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Abstract: Climate change elevates the rate of emergence of urban heat islands (UHIs), especially in the tropics. 

UHIs severely affect human comfort and health. Many studies have suggested that urban areas should be properly 

mitigated or planned. To cope with this, it is best to present the issue using easy-to-understand approaches to allow 

for better decision-making, especially during urban planning. Based on the information, adaptations and mitigation 

strategies can be suggested in order to reduce the impact. Hence, this research was aimed at determining the heat 

vulnerability index (HVI) of urban areas. This study was conducted in Malaysia in the Klang Valley, a tropical city 

with a complex urban morphology. Remote sensing techniques were employed to extract and derive the spatial index 

values for exposure, sensitivity, and adaptive capacity. A principal component analysis (PCA) was used to estimate 

the vulnerability as well as to generate the HVI. The most vulnerable districts were found to be Petaling (1.00), Kuala 

Lumpur (0.99), and Putrajaya (0.95). Kuala Lumpur had a level of exposure that was high (0.56), a level of sensitivity 

that was high (0.84), and capacity to adapt that was low (0.54), while Petaling had a high exposure value (0.56), very 

high sensitivity (1), and high adaptive capacity (0.72). A Pearson’s correlation (r) test also revealed that the variables 

used were highly correlated. From the preliminary findings, the vulnerability of the population to high temperatures 

in the Klang Valley can be identified to help develop adaptative plans that are targeted as a response to rapid warming 

in the future in Malaysia. 
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1. Introduction 

Climate change has a significant impact on ecosystems, and over the last 130 years there has been a continuous rise 

in global temperatures with significant implications for a wide range of climate-related factors (Nwankwoala, 2015). 

Although climate change can be caused by various factors (Isa et al., 2020), urbanisation has been identified as the driving 

factor behind this event in this era of modernisation. Urbanisation can be defined as the development of populations and 

cities, and the process refers to much more than simple population growth; rather, it involves an analysis of the related 

economic, social, and political transformations (Shuid, 2004). The population increase in urban areas is mainly due to 

job opportunities, educational factors, and economic opportunities. 

Urban heat islands (UHIs) are created as a result of the urbanisation process. UHIs can be defined as urban areas that 

experience an unduly hot climate compared to their surrounding areas (Ooi et al., 2018; Isa et al., 2018). The situation 

of a UHI arises when a particular urban area is significantly warmer than the surrounding suburban and rural areas as a 

result of the use of concrete and asphalt, which are able to retain heat and take longer to cool down, in urban sites and 

buildings (Nayak et al., 2018; Zeeshan & Ali, 2022). 

Urbanisation also involves the cutting down of trees to make way for commercial development, route designs, 

industrial sectors, and urban development (Mölders, 2011). Since the role of green areas is to reduce heat, thus, the 

surrounding temperature has a significant impact on the processes of development and urbanisation. Weather conditions 

can be influenced by even minor changes in land cover, and these can have a significant impact on the urban climate (Isa 

et al., 2021). The attributes of people (such as their health status, socio-demographics, etc.) and certain elements of their 

local communities have been linked to their susceptibility to heat (environment, community demographics). These traits, 

or "heat vulnerability factors", may have a significant impact on a person's capacity to endure heat (New York State 

Department of Health, 2018). A common approach to developing and mapping vulnerability indices is to apply the 

characterisation of vulnerability to the process. These indices serve to draw attention to vulnerable locations so that 

precise mitigation and adaptation strategies can be developed to reduce the likelihood of incident-related effects, 

including death, disease, loss of livelihood, or damage to property and infrastructure (Reid et al., 2012). 

Reid et al. (2009) created a national heat vulnerability index (HVI) to trace populations that are vulnerable to heat at 

the sub-metropolitan level via variables associated with vulnerability across the United States. The study found that the 

HVI was linked to more hospitalisations and deaths in every state, both on days that were normal and very hot. But on 

extremely hot days, the correlations between thermal illnesses, electrolyte imbalance, acute renal failure, and nephritis in 

the state of California, death due to any cause in the state of New Mexico, thermal illnesses in the state of Washington, 

and hospitalisations due to respiratory illnesses in the state of Massachusetts were clearer (interaction p-value of 0.05). 

Due to climate change, heat waves are likely to get worse, last longer, and happen more often in many parts of the 

world (Isa et al., 2018; 2020). A lot of evidence shows that heat waves and extremely hot weather lead to more deaths, 

and there is a growing amount of evidence that they lead to more illnesses (Basu 2009; Basu and Samet 2002). To help 

guide public health efforts, whether ahead of, during, or in the aftermath of such an event, an early identification of 

vulnerability to extreme heat events should be developed (Nayak et al., 2018). This situation can save many lives, and 

urban planning can be carried out in the most effective way (Niu et al., 2021). 

Rural-to-urban migrations frequently lead in environmental problems such as overpopulation, pollution, and poor 

sanitation. Unfortunately, bringing people out of poverty and into more developed countries frequently comes at the 

expense of the local ecosystem. A massive urban sprawl, if poorly designed, can increase deforestation, habitat 

degradation, and greenhouse gas (GHG) or carbon emissions. According to Lee Poh Onn, Senior Fellow of the ISEAS 

Yusof Ishak Institute, urban growth feeds commercialisation and industrialisation, which will increase the use of fossil 

fuels that will later contribute to global warming and climate change. In fact, the effects of heat waves caused by UHIs 

on the environment and health of the people are a major concern today (Kosatsky, 2005). This is because the number and 

length of extremely hot spells are getting more frequent and intense (Robin et al., 2008). 

Therefore, the intensity and frequency of bouts of extremely hot weather is forecasted to increase due to the effects 

of climate change which will, in turn, significantly affect human health (Confalonieri and Menne, 2007; IPCC, 2012), 

many large cities around the world should be concerned about the effects of UHIs in a potentially warmer world (Hien, 

2016). Heat activities, whether due to human or machine activities, contribute to the UHI phenomenon. Urban heat islands 

(UHIs) are commonly lower in the day and higher at night (Lemonsu, Viguié, Daniel, & Masson, 2015). The main factors 

with regard to adapting to extreme heat events are mostly land cover and land use. The heat retained by the concrete and 

asphalt used in urban settings and buildings in urban areas takes longer to be released, thus creating UHIs that are 

significantly hotter than the surrounding suburban and rural areas. So, during hot seasons, people who live in cities tend 

to experience higher daytime temperatures, less cooling at night, and more and longer extreme heat events (Santamouris, 

2015). 

With the increasing frequency, intensity, and period of extreme hot weather, it is no surprise that heat-related 

morbidity and mortality among vulnerable populations may rise, as human health is strongly related to the extreme heat. 

If one’s person is exposed to heat for a long period of time, it can have a detrimental effect on the body’s system, even if 

the heat is not extreme. Thus, with a higher intensity of temperature for a long period of time, the chances of an increased 

rate of mortality per area are said to be high. Many studies have examined the effects of heat waves on health as it is a 

developing concern in the realm of environmental health (Kovacs, Belusko, Pockett & Boland, 2016; Campbell, 
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Remenyi, White & Johnston, 2018; Arsad, Hod, Ahmad, Ismail, Mohamed, Baharom, Osman, Mohd Radi & Tangang, 

2022). The heat waves that occurred in previous years, like the one in Europe in 2003 that killed up to 80,000 people 

(Robin et al., 2008), and the one in Russia in 2010 that killed an estimated 54,000 people (Revich, 2011), have drawn 

attention to this problem all over Europe (Kosatsky, 2005). 

As a result, the advancement of a HVI is thought to play an important role in addressing this issue. In this study, the 

HVI in the study area could provide useful information to the government in developing a heat warning plan or for any 

related parties, such as planners, decisionmakers, and other government institutions. In some cases, interventions by the 

relevant authorities in specific areas to prevent heat-related deaths have resulted in a lower mortality rate in subsequent 

heat events (Ebi et al., 2004). The relationship between the HVI and urbanisation can also help to improve future urban 

planning. An HVI map of an urban area will provide information on different vulnerability levels in different regions of 

the urban area based on certain parameters such as exposure, sensitivity, and adaptability. Based on the HVI map, the 

populations and areas within a city that are most vulnerable to heat can be identified and analysed for further investigation. 

The benefit of this action is that it can help local governments to distribute resources to the areas that are in greatest need 

(O’Neill et al. 2009). 

This study attempted to identify the HVIs for urban areas using certain variables representing exposure (land surface 

temperature (LST)), sensitivity (population density, minority, elderly, very young, and differently-abled people), and 

adaptivity (road density, geographical elevation, and normalised difference vegetation index (NDVI)). Both remote 

sensing and geographic information system (GIS) technologies were used in this study. To cut the number of correlated 

variables into fewer uncorrelated components, a principal component analysis (PCA) was used to identify the HVI values 

in urban areas. A principal component analysis (PCA), which is usually used to search for patterns in high-dimension 

data, has been regularly used in heat vulnerability studies to create a composite index (Bai et al., 2016). 

 

2. Study Area  

This present study focused on the Klang Valley region, which encompasses the Federal Territory of Kuala Lumpur 

as well as towns and cities in the adjacent state of Selangor. This is region is also referred to as "Greater Kuala Lumpur." 

The Titiwangsa Mountains to the north and east, and the Malacca Strait to the west, form the geographical boundaries of 

the Klang Valley, which stretches northwest to Rawang, southeast to Semenyih, and southwest to Klang and Port Klang. 

Despite the fact that there are no officially designated boundaries, the Klang Valley, with an area of 8318 square 

kilometres, can be considered to encompass the Federal Territories of Kuala Lumpur and Putrajaya, as well as several 

other districts in its vicinity, namely the districts of Petaling, Klang, Gombak and Hulu Langat in Selangor.  

The valley gets its name from the Klang River, which runs through it. It starts in Port Klang and ends in Hulu Klang, 

both of which were linked to the development of the area in the late nineteenth century as a cluster of tin mining 

settlements. Most of the development occurred in the east-west direction (between Gombak and Port Klang), but the 

urban areas near Kuala Lumpur have since expanded to the south, towards the border with Negeri Sembilan, and to the 

north, towards Rawang. This study, however, only focused on eleven districts: Kuala Lumpur, Putrajaya, Gombak, Hulu 

Selangor, Hulu Langat, Petaling, Sepang, Sabak Bernam, Kuala Selangor, Klang, and Kuala Langat. Figure 1 depicts 

images of the research area in the Klang Valley, Malaysia. 

 

 
 

Fig. 1 - Study area 
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3. Materials  

The majority of the data used in this present study comprised remotely-sensed data acquired by the Thermal Infrared 

Sensor (TIRS) and the Landsat 8 Operational Land Imager (OLI), which is jointly operated by the National Aeronautics 

and Space Administration (NASA) and the United States Geological Survey (USGS). The data, dated 26 March 2016, 

consisted of eleven (11) spectral bands with spatial resolutions of 30 to 60 metres. Thermal bands 10 and 11 were bands 

that specialised in detecting the thermal condition, which was useful for providing accurate surface temperature 

extractions (Li et al., 2013).  

In this study, the most vital dataset was the statistical data. Without these data, the variables for the HVI could not 

have been calculated. The socioeconomic and demographic data for the Klang Valley area were obtained from the 

Department of Statistics Malaysia (DOSM). The DOSM is the premier government agency that serves to collect data and 

information related to the economic and social aspects of the country. The data collected involved descriptions of the 

density, age, citizenship, and physical abilities of the population. Besides the DOSM, some of the data were also obtained 

from the Ministry of Women, Family and Community Development (KPWKM) through its open-source data website.  

Table 1 - The variables, descriptions, and sources of the indices 

Index Variables Data Description Data Source 

Exposure LST LST values Landsat 8 OLI/USGS 

07.03.2016 

Sensitivity Population Density Inhabitant per hectare of 

population 

DOSM (2016) 

Minorities Inhabitant per hectare of 

non-citizen 

DOSM (2016) 

Very Young People Inhabitant per hectare below 

5 years old 

DOSM (2016)/KKLW 

Elderly People Inhabitant per hectare above 

65 years old 

DOSM (2016)/JPBD 

Differently-abled 

People 

Inhabitant per hectare of 

handicapped people 

KPWKM (2016) 

Adaptive 

Capacity 

NDVI NDVI values Landsat 8 OLI/USGS 

26.03.2016 

Geographical 

Elevation  

Means value  USGS 

Road Density km/km2 of roads per area HERE Map Data 

 

 

4. Methodology 

4.1 Extraction of Remotely Sensed Data: Top-of-Atmosphere (TOA) Temperature 

The main objective of deriving an LST from the Landsat 8 satellite imagery was to estimate continuous air 

temperature and identify suburban hot spots. Only Band 10 was used for this study due to large uncertainties and errors 

in the TIRS band 11 issued by the USGS. A mono-windowed algorithm was used to retrieve the LST from the TIRS data 

of the Landsat 8. Three steps were required to derive the LST, namely, 1) calculating the top-of-atmosphere (TOA) or 

at-sensor brightness temperature; 2) estimating the land surface emissivity (LSE); and 3) using the mono-window 

algorithm to determine the LST. 

A series of formulae were needed to calculate the LST value. The NDVI composite layer and the thermal layers of 

Landsat 8 OLI, which were in Band 10, were imported to the table of contents in the ArcMap. To determine the LST, the 

digital number data at the TOA were converted to radiance using the Landsat 8 Band 10-specific gain and bias parameters 

(USGS, 2015). The digital number was converted into radiance using Equation 1. The radiance number for Band 10 was 

filled, as provided in the metadata, by using the raster calculator function. 

 

RADIANCE_MULTI_BAND * (BAND LAYER) +RADIANCE_ADD_BAND (1) 
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 The next step was to transform the spectral radiance to temperature. The K1_CONSTANT_BAND and 

K2_CONSTANT_BAND for the thermal layer could be found in the metadata document. The value of 273.15 was used 

to convert the temperature unit from Kelvin to Celsius. The process was performed for the Band 10 thermal layer. 

Equation 2 was used for the conversion of the TOA brightness temperature, as shown below.  

𝑻 =
𝑲𝟐

𝒍𝒏 (
𝑲𝟏

𝑳𝝀
)+𝟏

  (2) 

𝑻 =
𝑲𝟐

𝒍𝒏 (
𝑲𝟏

𝑳𝝀
)+𝟏

T - TOA brightness temperature (K) 

Lλ - TOA spectral radiance (Watts/m2 * srad * µm))  

K1 - Band specific thermal conversion constant from the metadata 
(K1_CONSTANT_BAND_x, where x is the thermal band number) 

K2 -Band specific thermal conversion constant from the metadata 
(K2_CONSTANT_BAND_x, where x is the thermal band number) 

 

Satellite temperature data of the specific time when the satellite image was taken could be viewed by inserting both 

the atmosphere brightness temperature data of both the thermal layers into the cell statistics tool to obtain the output. This 

output was not used to create the LST layer. 

 

4.2 Normalised Difference Vegetation Index (NDVI) 

The NDVI parameter is often used in investigations into the LST as it is less sensitive to changes in atmospheric 

conditions compared to other parameters. Thus, it is has become the most important parameter, especially in vegetation 

monitoring. In calculating the proportion of vegetation, the NDVI value must be inserted into the equation for the Pv as 

its value is related to the NDVI. The Pv value is needed in the next calculation for emissivity. Thus, the determination of 

the NDVI is a very crucial step in the calculation of the LST as they are related to one another. The equation for the 

NDVI is shown as follows, where R is the red band (Band 4) and NIR is the near-infrared band (Band 5). 

 

NDVI = (Band 5 – Band 4) / (Band 5 + Band 4) (3) 

 

4.3 Proportion of Vegetation 

The formula in Equation 4 was used to calculate the proportion of vegetation. The NDVI for vegetation (NDVIv = 

0.5) and the NDVI for soil (NDVIs = 0.2) can be used to determine the Pv and apply it to global conditions. Although at-

surface reflectance can be used to calculate the global NDVI, the TOA reflectivity cannot be used for this purpose as 

atmospheric conditions affect the NDVIv and NDVIs. 

 

Pv = Square ((NDVI – NDVIs) / (NDVIv– NDVIs))  (4) 

 

4.4 Emissivity of the Land Surface (LSE)  

The LSE is a proportional aspect that gauges black-body radiance, which is based on Planck's law, to forecast the 

amount of radiance emitted. It is the efficiency of transporting thermal energy from the ground surface into the 

atmosphere (Sobrino, 2004). The determination of the LSE is based on the conditional Equation 5.  

𝜺𝝀  = 𝜺𝜸𝝀 𝑷𝜸 +  𝜺𝝇𝝀  (𝟏 − 𝑷𝜸) +  𝑪𝝀 (5) 

 

where, εs is the emissivity of the soil, εv is the emissivity of the vegetation, and C is the roughness of the surface. 
Rough surfaces are assigned a value that is constant; namely 0.005; while surfaces that are flat and homogenous are 
assigned 0. If NDVI < 0, it is assigned an emissivity of 0.991 and classified as water. Normalised difference vegetation 
indices (NDVIs) ranging from 0.2 and 0.5 are considered a blend of soil and vegetation cover and are used to calculate 
emissivity. However, if NDVI > 0.5, it is considered vegetation and assigned an emissivity of 0.973. 
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4.5 Land Surface Temperature (LST) 

Equation 6 was used to calculate the LST retrieval or the emissivity-corrected LST (Ts). 

 

𝑻𝝇 =
𝑩𝑻

{ 𝟏+[(𝝀𝑩𝑻/𝝆) 𝒍𝒏 𝜺𝝀]
 (6) 

 
where, Ts is the LST in Celsius (°C); λ is the emitted radiance's wavelength, where a peak response and limiting 

wavelength average (λ = 10.895) was used; BT is at-sensor BT (°C); and ε λ is the emissivity, which was calculated using 

Equation 7. 

 

𝝆 =  𝒉
𝒄

𝝈 
= 𝟏. 𝟒𝟑𝟖 𝒙 𝟏𝟎−𝟐 𝒎 𝑲 (7) 

 

where, σ is Boltzmann's constant, namely, 1.38 × 10−23 J/K; h is the Planck constant, namely, 6.626 × 10−34 J s; 

and c is the light's velocity, namely, 2.998 × 108 m/s (Weng, 2014).  

 

5. Heat Vulnerability Index (HVI) Development  

The creation of an HVI at the block group level, which would enable more spatially-tailored adaptive mitigation 

approaches, was another area of attention for this work. The general methodology by Reid et al. (2009) was used, with 

very minor alterations, to accomplish this. A PCA was done at the block group level on the variables of total population, 

age, race, income, education, language ability, household type, and land cover in order to obtain a structure that would 

lessen the complexity of the variables. To produce an extensive HVI, variables were selected to represent various heat 

vulnerabilities and statistical components, and the spatial analysis technique was utilised. 

By integrating the GIS and remote sensing data comprised of satellite imagery of Landsat 8 OLI, the HVI for each 

district in the Klang Valley was developed using the suitable method. The three-dimensional patterns of vulnerability to 

heat were charted across the urban areas according to the districts located all around the Klang Valley, including Kuala 

Lumpur, Petaling, Putrajaya, Gombak, Hulu Selangor, Hulu Langat, Sabak Bernam, Kuala Selangor, Sepang, Kuala 

Langat, and Klang. Different types of data to represent the variables of each category of exposure, sensitivity and adaptive 

capacity were processed and analysed by using a statistical method. The data obtained were limited to the year 2016 only 

due to the lack of available data, especially at the district level, as most of the data were at the state level. Then, the 

remote-sense-based indices were combined with the statistical data in order to calculate the indices. The unit of data for 

sensitivity was uniformly transformed into unit per surface, where this study used unit per hectare. 

In order to acquire more accurate indices, most extant studies on vulnerability indices (VIs) used a plethora of 

multiple combinations of sensitivity, exposure, and adaptive capacity (Inostroza et al., 2016). A model was created by 

compiling a number of factors, that combine the risks of sensitivity and exposure, while also taking into account the 

capacity for adaptation. This present study viewed VIs as a function of capability to adapt (A); which were respectively 

stated as sensitivity (S) and exposure (E); and impact components (I). The individual indices derived from the distinct 

measurements of adaptive capacity, sensitivity, and exposure were combined to identify the vulnerability variations of 

the model. The use of this technique, as opposed to the accumulation of vulnerability quantifications, can provide decision 

makers with additional information. As a direct consequence of this, the HVI value, denoted by the letter V, was 

determined by employing a summary model that characterised this equation: 

V = ƒ (I, A) (8) 

I = (E, S) (9) 

Or 

Vj = Ej + Sj – Aj (10) 

 

where, Ej is the level of exposure at the j census tract, Sj is the level of sensitivity of the census tract, and A is the 

capacity to adapt of the j census tract. 

 

5.1 Variables of Exposure  

The LST, which is a measurement of heat exposure, was calculated from the thermal LSE of the Klang Valley 

captured through remote sensing images. It was determined using standard methods and a Landsat 8 thermal band image. 

The pictures were cropped to solely depict the research zone. ArcGIS 10.6 software was used to calculate the average 

LST of each district using the statistics of each zone. The estimated exposure of each census tract was determined using 
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the LST based on pixels. For 2016, the exposure level of each census tract was estimated as its mean LST and the addition 

of one standard deviation (SD) in temperature. This calculation corresponded to a conservative estimate of exposure. 

 

5.2 Variables of Sensitivity  

 Five variables; namely, 1) minority populations, 2), differently-abled populations 3) very young populations, 4) 

elderly populations, and 5) population density; were selected from the census database to determine the sensitivity. The 

population density was defined as the overall number of individuals of age in every household. The minority population 

was non-Malaysian citizens from other countries; such as Bangladesh, Pakistan, Thailand or Cambodia; living in the 

Klang Valley. The very young population was the total number of individuals below the age of 5 while the elderly 

population was senior citizens aged 65 and above. 

 Table 2 displays the data sources and descriptions. The relative spatial density variable was calculated by adding 

the overall instances of every category then dividing it by each census tract's net built-up area. The census tract and 

population data from 2016 were obtained from the DOSM as the most recent census; i.e., 2019; was not available at the 

time of writing. 

 

5.3 Variables of Adaptive Capacity  

Three variables were used to calculate the adaptive capacity: 1) the NDVI, 2) geographical elevation, and 3) roads 

(Table 2). The NDVI directly measured the extent and composition of the vegetative cover. Every census tract's average 

NDVI plus one SD was used to estimate higher values. The NDVI values were calculated from the Landsat 8 satellite 

images (Table 2) using ArcGIS software. Then, the geographical elevation was derived from the Shuttle Radar 

Topography Mission (SRTM) images that were downloaded from the USGS website. The variable of the road was 

calculated as the density of paved roads located in every square kilometre in a census tract. ArcGIS 10.6 was used to 

determine all the spatial statistics. 

 

5.4 Bias Controls 

 To avoid bias caused by low or high levels of variance in the variables, the data was pre-processed using centring 

and scaling to guarantee that the potential of the PCA was at its maximum. The main reason for performing these 

procedures was to ensure that all the variables contributed equally to the vulnerability model so as to have equal weighting 

in the data analysis. Only the scaling and centring procedures were used for the sensitivity data because the variables 

shared the same unit (n/hectares). The mean centre was calculated by computing every variable's average value and 

subtracting it from the data. Unit variance scaling was achieved by multiplying the variables by the inverse of their SD. 

To standardise the variables of adaptive capacity, which were calculated in diverse units, the average was subtracted, and 

the result divided by the SD. 

 

5.5 Selection of Indicators 

To determine which district would be impacted the most by possible developments, an evaluation of the existing 

situation was required. An HVI for the human population was designed and customised based on the circumstances and 

situation so as to identify the vulnerability status in the Klang Valley district. Firstly, the decision to pick a broad or 

narrow selection of indicators depended heavily on the best available data and representative indicators from Malaysia 

based on previous literature and studies. Part of the indicator selection involved choosing variables to represent these 

vulnerability indicators (Tate, 2012). Data accessibility, validity, the intended number of indicators, and statistical 

properties all influence the choice of representative variables. Vulnerability cannot be measured by a single established 

collection of indicators. Thus, the decision of which factors to include is left to the researcher, and there is no validation 

as to whether ta specific indicator should be used to determine the HVI. The use of different kinds of variables from 

different researchers might produce different results, which can be compared to see the difference between them. 

A PCA is used in an inductive method to condense a large number of variables into a small number of uncorrelated 

factors (Jolliffe & Cadima, 2016). This method includes the process of variable reduction and selection, rather than having 

researchers choose the variables on their own, thus, making it a more objective than a deductive method (Praene, Damour, 

Radanielina, Fontaine, & Reviere, 2019). However, it is crucial to note that this logic condenses a large number of 

variables into fewer ones based on the spatial variation they account for. A few factors with various spatial patterns are 

produced as a consequence of combining variables with comparable spatial patterns into one factor. 

A PCA was used to prevent co-linearity and reduce variable complexity by decreasing the number of principal 

components (PCs), that cause most of the variations in the detected variables, in the original variables set. The variance-

weighted method was used to assign weights to the variables by summing the explained variances of each component to 

generate a collective PC score (z-score) (Schmidtlein et al., 2008). Eigenvalues associated with the vector for each PC 

indicated the significance ranking of the PCs, depending on how much data variability they captured (Thurstone, 1947). 

Kaiser's recommendations and the Pearson correlation (r) matrix were used to ensure that the remaining factors solely 

contained those with PCs that had eigenvalues > 1.0. The eigenvectors were orthogonally rotated using Varimax rotation 
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to optimise the clarifications that this present study obtained and maximise loading distributions across the PCs to produce 

a collection of factors that were interpretable and depict its straightforward construction (Thurstone, 1947). The matrix 

of the z-score depicts a fresh set of unrelated variables that mathematics can further manipulate. 

The PCs obtained for adaptive capacity and sensitivity were translated into a z-score vector while maintaining the 

structure of the initial data, with 0 in the vector's middle, and preserving z-scores' signs and weights. The z-scores were 

calculated for each of the eleven districts, ensuring that each of them contained n PC scores, to determine the n retaining 

PCs. Typically, a vulnerability index is derived from multiple sets of indicators in order to conduct a quantitative 

evaluation of the susceptibility of a system. A customised vulnerability index was created by compiling data from 

numerous sources. A multivariate index was utilised to make comparisons between the different regions. This research 

analysed three factors that were particularly relevant to this study, and as a result, this study was aimed at investigating 

the following topics:   

a) exposure to the environment pertains to the magnitude and rate of change in climatic variables, such as 

temperature, which are known to affect the human population. This can be thought of as the vulnerability of the 

human population to the environment. 

b) sensitivity to its effects – the extent to which a community is affected by climate variability or change.  

c) adaptive capacity to survive with the effects – a measure of the resources and capabilities of a society to counteract 

the adverse consequences of change in the environment or capitalise on potential benefits. 

 

5.6 Indicator Normalisation 

Equation 11 was used to normalise the partial results of the sensitivity, exposure, and adaptive capacity to a 0 to 1 

scale.  

β= [(x-x_min)/(x_max-x_min )] (11) 

 

where, β is the normalised value, χ is the original value, and χmin and χmax are the minimal and maximum values 

of the dataset, respectively. Using equal intervals, the normalised values were divided into five categories to illustrate the 

three-dimensional dispersals at the level of the census tract. After normalising the incomplete scores, the equation in 

Section 5.0 was used to calculate the partial vulnerability value, which was then normalised to obtain the final HVI. 

 

5.7 Statistical Test on Vulnerability Indices 

The final step was to subject the vulnerability indices to a statistical test. Pearson’s r method was used to test the 

vulnerability indices as to whether all the variables were significant to each other. Pearson’s r is a statistical formula that 

measures the strength between variables and relationships. A value of 1 denotes a strong positive association, -1 a strong 

negative relationship, and 0, no relationship. Every positive rise in one variable causes a fixed proportional increase in 

the other. A correlation coefficient of -1 means that for every positive increase in one variable, there is a negative 

reduction in the others, and zero means there is no positive or negative association for every increase. The Pearson’s r is 

depicted in Equation 12. 

r=(n (Σxy) - (Σx) (Σy))/√([nΣx² -(Σx)²] [nΣy² -(Σy)²)  (12) 

where ∑xy is the total value of variable. 

 

6. Result and Analysis 

6.1 Exposure 

The temperature data were derived by calculating the LST using the Landsat 8 OLI satellite imagery. The mean 

temperature for each district was derived and plotted as a linear graph (Temperature vs District). Figure 2 shows the trend 

of the average LST for each district in the Klang Valley. The graph shows the predicted surface temperatures for the 

Klang Valley area during March 2016. The highest LST value was found in Kuala Lumpur (32.97ºC), where its vegetation 

cover levels were lower based on the NDVI value for that area. Petaling had the second highest LST value (32.48ºC), 

followed by Putrajaya (30.45ºC), Klang (30.15ºC), Kuala Langat (29.65ºC), Sepang (29.57ºC), Kuala Selangor (29.23ºC), 

Gombak (28.87ºC), Hulu Langat (28.62ºC), Sabak Bernam (28.51ºC), and Hulu Selangor (27.57ºC).  
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Fig. 2 - Linear graph of the LST of every district 

 

Most of the areas in north-eastern Klang Valley; such as Hulu Selangor and Gombak; had the lowest LSTs. This 

could be because these areas have low building densities and high vegetated areas or vegetation cover. After all, cooling 

is prevalent is areas that are large and open. Cooling islands have also been found to correlate with larger quantities of 

vegetation as well as consolidated green parks, infrastructure, and general areas (Mansor & Harun, 2014). Figure 3 shows 

the average surface temperature map for the Klang Valley. 

 

 

Fig. 3 - Average LST map of the Klang Valley 

 

The average exposure value was 0.48, which is considered moderate on a five-point gauge, while the SD was 0.06. 

The level of exposure across the Klang Valley, according to their respective exposure values, is shown in Table 2 and 

Figure 4. Petaling, Kuala Lumpur, and Sabak Bernam had the highest exposure values.  
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Table 2 - Level of exposure in the Klang Valley 

District Area (Sq Km) Mean Temperature (Celsius) Exposure Value 

Hulu Langat 841 28.62 0.4037 

Petaling 499 32.48 0.5626 

Kuala Selangor 1195 29.23 0.4037 

Sepang 558 29.57 0.5023 

Kuala Langat 859 29.65 0.3708 

Klang 633 30.15 0.4881 

Gombak 629 28.87 0.5376 

Hulu Selangor 1758 27.57 0.5045 

Sabak Bernam 993 28.51 0.5516 

Kuala Lumpur 241 32.97 0.5571 

Putrajaya 44 30.45 0.4470 

 

6.2 Sensitivity 

6.2.1 Population Density 

Table 3 presents the demographic breakdown of the residents in each district along with an evaluation of the level 

of sensitivity of that district. The DOSM estimated that there were 8.2234 million people living in the Klang Valley 

region as at 2015. Putrajaya recorded the lowest population of any district in the Klang Valley with only 88,000 people, 

while Petaling recorded the highest population of any district in the Klang Valley at 2.085 million people. Putrajaya 

encompassed the smallest area of any district in Malaysia, at only 4900 hectares, compared to Hulu Selangor's total area 

of 1740,000 hectares, making it the biggest district in terms of size. The population density, on the other hand, indicated 

an entirely different scenario than the distribution of population. Putrajaya came in at number three in terms of population 

density, with 17,959 individuals packed into each hectare. 

Among the most densely populated districts were Kuala Lumpur (75.984 people/hectare) and Petaling (43.069 

people/hectare). This was followed by Putrajaya (17.959 people/hectare), Klang (15.819 people/hectare), Hulu Langat 

(15.767 people/hectare), Sepang (12.500 people/hectare), Gombak (12.097 people/hectare), Kuala Langat (3.036 

people/hectare), Kuala Selangor (2.025 people/hectare), Hulu Selangor (1.317 people/hectare), and Sabak Bernam, which 

had the lowest population density (1.220 people/hectare). 

Table 3 - Population density of the Klang Valley 

District 
Area 

(Hectare) 

Population 

(2016) 
Population Density (per hectare) 

Hulu Langat 84000 1324400 15.767 

Petaling 48432 2085900 43.069 

Kuala Selangor 119500 242000 2.025 

Sepang 19808 247600 12.500 

Kuala Langat 85800 260500 3.036 

Klang 62678 991500 15.819 

Gombak 65008 786400 12.097 

Hulu Selangor 174000 229100 1.317 

Sabak Bernam 99710 121600 1.220 

Kuala Lumpur 24300 1846400 75.984 

Putrajaya 4900 88000 17.959 

 

6.2.2 Minority 

The data on the minority variable was based on the non-citizen population for the Klang Valley. The ethnicity of the 

population can be different from the existing ethnic groups in Malaysia. This group of people usually come to Malaysia 

from other countries such as Indonesia, Bangladesh, and Cambodia to work in this country or for other purposes.  For 

some reason, the difference in ethnicity adds to the social vulnerability through the lack of resources, quality of housing, 

cultural differences, and social, economic and political marginalisation (Cutter et al., 2003).  

The most prominent problem with regard to people of different ethnicities is that they are not fluent in the local 

language and are unable to understand it. They are often misunderstood or are completely clueless about the instructions 
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that are given with regard to the use of household appliances, including electric fans or air-conditioners. They may also 

find it difficult to comprehend official data sheets and guidelines about how to respond to heat, which makes them more 

vulnerable. All the researches that discovered a substantial link between ethnicity and the effects of heat on health were 

carried out in the US. This was consistent with the findings of the study by Hansen et al. (2013), which found that among 

the many factors influencing the sensitivity of minority ethnic groups are economic and social inequalities, language 

obstacles, and living situations. However, there is a knowledge deficit about these sociocultural variations and how they 

affect susceptibility in various countries. 

 Table 4 shows the total minority population in the Klang Valley using statistical data provided by the DOSM 2016.  

Kuala Selangor (242 thousand) and Kuala Lumpur (223.5 thousand) had the highest minority population in the Klang 

Valley. This was because both areas were the main centres for career opportunities. Kuala Lumpur is now called Greater 

Kuala Lumpur by the DBKL Mayor, and it seems all the opportunities for career development and growth are in this 

area.  

Table 4 - Minority populations in the Klang Valley 

District Area (Hectare) 
Minority Population 

(2016) 

Minority  

(Per Hectare) 

Hulu Langat 84000 128900 1.535 

Petaling 48432 222500 4.594 

Kuala Selangor 119500 242000 0.126 

Sepang 19808 30400 1.535 

Kuala Langat 85800 16400 0.191 

Klang 62678 112700 1.798 

Gombak 65008 75600 1.163 

Hulu Selangor 174000 12500 0.072 

Sabak Bernam 99710 4000 0.040 

Kuala Lumpur 24300 223500 9.198 

Putrajaya 4900 2800 0.571 

 

6.2.3 Very Young People 

The very young population consisted of people aged 5 years and below in the Klang Valley. In the Dutch and 

worldwide literature, it has been discovered that the demographic categories of the elderly, the very young, and those 

with pre-existing health impairments are disproportionately susceptible to temperature variations (Huynen et al., 2001). 

Babies are at risk because they still lack the capacity to control their body temperature and are dependent on their carer. 

Parents may overdress their young children or fail to give them enough shade. 

The age distribution is a crucial characteristic for understanding population trends. Table 5 shows the age distribution 

of the extremely youthful population in the Klang Valley. The DOSM has divided the whole population into sixteen 

categories separated by five years. Those under 15 years of age are classified as children, those aged 15 to 64 years as 

working adults, and those older than 65 years as the elderly. Sabak Bernam had the smallest population of very young 

individuals among the states, at 51424 people, while Petaling had the greatest population (195861), followed by Hulu 

Langat (1262698).  

Table 5 - Very young populations in the Klang Valley 

District 
Area 

(Hectare) 
Very Young population (2016) Very Young Population (per hectare) 

Hulu Langat 84000 1262698 15.032 

Petaling 48432 1958611 40.440 

Kuala Selangor 119500 227708 1.906 

Sepang 19808 230035 11.613 

Kuala Langat 85800 244301 2.847 

Klang 62678 934262 14.906 

Gombak 65008 189520 2.915 

Hulu Selangor 174000 215650 1.239 

Sabak Bernam 99710 51424 0.516 
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Kuala Lumpur 24300 136184 5.604 

Putrajaya 4900 75838 15.477 

 

6.2.4 Elderly Population 

Age was included in thirty-three researches in the meta-analysis by Romero-Lankao et al. (2012), while twenty-three 

studies have concluded that the elderly are the most vulnerable demographic. A reduced ability to control body 

temperature, detect thirst, function of the kidneys, produce perspiration, and maintain heart and lung reserves are all 

symptoms of ageing (RIVM, 2015). Therefore, the elderly are more vulnerable to heat as these bodily functions have 

higher at their age. Table 6 presents the elderly population by district in the Klang Valley, where Putrajaya had the lowest 

population of elderly people (1031) amongst the states. The population was the highest for Kuala Lumpur (134703), 

followed by Petaling (120322). 

Table 6 - Elderly populations in the Klang Valley 

District 
Area 

(Hectare) 

Elderly Population 

(2016) 

Elder Population 

 (per hectare) 

Hulu Langat 84000 69878 0.832 

Petaling 48432 120322 2.484 

Kuala Selangor 119500 16216 0.136 

Sepang 19808 9484 0.479 

Kuala Langat 85800 17214 0.201 

Klang 62678 56181 0.896 

Gombak 65008 46911 0.722 

Hulu Selangor 174000 13705 0.079 

Sabak Bernam 99710 5055 0.051 

Kuala Lumpur 24300 134703 5.543 

Putrajaya 4900 1031 0.210 

 

6.2.5 Differently-abled People 

The data on differently-abled people were based on the number of handicapped persons or people with a pre-existing 

medical condition per hectare in the Klang Valley district. The latter are more sensitive to heat because of their prescribed 

medication, limited mobility, and limited awareness of hot environments. There is also a high degree of agreement in the 

literature that people with pre-existing health impairments are sensitive to heat. 

The differently-abled population in the Klang Valley area is shown in Table 7, where it can be seen that Kuala 

Lumpur had the highest population of differently-abled people (955), followed by Klang (302), and Gombak (203). 

Meanwhile, Putrajaya had the lowest differently-abled population in the Klang Valley, where the data from DOSM 

showed no record of any differently-abled person. This might have been due to the failure of households to register the 

status of their differently-abled family members with any related authority. Another assumption was that there was no 

differently-abled people in Putrajaya as most of the population was comprised mainly of government servants. 

Table 7 - Differently-abled populations in Klang Valley 

District 
Area 

(Hectare) 

Differently-abled Population  

(2016) 

Differently-abled Population  

 (per hectare) 

Hulu Langat 84000 197 0.002 

Petaling 48432 152 0.003 

Kuala Selangor 119500 67 0.001 

Sepang 19808 36 0.002 

Kuala Langat 85800 75 0.001 

Klang 62678 302 0.004 

Gombak 65008 203 0.003 

Hulu Selangor 174000 69 0.000 

Sabak Bernam 99710 36 0.000 
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Kuala Lumpur 24300 955 0.039 

Putrajaya 4900 0 0.000 

 

6.3 Statistical Analysis of Variables for Sensitivity 

According to the Bartlett's test of sphericity shown in Table 8, the level of significance was much lower than the 

0.05 cut-off value for alpha. As such, the null hypothesis was rejected as a minimum of one of the intervariable 

associations differed significantly from 0.  

Table 8 - Kaiser-Meyer-Olkin (KMO) and Bartlett's Test of Sphericity 

Sampling Adequacy Measured using KMO 0.655 

Bartlett's Test 

Approx. Chi-Square 103.401 

Df 10 

Sig. 0.000 

 

As seen in Table 9, PCs 1 and 2 were retained based on their eigenvalues. More specifically, PC1 had an extremely 

high eigenvalue of 3.919 that accounted for 78.4% of the overall variations while that of PC2 was 1.057, which accounted 

for 21.1% of the overall variations. These two components captured most of the data, as they were able to explain 99.5% 

of the overall variance in the data.  

Table 9 - Overall variations explained for sensitivity 

PC Original Eigenvalue Extracted Total of Loadings Squared 

Total Var (%) Cum (%) Total Var (%) Cum (%) 

1 3.919 78.379 78.379 3.919 78.379 78.257 

2 1.057 21.140 99.518 1.057 21.140 99.440 

3 0.015 0.290 99.809    

4 0.007 0.144 99.952    

5 0.002 0.048 100.000    

 

Table 10 shows the construction of the PCs. PC1 was dominated by the following variables: population density 

(0.948), minority (0.995), elderly (0.985), and differently-abled individuals (0.982). PC1 could therefore be understood 

as "social isolation." When combined, these elements generated a weak social network comprised primarily of persons 

who had difficulty seeking assistance in time of need. Only the extremely young population (0.994) was the major 

variable in PC2, which might be taken as "dependence." Dependency refers to individuals who rely on others owing to 

age (children) or social circumstances. The average normalised sensitivity was 0.29 (low on the five-point gauge), while 

the SD was 0.22. 

Table 10 - Rotated component matrix for sensitivity 

 Component 

1 2 

PopDens 0.948 0.303 

Very Young 0.108 0.994 

Minority 0.972 0.224 

Elderly 0.985 0.158 

Differently-abled 0.982 -0.177 

 

This research provided a quantitative assessment of the sensitivity values for the eleven districts located within the 

Klang Valley based on the heat sensitivity indicators. These regions were broken up into divisions ranging from extremely 

poor to extremely wealthy regions. The use of natural breaks, also known as Jenks, is a classification technique that 

emphasises the similarities and differences between groups. This was to ensure that the differences between 

neighbourhoods that made adjacent classes; such as between high and very high; were also relatively high. The average 

sensitivity was 0.29, which is low based on the five-point scale, and a SD of 0.33. The map in Figure 4 shows the 

sensitivity across the Klang Valley, according to their respective exposure values, as shown in Table 11. 
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Table 11 - Sensitivity values in the Klang Valley 

District Area (Hectare) Sensitivity Value 

Hulu Langat 84000 0.3532 

Petaling 48432 1.0000 

Kuala Selangor 119500 0.0303 

Sepang 19808 0.2722 

Kuala Langat 85800 0.0534 

Klang 62678 0.2787 

Gombak 65008 0.1355 

Hulu Selangor 174000 0.0134 

Sabak Bernam 99710 0.0000 

Kuala Lumpur 24300 0.8195 

Putrajaya 4900 0.3253 

  

Two areas, namely, Kuala Lumpur and Petaling, were ranked with a very high index of sensitivity. These two areas 

also had a relatively very high exposure value compared to the other areas. 

 

6.4 Adaptivity  

The geophysical infrastructure of this investigation was comprised of the road density, NDVI, and geographical 

elevation. Table 13 displays the geophysical infrastructure data that were gathered from multiple agencies and processed. 

The average elevation of each state above the mean sea level was acquired using the SRTM data, which can be 

downloaded from the USGS website. According to the data, the Hulu Selangor district is located 302.9 metres above the 

mean sea-level. Hulu Selangor is located close to the geographically demarcated Titiwangsa Mountains, known as the 

Main Range (Banjaran Besar), to the north, which is the major mountain range that forms the backbone of Peninsular 

Malaysia. In contrast, Klang, located just 8.3 metres above the mean sea-level, is the lowest among all the districts. 

The road density factor was generated using the data on roads provided by HERE’s maps. The road density is defined 

as the road length over the total area of a state. According to Table 12, Putrajaya had the densest road network in contrast 

to the size of Putrajaya itself. Putrajaya is the main centre of organisation for Malaysian government departments. Sepang 

had the second densest road network, probably due to the location of Putrajaya in the Sepang area. Moreover, the rapid 

expansion of freeways and expressways have led to a rise in the total length of roadways. In contrast, the road networks 

in Hulu Selangor were the least crowded. The third factor was the NDVI. The purpose of the NDVI was to determine the 

vegetation distribution index of the area. It was also an easier way to differentiate between land and water. Hulu Selangor 

had the highest mean NDVI value of 0.416834, while Kuala Lumpur had the lowest NDVI value of 0.217223. Due to the 

geographical structure of Hulu Selangor, it was clear that there were fewer land use activities there and that its population 

density was the lowest among the districts. 

In accordance with Kaiser's recommendations, only PC1 (eigenvalue = 1.748, overall variations explained = 58.3%) 

and PC2 (variance = 1.001, overall variations explained = 33.4%) were maintained a they both preserved most of the 

structure of the data and accounted for 91.7% of the overall variations. As the other three PCs did not meet Kaiser's 

criteria, they were not analysed any further. Table 13 shows the total variance explained by the PCs. Following the 

Varimax rotation in Table 14, the eigenvectors of the geographical elevation (0.94) alone had very high scores in PC1. 

The NDVI also was the only relevant variable in PC2. The road density variable of (-0.85) and (-0.38) presented lower 

loads in the first and second PCs, respectively. Thus, the road density variable could not be used to define the class of the 

factor. 

Table 12 - Data adaptive capacity derived from various sources 

District Area (SQ_KM) Geographical  

Elevation¹ 

Road Density  

(km/km²) ² 

Mean NDVI³ 

Hulu Langat 845 225.149 0.4130 0.345376 

Petaling 506 42.139 0.8735 0.237051 

Kuala Selangor 1205 15.833 0.6689 0.41395 

Sepang 559 25.715 1.0429 0.347053 

Kuala Langat 861 11.112 0.6423 0.3735 
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District Area (SQ_KM) Geographical  

Elevation¹ 

Road Density  

(km/km²) ² 

Mean NDVI³ 

Klang 644 8.332 0.7112 0.288294 

Gombak 632 220.201 0.5237 0.35468 

Hulu Selangor 1761 302.914 0.3021 0.42 

Sabak Bernam 1032 11.191 0.8130 0.39 

Kuala Lumpur 229 64.556 0.7598 0.217223 

Putrajaya 44 45.921 1.4091 0.25 

Sources: ¹ SRTM data downloaded from USGS; ² HERE 2010 map data; ³ Landsat 8 OLI downloaded from USGS 

calculation. 

 

Table 13 - Overall variations explained 

PC Original Eigenvalues Extracted Total of Loadings Squared Rotation Total of Loadings 

Squared 

Total Var (%) Cum 
(%) 

Total Var (%) Cum (%) Total Var (%) Cum (%) 

1 1.748 58.277 58.277 1.748 58.277 58.277 1.624 54.133 54.133 

2 1.001 33.358 91.635 1.001 33.358 91.635 1.125 37.502 91.635 

3 .251 8.365 100.000       

 

Table 14 - Component matrix for adaptivity 

 Component 

1 2 

NDVI 0.063 0.983 

Road_Dens -0.854 -0.382 

Geo_Elev 0.944 -0.116 

 

The average adaptivity was 0.68, which is moderate based on the five-point gauge, and a SD of 0.25. The map in 

Figure 4 shows the adaptivity across the Klang Valley according to their respective adaptivity values, as shown in Table 

15. 

 

Table 15 - Adaptivity values in the Klang Valley 

District Area (Sq Km) Adaptivity Value 

Hulu Langat 841 0.9591 

Petaling 499 
0.7230 

Kuala Selangor 1195 0.7245 

Sepang 558 0.6779 

Kuala Langat 859 0.9010 

Klang 633 0.5147 

Gombak 629 0.9807 

Hulu Selangor 1758 1.0000 

Sabak Bernam 993 0.4891 

Kuala Lumpur 241 0.5381 

Putrajaya 44 0.0000 
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Exposure Sensitivity 

  
Adaptivity 

 
 

Fig. 4 - Exposure, sensitivity and adaptivity of the study area 
 

6.5 Heat Vulnerability Index (HVI) of the Klang Valley  

Iyengar and Sudarshan (1982) developed a technique for constructing a composite HVI from multivariate data, which 

was used to rank the districts based on their economic performance. This approach is statistically and appropriately suited 

for the creation of a composite HVI (Hiremath & Shiyani, 2013). Several recent scholarly works have embraced this 
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technique (Chakraborty et al., 2019); Hiremath & Shiyani, 2013). The vulnerability index values range between 0 and 1, 

with a value of 1 indicating that the HVI for the population in that area is very high, and 0 indicating that the HVI for the 

population in that area is very low.   

The average value of the normalised HVI was 0.45, which is considered moderate, with a SD of 0.39. Out of all the 

eleven areas that were examined, three had high HVI that exceeded 0.6 and two had very high HVI. Kuala Lumpur, 

which also presented a high level of exposure (0.56), had a very high level of sensitivity (0.84) and a low level of adaptive 

capacity (0.54). Meanwhile, Petaling had a high level of exposure (0.56) with very high level of sensitivity, and a high 

level of adaptive capacity (0.72). The ranking of each district according to the HVI is presented in Table 16 and Figure 

5. Kuala Lumpur and Petaling were the most vulnerable districts in the Klang Valley with HVI scores of 0.99 and 1.0, 

respectively, out of 1.0. This was followed by Putrajaya (0.95), Klang (0.56), Sepang (0.44), Sabak Bernam (0.41), Hulu 

Langat (0.29), Kuala Selangor (0.14), Gombak (0.13), Hulu Selangor (0.00), and Kuala Langat (0.00). 

 

Table 16 - HVI ranks in the Klang Valley 

District HVI Ranking 

Hulu Langat 0.29 7 

Petaling 1.00 1 

Kuala Selangor 0.14 8 

Sepang 0.44 5 

Kuala Langat 0.00 10.5 

Klang 0.56 4 

Gombak 0.13 9 

Hulu Selangor 0.00 10.5 

Sabak Bernam 0.41 6 

Kuala Lumpur 0.99 2 

Putrajaya 0.95 3 

 

 
Fig. 5 - HVI map of the Klang Valley 
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The purpose of developing a vulnerability index from the composite index is to perform a vulnerability assessment. 

These may be due to the variables of the natural environment, infrastructure, people, society, economy, and adaptive 

capacity that interact with heat or climate change at the same time. Consequently, it can be adequately reflected by a 

collection of composite indices. The degree to which each state is vulnerable to climate change is determined using the 

composite indices, where each state is categorised using the newly-created index based on substantial multivariate data. 

Vulnerability due to climate change can be very subjective. 

The components chosen specifically for this study were climate, natural catastrophes, infrastructure, human, social, 

economic, and environmental vulnerability. Each component was made up of various sub-indicators. 

 

6.6 Statistical Test of the Developed Indices  

The components of the HVI were statistically tested by analysing the Pearson’s r, and the results of the analysis are 

shown in Table 17. Not all the variables were significant to each other and had a strong relationship. The Pearson’s r was 

more naturally and easily interpreted. It measured the extent to which the components were in agreement with the heat. 

 

Table 17 - Pearson’s r of the variables 

 LST Population 

Density 

Elderl

y 

Very 

young 

Minority Differe

ntly-

abled 

NDVI Road 

Density 

(km/km²)² 

Geographical 

Elevation 

LST 1.0000         

Population 

Density 

0.4789 1.0000        

Elderly 0.4836 0.9733 1.0000       

Very young 0.2220 0.4116 0.2627 1.0000      

Minority 0.5037 0.9815 0.9950 0.3272 1.0000     

Differently-

abled 

0.3858 0.8705 0.9349 0.0687 0.9130 1.0000    

NDVI 0.1548 0.1882 0.1028 0.0693 0.0883 0.2118 1.0000   

Road Density 

(km/km²)² 

0.0963 0.2118 0.0386 0.3466 0.0889 0.0060 0.3674 1.0000  

Geographical 

Elevation 

0.0624 0.1284 0.0924 0.1831 0.1175 0.0741 0.0009 0.6524 1.0000 

 

A suitable technique and software were required to obtain the HVI for the Klang Valley. The data from the DOSM 

and Landsat 8 OLI were used in this research in order to obtain the HVI for all the eleven areas in the Klang Valley. A 

central goal of this work was to provide a better understanding of the spatial and substantive relationships between 

temperature and vulnerability across the urban areas. The Klang Valley has been categorised as a developed region in 

Malaysia. From the findings, it was concluded that the three districts that were most vulnerable in terms of their HVI 

were Kuala Lumpur, Petaling and Putrajaya. This pattern showed that the populations with a high HVI were usually 

located in the high-density urban regions, which were characterised by warmer conditions compared to other areas. The 

districts in urban regions with a low HVI were always characterised by cooler temperatures and a higher vegetation rate. 

Nine indicator variables were used in this research to justify the indices, namely, the LST, population density, elderly 

people, very young population, minority, differently-abled people, NDVI, geographical elevation, and road density. From 

these nine indicator variables, only two PCs were retained for sensitivity. The first PC consisted of the population density, 

elderly, minority and differently-abled people. These could be described as a social isolation factor. For the second PC, 

only the very young population was grouped under the dependency factor. Two PCs were also retained for the adaptive 

capacity parameter, but road density was not categorised in any of those factors. 

In order to develop the HVI, 9 variables were weighted using the PCA, where the sum of the score factors generated 

was used to calculate the HVI. These variables were obtained from the USGS website relating to the Landsat 8 OLI 

imagery of the Klang Valley dated 26 March 2016, statistical data from the DOSM, and road density information from 

the HERE’s data. For this study, the main parameters in the HVI were exposure, sensitivity, and adaptive capacity. These 

three parameters would be related to each other in order to obtain the HVI value. There was a specific indicator variable 

for each parameter, where the exposure indicator was used for the environmental capacity analysis, the sensitivity 

parameter indicator was used for the sociodemographic and socioeconomic terms, while the adaptive capacity parameter 

was used for the human activity and adaptation facilities in their life activities. So, these were important knowledge and 

concepts that were necessary to conduct the HVI analysis. 
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All the nine variables were obtained and classed into the exposure, sensitivity, and adaptivity capacity categories. 

They were then centred and scaled during pre-processing to ensure that the potential of the PCA was at its maximum. A 

PCA was then used to assign weights to the variables, more specifically, the variance weighted method. From the PCA, 

the 5 variables representing sensitivity were reduced to 2 factors, while for adaptivity, 3 variables were reduced to 2 

factors as well. The sum of the score factors for both sensitivity and adaptivity was normalised using Equation 9, and 

was further used to calculate the HVI. The average of the LST plus one SD was used for the exposure value. 

 

7.  Conclusion and Recommendations 

The purpose of this present study was to identify the HVI for urban areas in Malaysia. Through this finding, an 

investigation of the HVI for people living in urban areas can be carried out so as to finally identify the most vulnerable 

districts. The target area of this study was the Klang Valley, as it can be categorised as an urban area based on the 

continuous economic development that goes on there, which is an indication of the urbanisation process. The HVIs for 

the Klang Valley were developed and mapped to give a clearer image of the levels of vulnerability between the districts 

spatially. From the HVI map, it could be seen that the most vulnerable district in the Klang Valley was Petaling, followed 

by Kuala Lumpur and Putrajaya. These three districts can be said to be the busiest developed areas among all the other 

districts in the Klang Valley, in terms of commercialisation and industrialisation, which attract people mostly for job 

opportunities and for better settlement. Thus, it can be concluded that with the aid of the GIS and remote sensing data, 

the HVIs of urban areas can be developed, and these can be a source of information to combat the effects of UHIs. 

The following recommendations are given for better understanding and as an aid to improve future studies in relation 

to the estimations of the HVI and its mapping in the area of interest: 

1. This research can be furthered by using another type of satellite imagery from different satellite sensors 

such as ASTER, SENTINEL and many more since the images for this study were obtained using 

Landsat 8 OLI satellite images downloaded from the USGS website. 

2. Instead of a dimension-reduction PCA, which is an inductive process, other methods, including a 

deductive process for weightage, can be performed to obtain the HVI for this research to compare the 

results.  

3. Besides the ArcGIS and IBM SPSS Statistics software, further research can be performed using other 

types of GIS software such as ENVI, ERDAS IMAGINE, and QGIS, and other types of calculation 

software such as Microsoft Excel XLSTAT, to run the PCA analysis. 

4. The health data can be added as a variable in the research to see the association between a person’s 

health and hospitalisation rate with the heat wave. 

5. This kind of research can be utilised to predict the future vulnerability of people in a certain area by 

using the projected data such as population density to help with the early mitigation of incoming 

disasters. 

6. Due to the limited availability of data from the related agencies, the number and types of variables used 

to represent the vulnerability elements were lacking to describe the association between the variables 

and the variance of the data. Thus, updated and more detailed data, especially that cover the district, 

should be provided by the related agencies. 

7. This research was only conducted for urban areas. Thus, a study of the HVI can be conducted for rural 

areas in the future to see the difference in the vulnerability indices between urban and rural areas, and 

to see whether the UHI phenomenon also occurs in rural areas. 
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