Vietnam Ministry of Labour-Invalids and Social Affairs, 2020). The construction field uses many tower cranes, especially for constructing multi-storey buildings, factories, or in urban

areas and requires an increasing number of tower cranes (Shin, 2015). Tower cranes are the really important machines, which have been used on most construction sites in the world and in Vietnam as well to transport materials. Tower cranes have heights of more than 200 ft, boom length of more than 250 ft, and load capacities of more than 22 tons (Neitzel, Seixas, & Ren, 2001) and tower cranes hoist and transport a variety of loads (Shapira & Lyachin, 2009). They displayed an average 36% of the total project procurement cost (Yeo & Ning, 2006). However, tower cranes absolutely cause a high number of injuries and deaths on construction sites (Neitzel, Seixas, & Ren, 2001; Shapiro & Shapiro, 2004; Skinner, et. al., 2006; Shapira, Simcha, & Goldenberg, 2012). For example, Tam & Fung (2011) showed that there were 12 accidents involving tower cranes from 1998 to 2005 in Hong Kong. There were 38 accidents involving tower cranes in Korea from 2001 to 2011 (Shin, 2015). According to the statistics from the Occupational Safety Health Administration (OSHA) (Kang & Miranda, 2004), there were 137 crane-related deaths from 1992 to 2001 in the United States. There were 47 deaths in incidents involving cranes from 2003 to 2015 in Australia (Safe Work Australia, 2016) and 240 crane-related serious injuries every year (Safe Work Australia, 2019). In England, cranes accounted for 17% of all construction-related deaths (Health and Safety Executive, 1978). Vietnam had some accidents involving tower crane. For example, in May 2020 an accident happened to a tower crane with three fatalities and three serious injuries.

Installation and dismantling of tower cranes has a high rate of accidents. The most dangerous works that can cause deaths at construction sites is the tower crane installation and dismantling (Shin, 2015; Li, Chan, & Skitmore, 2012). There were 68.4% of all fatal accidents during tower crane installation and dismantling from 2001 to 2011 in Korea (Shin, 2015). Erection and dismantling caused 10% to 12% of all crane fatalities in the United States (Smith & Corley, 2009). The accident happened while dismantling a process tower crane in Hong Kong in July 2007. This accident caused five serious injuries and two fatalities (Li, Chan, & Skitmore, 2012). In Vietnam in February 2020, there were three fatalities and two serious injuries in an accident that happened during a tower crane dismantling process.

Some factors that affect the safety of tower cranes on construction sites have some studies, but most of them only talk about the broader field of construction site safety or of crane-related work in general (Nunnally, 2000). In Vietnam, there are a few suggestions related risk factors or safety hazards of tower cranes (Shapira & Lyachin, 2009). Thus, safety issues regarding the operation of tower cranes on construction sites in Vietnam need to be evaluated. The aims of this research are documented as the following. First, this study shows the likelihood of the occurrence of factors that affect safety during tower crane installation and dismantling on construction sites in Vietnam. Second, this study determines the degree of influence of factors that affect safety during tower crane installation and dismantling on construction sites. Third, this study evaluates the safety risk factors by calculating a relative significant index score.

2. Literature Review

Safety of crane has been attracted many studies (Beavers, et. al., 2006; Butler, 1978; Fair, 1998; Häkkinen, 1993; Shapira & Simcha, 2009; Shepherd, Kahler, & Cross, 2000; Suruda, et. al., 1999; Tomakov, et. al., 2018; Salihu, Aliyu & Abubakar, 2020), in which there are a few studies on factors that affect safety with tower cranes on construction sites. Neitzel, Seixas, & Ren (2001) reviewed available information on tower crane injuries and made recommendations for improved tower crane injury prevention. Showing and analysing factors that affect the safety of tower cranes on construction sites in the United States were done by Shapira & Lyachin (2009). This study showed 21 safety risk factors for tower crane operations on construction sites, including four categories: safety management, project conditions, human factors, and the environment. Shapira & Simcha (2009) evalueted factor weights that affect safety with tower crane operations on construction sites by using the analytic hierarchy process (AHP) model. Shapira & Simcha (2009) used an integrative model that evaluated the quantity of safety factors with tower cranes on construction sites. Tam & Fung (2011). used a questionnaire survey and interviews to identify the safety risk factors of tower crane operations in Hong Kong.

However, these studies have mostly focused on the operation of cranes rather than on their installation and dismantling. Li, Chan, & Skitmore (2012) showed a safety training method for tower crane dismantlement and the results point out that the proposed method is generally better than the traditional methods. Shin (2015) investigated safety risk factors during tower crane installation and dismantling on construction sites in Koria by reviewing 38 fatal accidents relating to tower cranes that happened from 2001 to 2011. This study was done by evaluating fatal accident causes and interviewing tower crane-related people. The results indicated that human error is the most important cause of accidents during tower crane installation and dismantling and five major factors are included: (i) corruption of parts of the tower cranes during storage; (ii) lack of necessary materials for installation and dismantling; (iii) erectors and dismantlers lack knowledge and skills; (iv) bad working conditions, for example space and time constraints; and (v) work site with insufficient supervision. Salihu, Aliyu, & Abubakar (2020). evaluated safety risk factors of tower crane installation and dismantling their likelihood of occurrence and degree of influence and also showed the most significant factors. This study was conducted by using a total of 57 questionnaires with 21 factors. These questionnaires were sent to Kaduna, Abuja and Lagos. The paper showed that the most likely factor was the abrasion of components of the tower crane and the highest level of influence was the break of a wire rope during tower crane dismantling. The break of a wire rope during tower crane dismantling. The break of a wire rope during tower crane dismantling is the highest safety risk

factor of 21 factors that affect safety occurring on tower crane installation and dismantling on construction sites in Nigeria.

3. Research Methodology

The research process and methodology are shown in Fig. 1. The purpose of the study is to investigate the likelihood of occurrence and degree of influence of safety risk factors and evaluate safety risk factors occurring on tower crane installation and dismantling on construction sites in Vietnam. The research uses 21 factors that were identified by a previous study as in Table 1. A suitable-structured questionnaire was produced and sent to construction sites and construction companies that use tower cranes to collect data. The questionnaire measures the likelihood of occurrence and degree of influence of the factors by using a five point Likert scale. A total of 100 questionnaires were sent to practitioners who are directly involved in the tower crane-related process such as installation and dismantling workers; crane operators; workers performing tower crane-related work; safety managers, equipment managers. The research uses MS excel to treat data and then proposes recommendations.

Fig. 1 - The research process and methodology

Table 1 - Safety risk factors occurring on tower crane installation and dismantling (Salihu, Aliyu, & Abubakar 2020)

No	Factors
1	Lack of workers to perform the work correctly and safely.
2	Installation and dismantling workers often leave the work due to hard working condition.
3	Time constraints are requested by investor, principal contractor or employer.
4	Trying to finish the work earlier than the time required for performing the work safely.
5	Usually skipping safety procedures or rules required with various reasons.
6	Lack of workers competence.
7	Insufficient instruction and supervision at construction sites.
8	Contractors do not know the necessity to ensure the safety of tower crane installation and dismantling.
9	Construction sites with unreasonable condition (ground conditions, working space, environment and restrictions).

10 Reducing quality of tower cranes part (components).

- 11 Workers character (installation and dismantling workers).
- 12 Overloading with objects exceeding the tower crane load limit.
- 13 Tower crane operators are not enough experiences.
- 14 Work procedures in manuals for the tower cranes installation and dismantling are not followed.
- 15 Malfunction of a tower crane.
- 16 Buckling of a telescopic cage.
- 17 Break of a wire rope occurring on dismantling.
- 18 Lack of working platforms.
- 19 Components have not incompatibility.
- 20 Dropping items.
- 21 Components of tower crane such as bolts, nuts, or pins have wear and tear.

4. Results and Discussion

4.1 Respondents Profile

Seventy eight responses were received and it obtained a response rate of about 71%. Table 2 presents the personal details of the respondents such as their nature of job, educational qualification and years of experience. Installation and dismantling workers on the tower cranes have a higher representation of 52.6% and safety managers have the least representation of 10.3%. All the respondents have at least a post-secondary education. Secondary graduation has a higher representation of 66.7% and bachelor has the least representation of 7.7%. 51% of the respondents have from 6 to 10 years, and from 16 to 20 years of working experience with tower cranes on construction sites, which account for about 26.9% and 24.4% respectively of the survey. About 10.3%, 16.6% and 21.8% of the respondents have working experience with tower cranes on construction sites with from 11 to 15 years, over 20 years, and from 0 to 5 years, respectively.

No	Iterm	Number	Percentage
	Job description		
1	Safety managers	8	10.3
2	Equipment managers	9	11.5
3	Installation and dismantling workers	41	52.6
4	Craine operator	11	14.1
5	Worker performing tower crane-related work	9	11.5
	Total	78	100
	Educational qualification		
1	High school	9	11.5
2	Secondary graduation	52	66.7
3	Bachelors	6	7.7
4	MSc	11	14.1
	Total	78	100
	Years of experience		
1	0-5	17	21.8
2	6-10	21	26.9
3	11-15	8	10.3
4	16-20	19	24.4
5	Over 20	13	16.6
	Total	78	100

Table 2 -	Respondents	profile
-----------	-------------	---------

4.2 Likelihood of Occurrence for Safety Risk Factor

Table 3 presents the likelihood of occurrence for each safety risk factor as scored by the respondents based on a five point Likert scale. Mean values and standard deviation were calculated to help rank the factors that have the same mean value. Table 3 shows the assessment of the likelihood of occurrence of each factor and this shows that all factors have a mean value of > 2.0 and the most likely factor is "Time constraints are requested by investor, principal contractor or employer." with a mean value of 3.6 and the least likely factor is "Components have no incompatibility." with a mean value of 2.13. This implies that time for installing and dismantling tower cranes in Vietnam is usually not enough. However, previous studies showed that "Components of tower crane such as bolts, nuts, or pins have wear and tear." and "Work procedures in manuals for the tower cranes installation and dismantling are not followed." are the most likely factors that can result to accidents on construction sites in Koria and Negeria (Shin, 2015; Salihu, Aliyu, & Abubakar, 2020). Table 3 also shows the first four (4) factors that had mean values ≥ 3.0 including: "Time constraints are requested by investor, principal contractor or employer" (mean value of 3.60); "Trying to finish the work earlier than the time required for performing the work safely" (mean value of 3.14); "Dropping items" (mean value of 3.06); and "Construction sites with unreasonable condition (ground conditions, working space, environment and restrictions)" (mean value of 3.04). It means that these factors have the probability of appearing and may repeat sometimes. The factors from 5th to 21st positions had mean values of ≥ 2.0 indicating that they are unlikely to repeat but have a chance of appearing. This can conclude that all the above identified factors have the probability of appearing on construction sites.

			I	Frequ	ency						
No	Factors	1	2	3	4	5	∑f	Σα	Mean	Std.Dev	Rank
1	Time constraints are requested by investor, principal contractor or employer.	3	9	23	24	19	78	281	3.6026	1.0971	1 st
2	Trying to finish the work earlier than the time required for performing the work safely.	9	7	33	22	7	78	245	3.141	1.0898	2^{nd}
3	Dropping items.	8	17	31	6	16	78	239	3.0641	1.2415	3 rd
4	Construction sites with unreasonable condition (ground conditions, working space, environment and restrictions).	9	10	31	25	3	78	237	3.0385	1.0375	4 th
5	Reducing quality of tower cranes part (components).	8	18	26	20	6	78	232	2.9744	1.1046	5 th
6	Components of tower crane such as bolts, nuts, or pins have wear and tear.	8	26	20	9	15	78	231	2.9615	1.2837	6 th
7	Malfunction of a tower crane.	8	20	31	14	5	78	222	2.8462	1.0454	7^{th}
8	Installation and dismantling workers often leave the work due to hard working condition	11	20	21	24	2	78	220	2.8205	1.1019	8 th
9	Workers character (installation and dismantling workers).	13	18	27	14	6	78	217	2.8619 2	1.1613	9 th
10	Work procedures in manuals for the tower cranes installation and dismantling are not followed.	19	17	18	11	13	78	216	2.7692	1.4043	10 th
11	Usually skipping safety procedures or rules required with various reasons.	16	15	23	23	1	78	212	2.7179	1.1384	$11^{\rm th}$
12	Lack of workers to perform the work correctly and safely.	20	10	29	16	3	78	206	2.641	1.184	12^{th}
13	Insufficient instruction and supervision at construction sites.	17	20	16	25	0	78	205	2.6282	1.1522	13 th
14	Buckling of a telescopic cage.	9	31	21	15	2	78	204	2.6154	1.0094	14^{th}
15	Lack of workers competence.	13	26	24	12	3	78	200	2.5641	1.064	15 th
16	Contractors do not know the necessity to ensure the safety of	19	18	22	18	1	78	198	2.5385	1.1361	16^{th}

Table 3 - Likelihood of occurrence of factors

	tower crane installation and dismantling.										
17	exceeding the tower crane load limit.	22	17	22	15	2	78	192	2.4615	1.1699	17^{th}
18	Tower crane operators are not enough experiences	24	17	20	15	2	78	188	2.4103	1.1891	18^{th}
19	Break of a wire rope occurring on dismantling.	20	20	30	5	3	78	185	2.3718	1.0582	19 th
20	Lack of working platforms.	13	35	22	6	2	78	183	2.3462	0.9373	20^{th}
21	Components have not incompatibility.	26	23	24	3	2	78	166	2.1282	1.0111	21 st

1= Improbable; 2=Unlikely; 3=Possible; 4= Probable; and 5=Almost certain

4.3 Degree of Influence for Factors

The influence of each factor was evaluated by using a 5 point Likert scale. The diverse degree of influence of the factors were established if they arose, and then, the mean values were counted as in Table 4. Table 4 shows that all the factors had a degree of influence from minor injury to death. There were 13 factors which had degree of influence with a mean value >3.0. This implies that it can lead to major injury if it appears. The factor of break of a wire rope occurring on dismantling had the highest degree of impact with a mean value of 4.18 which implies that the resultant effect of this safety risk factor is very serious if it appears. It results in deaths, serious injuries, and other property, equipment, and machine damage, as well as extending the project schedule. The result is similar to a previous study, but it ahas highest degree of impact with a mean value of 4.63. There were 8 factors which had a degree of influence with a mean value from 2.21 to 2.91. In which, the factor of "Components have no incompatibility" had the lowest degree of influence with a mean value of 2.21 which implies that it can only lead to minor injury/ injuries if it appears. Usually skipping safety procedures or rules required for various reasons and overloading with objects exceeding the tower crane load limit are 11th and 17th probable factors to occur on construction sites, respectively as shown in Table 3. However, they have a high degree of influence. Overloading with objects exceeding the tower crane load limit was ranked 2nd and usually skipping safety procedures or rules required for various reasons was ranked 3rd as shown in Table 4.

	_			Frequ						
No	Factors	1	2	3	4	5	$\sum \mathbf{f}$	$\sum \beta$	Mean	Rank
1	Break of a wire rope occurring on dismantling.	1	4	10	28	35	78	326	4.1794	1^{st}
2	Overloading with objects exceeding the tower crane load limit.	10	8	14	18	28	78	280	3.5897	2 nd
3	Usually skipping safety procedures or rules required with various reasons.	9	7	18	27	17	78	270	3.4615	3 rd
4	Work procedures in manuals for the tower cranes installation and dismantling are not followed.	7	14	16	22	19	78	266	3.4103	4 th
5	Lack of workers competence.	8	4	30	23	13	78	263	3.3718	5^{th}
6	Contractors do not know the necessity to ensure the safety of tower crane installation and dismantling.	12	9	15	23	19	78	262	3.359	6 th
7	Tower crane operators are not enough experiences.	13	6	19	21	19	78	261	3.3462	7^{th}
8	Malfunction of a tower crane.	7	14	28	13	16	78	251	3.2179	8 th
9	Reducing quality of tower cranes part (components).	8	13	19	33	5	78	249	3.1923	9 th
10	Lack of workers to perform the work correctly and safely.	8	15	19	27	9	78	248	3.1795	10^{th}
11	Dropping items.	9	11	26	25	7	78	244	3.1282	11^{th}
12	Insufficient instruction and supervision at	16	8	20	24	10	78	238	3.0513	12^{th}

Table 4 - Degree of influence of factors

	construction sites.									
	Construction sites with unreasonable									
13	condition (ground conditions, working	13	14	22	17	12	78	235	3.0128	13 th
	space, environment and restrictions).									
	Time constraints are requested by						- 0			h
14	investor, principal contractor or employer.	15	11	26	18	8	78	227	2.9103	14 ^m
	Trying to finish the work earlier than the									
15	time required for performing the work	21	8	22	20	7	78	218	2.7949	15^{th}
	safely.									
16	Lack of working platforms.	19	18	15	14	12	78	216	2.7692	16^{th}
17	Buckling of a telescopic cage.	18	19	19	8	14	78	215	2.7564	17^{th}
18	Workers character (installation and	16	21	17	18	6	78	211	2 7051	1 Qth
10	dismantling workers).	10	21	17	10	0	/0	211	2.7031	10
19	Components of tower crane such as bolts,	27	14	22	7	8	78	189	2 4231	19 th
17	nuts, or pins have wear and tear.	21	11	22	,	0	/0	10)	2.1231	17
• •	Installation and dismantling workers	• •				_	- 0			• o.4
20	often leave the work due to hard working	29	14	21	9	5	78	181	2.3205	20 th
	condition.									
21	Components have not incompatibility.	32	16	18	6	6	78	172	2.2051	21 st

1=Negligible; 2=Minor Injury; 3= Major Injury; 4=Fatality; and 5= Multiple Fatality

4.4 Evaluation of Factors

The safety risk factors were calculated by showing their relative significant index score (RSIS). The relative significant index score is a function of the likelihood of occurrence and the degree of influence and can be calculated by the total significance score for all risks divided by the number of the respondent. These RSIS represent the relative importance of these factors. The relative importance between one factor and the other is expressed through their relative score. The results were then compared against a standard risk developed by Construction Plant Hire Association (CPA) (2011). The symbols in Table 5 are defined as follows: $\sum \alpha$ (likelihood risk score), $\sum \beta$ (degree of influence risk score), $\sum RS$ (combined risk score), and N (population). Table 5 shows that "Time constraints are requested by investor, principal contractor or employer" had the highest RSIS of 10.48 meanwhile "Components have not incompatibility" had the lowest RSIS of 4.69. There were 15 factors with a high RSIS > 8.0, implying moderate risk factors that require a suitable degree of controls with tower crane installation and dismantling-related works to prevent hazard and make construction sites safer. The factors ranked from 16th to 21st had RSIS of 7.49 - 4.69 respectively, which indicates low risk factors that are acceptable with no need for any control actions.

Table 5 - Evaluation of safety risk level

No	Factors	Σα	$\sum \beta$	∑RS	Ν	RSIS	Rank	Risk level
1	Time constraints are requested by investor, principal contractor or employer.	281	227	63787	6084	10.484	1 st	Moderate
2	Break of a wire rope occurring on dismantling.	185	326	60310	6084	9.9128	2^{nd}	Moderate
3	Dropping items.	239	244	58316	6084	9.5851	3^{rd}	Moderate
4	Reducing quality of tower cranes part (components).	232	248	57536	6084	9.4569	4 th	Moderate
5	Work procedures in manuals for the tower cranes installation and dismantling are not followed.	216	266	57456	6084	9.4438	5 th	Moderate
6	Usually skipping safety procedures or rules required with various reasons.	212	270	57240	6084	9.4083	6 th	Moderate
7	Malfunction of a tower crane.	222	251	55722	6084	9.1588	7^{th}	Moderate

8	Construction sites with unreasonable condition (ground conditions, working space, environment and restrictions).	237	235	55695	6084	9.1543	8 th	Moderate
9	Overloading with objects exceeding the tower crane load limit.	192	280	53760	6084	8.8363	9 th	Moderate
10	Trying to finish the work earlier than the time required for performing the work safely.	245	218	53410	6084	8.7788	10 th	Moderate
11	Lack of workers competence.	200	263	52600	6084	8.6456	11^{th}	Moderate
12	Contractors do not know the necessity to ensure the safety of tower crane installation and dismantling.	198	262	51876	6084	8.5266	12 th	Moderate
13	Lack of workers to perform the work correctly and safely.	206	248	51088	6084	8.3971	13 th	Moderate
14	Tower crane operators are not enough experiences.	188	261	49068	6084	8.0651	14^{th}	Moderate
15	Insufficient instruction and supervision at construction sites.	205	238	48790	6084	8.0194	15 th	Moderate
16	Workers character (installation and dismantling workers).	216	211	45576	6084	7.4911	16 th	Low
17	Buckling of a telescopic cage.	204	215	43860	6084	7.2091	17^{th}	Low
18	Components of tower crane such as bolts, nuts, or pins have wear and tear.	231	189	43659	6084	7.176	18 th	Low
19	Installation and dismantling workers often leave the work due to hard working condition.	220	181	39820	6084	6.5450	19 th	Low
20	Lack of working platforms.	183	216	39528	6084	6.4970	20^{th}	Low
21	Components have not incompatibility.	166	172	28552	6084	4.6930	21 st	Low

5. Conclusions

The safety risk factors occurring on tower crane installation and dismantling on construction sites in Vietnam were evaluated. The results show that all 21 identified factors in previous studies have a likelihood of occurring on construction sites in Vietnam, in which the most probable factor is "Time constraints are requested by investor, principal contractor or employer" with a mean value of 3.6 and the break of a wire rope occurring on dismantling had the highest degree of influence with a mean value of 4.18. There are 15/21 facors with a moderate risk level that is acceptable but, requires suitable controls to make the construction sites safer. "Time constraints are requested by investor, principal contractor or employer" had the highest RSIS of 10.484. This research only focused on factors that affect the safety of tower cranes occurring on installation and dismantling. Factors that affect the safety of tower cranes during operation on construction sites in Vietnam are a valuable direction for future research.

Acknowledgement

This research is funded by Hanoi University of Civil Engineering, Vietnam (HUCE), under grant number 14-2021/KHXD.

References

Ahmed, S. M., Kwan, J. C., Ming, F. Y. W. & Ho, D. C. P. (2000). Site safety management in Hong Kong. Journal of Management in Engineering, 16(6), pp. 34-42

- Beavers, J. E., Moore, J. R., Rinehart, R. & Schriver, W. R. (2006). Crane-related fatalities in the construction industry. Journal of Constuction Engineering and Management, 1329(9), pp. 901–910
- Butler, A. J. (1978). An investigation into crane accidents, their causes and repair costs. Building research establishment, Building Research Station, Garston, Watford, U.K

- Construction Plant Hire Association (CPA). (2011). The climbing of tower cranes CPA Best practice guide. Tower crane interest group (TCIG), London, United Kingdom
- Fair, H. W. (1998). *Crane safety on construction sites*. ASCE Manuals and Reports on Engineering Practice No. 93, ASCE, USA.
- Fang, D. P., Song, H. B. & Huang X. Y. (1999). Construction safety in China Past, present and future. Proceedings of the 2nd International Conference on Implementation of Safety and Health on Construction Site. Honolulu, HI, pp. 65-72
- Farooqui, R. U., Arif, F. & Rafeeqi, S. F. A. (2008). Safety performance in construction industry of Pakistan. Proceedings of the 1st International Conference on Construction in Developing Countries (ICCIDC-I)-Advancing and Integrating Construction Education, Research & Practice, Karachi, Pakistan, pp. 74-87
- Harper, R. S. & Koehn, E. (1997). Managing industrial construction safety in southeast Texas. Journal of Construction Engineering and Management, 124 (6), pp. 452-457
- Häkkinen, K. (1993). Crane accidents and their prevention revisited. Safety Science, 162(3-4), pp. 267-277
- Health and Safety Executive. (1978). One Hundred Fatal Accidents in Construction. Her Majesty's Stationary Office: London, England.
- Kang, S. C. & Miranda, E. (2004). Physics based model for simulating the dynamics of tower cranes. *Proceedings of The International Conference on Computing in Civil and Building Engineering (ICCCBE)*. Weimar, Germany
- Koehn, E., Kothari, R. K. & Pan, C. (1995). Safety in developing countries: professional and bureaucratic problems. *Journal of Construction Engineering and Management*, 121(3), pp. 26-65
- Li, H., Chan, G. & Skitmore, N. (2012). Multiuser virtual safety training system for tower crane dismantlement. *Journal of Computing in Civil Engineering*, 26(5), pp. 638–647
- Neitzel, R. L., Seixas, N. S. & Ren, K. K. (2001) A review of crane safety in the construction industry. *Applied Occupational Environmental Hygiene*, 16(12), 1106-1117
- Nunnally, S. W. (2000). Managing construction equipment. 2nd ed. Upper Saddle River, New Jersey, Prentice-Hall.
- Safe Work Australia, (2016). *Work related traumatic injury fatalities 2016* Retrieved from: https://www.safeworkaustralia.gov.au/doc/work-related-traumatic-injury fatalities-australia-2015 (accessed September 15, 2022)
- Safe Work Australia (2019). Cranes Safe Work Australia. Retrieved from: https://www.safeworkaustralia.gov.au/cranes (accessed September 15, 2022)
- Salihu, A. A., Aliyu, S. S. & Abubakar, M. (2020). An evaluation of safety risk factors during installation and dismantling of tower cranes in construction sites. *Nigerian Journal of Technology*, 39(4), pp. 992-1000
- Sawacha, E., Naoum, S. & Fong, D. (1999). Factors affecting performance on construction sites. *International Journal of Project Management*, 17(5), pp. 309-315
- Shapira, A. & Lyachin, B. (2009). Identification and analysis of factors affecting safety on construction sites with tower cranes, *Journal of Construction Engineering and Management*, 135(1), pp. 24-33
- Shapira, A. & Simcha, M. (2009). AHP-based weighting of factors affecting safety on construction sites with tower cranes. *Journal of Constuction Engineering and Management*, 135(4), pp. 307-318
- Shapira, A., Simcha, M. & Goldenberg, M. (2012). Integrative model for quantitative evaluation of safety on construction sites with tower cranes. *Journal of Construction Engineering and Management*, 138(11), pp. 1281-1293
- Shapiro, L. K. & Shapiro, J. P. (2004). Cranes and derricks. McGraw-Hill: New York
- Shepherd, G. W., Kahler, R. J. & Cross, J. (2000). Crane fatalities—A taxonomic analysis. *Safety Science*, 36(2), pp. 83–93
- Shin, I. J. (2015). Factors that affect safety of tower crane installation/dismantling in construction industry, Safety Science, 2, pp. 379-390
- Skinner, H., Watson, T., Dunkley, B. & Blackmore, P. (2006). Tower crane stability. CIRIA C654, CIRIA: London
- Smith, S. J. & Corley, W. G. (2009). *High risk construction oversight study*. New York City Department of Buildings, New York
- Suruda, A., Liu, D., Egger, M. & Lillquist, D. (1999). Fatal injuries in the United States construction industry involving cranes 1984–1994. *Journal of Occupational and Environmental Medicine*, 41(12), pp. 1052–1058
- Tam, V. W. Y. & Fung, I. W. H. (2011). Tower crane safety in the construction industry: A Hong Kong study. Safety Science, 49(2), pp. 208-215
- Tomakov, V. I., Tomakov, M. V., Pahomova, E. G., Semicheva, N. E. & Bredihina, N. V. (2018). A study on the causes and consequences of accidents with cranes for lifting and moving loads in industrial plants and construction sites of the russian federation. *Journal of Applied Engineering Science*, 16(1), pp. 95-98
- Vietnam Ministry of Labour-Invalids and Social Affairs (2020). Retrieved from http://antoanlaodong.gov.vn/thong_ke_du_lieu/getdata/so-lieu-thong-ke/index.html (accessed September 15, 2022)
- Yeo, K. T. & Ning, J. H. (2006). Managing uncertainty in major equipment procurement in engineering projects, *European Journal of Operational Research*, 171(1), pp. 123–134