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1. Introduction 

Palm oil plantations have become one of Malaysia’s success stories in the agricultural sector. From humble 

beginnings in the early 1920s, the agricultural industry has since developed rapidly. Over half of the world’s total palm 

oil today comes from the palm oil industry in Malaysia. Until December 2017, Malaysia had produced 20 million tons 

of palm oil on 5 million hectares of land (Malaysian Palm Oil Board, 2018). Therefore, these agricultural crops have 

become the foremost source of returns for the economy in Malaysia since time ancient.  

As a result of the booming industry, thousands tons of palm oil mill waste are being produced annually by palm oil 

mills industries in Malaysia. A considerable amount of solid waste in the form of fibers, kernel shells and empty oil 

palm bunches are produced during palm oil processing (Awalluddin et al., 2015). According to Abdullah & Sulaiman 

(2013), problems associated with palm oil production is the large quantities of processed residues that have no 

economic value. These residues are often disposed of through illegal and uncontrolled open burning which is 

discouraged by the authorities. This problem tends to burden the operators with disposal difficulties and increased 

operating cost. 

An example of waste generated by palm oil mill activities is palm oil fuel ash (POFA). Palm oil fuel ash (POFA), 

also known as an industrial byproduct, is another concern that arises from palm oil industries. POFA is a type of ash 

produced from husk fibers and shells during palm oil burning in the boiler (Ul Islam et al., 2015). Currently, shells and 

Abstract: The utilization of palm oil fuel ash (POFA) into fired clay bricks is one of the alternatives for 

minimizing disposal of POFA waste in landfill. This study was conducted to investigate the effects of different 

percentages of POFA waste (0, 1, 5, 10, 20 and 30%) incorporated into fired clay bricks. The manufactured bricks 

were fired at 1050°C with heating rate of 1°C/min. The formulation of 20 and 30% of POFA brick (POFAB) was 

prepared as a comparative purpose. The manufactured bricks were tested in terms of chemical composition, 

geotechnical properties and physical mechanical properties of brick. The results showed that replacement 5% of 

POFA into fired clay bricks could yield lightweight fired clay brick due to the formation of porosity inside the 

brick, thereby reducing dry density of bricks. However, the replacement more than 10% of POFA resulted in a 

weak bonding between brick particles. In terms of compressive strength, the incorporation of 1 to 5% of POFA 

was found to be useful for non-loading applications. To conclude, POFA can potentially be utilized in the 

production of fired clay bricks to produce low-cost, lightweight and environmentally friendly building materials. 
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fiber wastes are widely used as fuel to produce steam in palm oil mills. However, after the combustion process, 5% of 

ashes are generated and they are directly dumped into open fields near the mills (Al Subari et al., 2018). This might 

result in smog on a humid day which can affect human health and traffic safety.  

Recently, there has been increasing interest in the use of a variety of wastes to produce environmentally friendly 

and low-cost fired clay bricks. Brick is a masonry unit utilized as building materials due to its attributes (Adazabra, 

Viruthagiri, & Kannan, 2017). Fired clay bricks have been designed to be more homogenous, porous and stronger due 

to the ceramic bonding from the fusion phase of silica and alumina present in clay compositions (Adazabra, Viruthagiri, 

& Kannan, 2017; Bories et al., 2015; Barbieri et al., 2013; Demir, Baspinar, & Orhan 2005; Eliche-Quesada et al., 

2011). Successful attempts have been made by previous researchers to incorporate spent shea (Adazabra, Viruthagiri, & 

Kannan, 2017), wheat straw, sunflower seed cake (Bories et al., 2015), sawdust, grape seed, sugarcane ash (Barbieri et 

al., 2013), processed waste tea (Demir, Baspinar, & Orhan 2005) and coffee ground (Eliche-Quesada et al., 2011) into 

fired clay bricks. 

During preliminary investigation, it was discovered that incorporation of POFA from 20 and 30% had caused 

bricks to become weakening and brittle after firing. Therefore, based on the experimental work, several researchers 

have recommended that incorporation of waste in brick production is limited to 10% in order to reach a positive and 

negative equilibrium of physical and mechanical properties (Barbieri et al., 2013). The experimental work additionally 

has demonstrated that incorporation recycle waste could be environmentally advantageous but also increased the 

performance of brick properties. Therefore, POFA was collected and incorporated into fired clay bricks as an 

alternative solution to environmental problems. The utilization of wastes in clay bricks usually has a positive effect on 

its properties, although a decreased performance in certain aspects has also been observed. 

 

2. Materials and Methods 

 

2.1 Raw materials preparation and characterization 

Clay soil was collected from a brick manufacturer located in Yong Peng, Johor. Palm oil fuel ash (POFA) was 

taken from a palm oil mill at Kluang, Johor. Upon delivery, both clay soil and POFA were oven dried at 105°C for 24 

hours to remove the initial moisture. The clay soil and POFA were then filtered through a 4.75 mm sieve and retained 

on a 2.36 mm nominal sieve as shown in Fig. 1a and Fig. 1b. The chemical compositions of the raw materials were 

analyzed using X-Ray Fluorescence (XRF). Meanwhile, X-Ray Diffraction (XRD) was conducted to analyze the 

mineralogical phases in raw materials. Paste powder was placed in a sample holder and flattened using a glass slide. 

The XRD was carried out using D8, Bruker with Cu Kα radiation in the range of 10° to 90° and a scan angle of 0.02° 

The microscopy image of raw materials used in this study was analyzed using Hitachi HORIBA Integrated 

Analysis System (SEM/EDX Series). The image sample was shot using magnification between 100x to 3000x. In order 

to measure the changes in material mass when subjected to temperature, raw materials were analyzed using 

thermogravimetric analysis and differential thermal analysis (TGA-DTA). The maximum temperature was set to 

1050°C with a scan rate of 1°C/min. 

 

 
 

Fig. 1 - (a) Raw clay soil; (b) Palm oil fuel ash. 

 

2.2 Chemical and geotechnical properties  

Geotechnical test measuring specific gravity, liquid limit, plastic limit and plasticity index were performed 

according to BS 1377-2 (British Standard Institution, 1990a) while the loss of ignition test was conducted according to 

BS 1377-3 (British Standard Institution, 1990b). POFA was sent to Kualiti Alam for calorific value analysis.  

During brick manufacturing process, a necessary amount of water was added to achieve adequate plasticity of the 

mixture as well as to minimize cracking during drying and firing processes. This test was performed according to the 
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Standard Proctor Test (British Standard Institution, 1990c). The first series of the compaction test was conducted with 

raw clay soil to determine clay soil compaction, followed by clay soil mixed with a predetermined mass of POFA. 

 

2.3 Brick manufacturing process  

The calculated quantities of POFA were added to the clay soil in percentages of 1%, 5% and 10%. The selection of 

these ratios was based on previous experience in which the incorporation above 10% of waste resulted in poor physical 

and mechanical properties (Barbieri et al., 2013). Thus, these ratios are considered optimal.  

As shown in Table 1, the bricks were manufactured according to industrial standard processes clay soil and POFA 

sample were first mixed with a predetermined quantity of water (Fig. 2a). The mixture was then pressed into moulds 

measuring 215 mm x 102.5 mm x 65 mm with a pressure of 2000 psi (Fig. 2b). The prepared bricks were kept for 24 

hours at room temperature (Fig. 2c), followed by an oven drying period of 24 hours at 105°C (Fig. 2d). The dried 

bricks were finally fired in a furnace with heating rates of 1°C/min at 1050°C (Fig, 2e). Fig. 2f shows POFAB after the 

firing stage was completed.  

In addition, control bricks were also prepared in this study. The manufactured bricks which were used as Control 

Brick (CB) for brick without POFA waste, POFAB1%, POFAB5% and POFAB10% for brick with 1%, 5%, and 10% 

of POFA waste, respectively.  

The manufactured clay bricks then underwent a series of test including physical, mechanical properties such as 

firing shrinkage, dry density, initial rate of absorption (IRA) (British Standard Institution, 2011a), water absorption 

(British Standard Institution, 1998), porosity and compressive strength (British Standard Institution, 2011b).  

Table 1 - Mixture design of manufactured brick. 

Mixture identification Clay (g) POFA (g) Water (mL) 

CB 2800 0 476 

POFAB1% 2780 20 493 

POFAB5% 2700 100 524 

POFAB10% 2590 210 557 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 2 - (a) Mixing soil and POFA with predetermined water; (b) Compress in brick machine; 

(c) Drying at room temperature; (d) Drying in ventilated oven; (e) Firing in laboratory furnace; 

(f) POFAB after firing 
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3. Results and Discussion 

 

3.1 Characterization of raw materials 

Chemical composition of raw materials was measured using the XRF technique and listed in Table 2. Clay soil 

presents a typical composition of SiO2 (55.7%), Al2O3 (24.4%) and Fe2O3 (4.46%) with minor content of Na2O 

(0.30%), CaO (0.25%) and MnO (1.20%). Major constituents in this study are consistent with previous studies where 

practical amount of silica and alumina in clay soil are ideal for the manufacture of high quality bricks (ILO, 1984). Due 

to low CaO and rich in silica-alumina content, clay soil in this study can be categorized as non-calcareous clay (El 

Ouahabi et al., 2015). In addition, large amount of ferric oxide frequently contributes to the reddish colour of brick after 

firing process.  

The main chemical compositions of POFA were SiO2 (54.7%), CaO (8.8%) and Fe2O3 (5.89%) with minor of 

Na2O (0.30%) and MnO (0.25%). High silica content in POFA contributes to the pozzolanic reactions which increases 

the bonding between clay particles during brick preparation (Pourakbar et al., 2015; Oyeleke et al., 2011). In addition, 

POFA can be incorporated into fired clay brick due to the clay flexibility and hence the final results are still within the 

standard limit. 

Table 2 - Chemical composition of raw materials. 

Mixture identification Clay (g) POFA (g) 

SiO2 55.7 54.70 

Al2O3 24.4 4.32 

Na2O 0.30 0.30 

K2O 2.24 5.70 

Fe2O3 4.46 5.89 

CaO 0.25 8.80 

MgO 1.20 4.34 

TiO2 0.94 n.d 

MnO 0.04 1.20 

PbO n.d 1.75 

ZnO n.d 1.48 

n.d : not detectable 

 

From Fig. 3, the first two peaks of quartz (SiO2) were recorded at 20.8° and 26.6° 2θ respectively, which represent 

major crystal structure in clay soil. As reported in previous studies, quartz is the most dominant mineral present in clay 

structure (Akinship & Kornelius, 2017; Ingham, 2013). Meanwhile, minor mineral peaks recorded at 12.3° 2θ, 33.1° 2θ 

and 19.8° 2θ were kaolinite (Al2(SiO5(OH)5, hematite (Fe2O3) and muscovite (KAl2(Si3AlO10)(F,OH)2), respectively. 

Hematite formation suggested by the existence of iron oxide, which has an influence on reddish brick colour (ILO, 

1984; Mueller et al., 2008). Meanwhile, kaolinite and muscovite are typically found in clay as natural minerals.  

The structural analysis of POFA is shown in Fig. 4. Similar to clay soil, POFA was dominated by quartz (SiO2), 

detected at peak of 26.6° 2θ. Besides quartz, cristobalite (SiO2), magnetite (Fe2O4), calcite (CaCO3) and berlinite 

(AlO4P) were also been found. At peak 43.4° 2θ, cristobalite is expected to derive from the modification of silica 

leading to fibres and shells burning in the boiler (Zarina et al., 2013). Meanwhile, the presence of magnetite is due to 

the reduction of hematite from iron oxide during heating process, as reported by previous researchers (Abdul Rashid et 

al., 2014).  
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Fig. 3 - XRD pattern of clay soil 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - XRD pattern of POFA 

 

3.2 Scanning electron microscope of raw materials 

The microscopy image of clay soil is presented in Fig. 5a. From the image, it can be observed that shape of clay 

soil particles is irregular with rough surface. Particle size of the clay soil ranged from 0.002 to 0.055 mm. These sizes 

are helpful in increasing the plasticity properties that prevent increased shrinkage during  drying process. Meanwhile, 

EDX of clay soil revealed that carbon (C), oxygen (O), silica (Si), aluminium (Al), iron (Fe) and potassium (K) present 

with 8.95, 42.12, 27.66, 15.27, 3.11 and 2.89%, respectively. The finding from EDX spectrum is consistent with the 

chemical composition of clay soil derived from XRF analysis in Section 3.1. 

On the other hand, Fig. 6a shows the microscopy image of POFA. The image showed that POFA was irregular in 

shape and had a porous texture (Zarina et al., 2013; Jamo, Noh, & Ahmad, 2013; Raut & Gomez, 2017). The EDX 

spectrum in Fig. 6b indicates that the elements found in POFA contain oxygen (O), carbon (C), silica (Si), aluminium 

(Al), iron (Fe), calcium (Ca) and phosphorus (P) with 32.15, 25.44, 21.13, 12.61, 4.89, 2.15 and 1.63%, 

correspondingly. The findings from EDX are reliable with the chemical composition of POFA during XRF analysis. 
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Fig. 5a- SEM image of clay soil 

 

 
Fig. 5b- EDX spectrum of clay soil 
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Fig. 6a- SEM image of POFA 

 

 

 
Fig. 6b- EDX spectrum of POFA 

 

 

3.3 TGA-DTA analysis of raw materials 

During the firing process, several reactions can be observed through TGA-DTA curve. According to Fig. 7, TGA 

curve of clay soil shows a total weight loss of 1.1 mg (5% decomposed). During the first stage, an endothermic reaction 

occurred at peak 37.5°C (between 20°C to 261.9°C) associated with the water evaporation from clay body (a weight 

loss of approximately 0.4 mg) (Monteiro et al., 2008). During the second stage, an exothermic reaction takes place at 

peak of 404.1°C, associated with the oxidation of organic matter and dehydroxylation of clay minerals. This resulted in 

weight loss of approximately 0.7 mg (between 261.9°C to 685.9°C) (Eliche-Quesada et al,. 2002). In this range, organic 

matter starts to burn and released significant pollutants such as carbon monoxide and carbon dioxide (Ramachandran, 

2002); Rathossi & Pontikes, 2010).  

Fig. 8 displayed TGA-DTA curve of POFA. The total weight loss for POFA was 12.55 mg (83% decomposed). In 

the first stage, an endothermic reaction takes place at peak of 63.5°C due to the elimination of water (a weight loss of 

2.8 mg). As the temperature rose, there was an endothermic reaction occurred at peak of 420.9°C (weight loss of 15.35 
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mg). This can be attributed to the decomposition of organic matter and the thermal pattern is similar discovered by 

Hafizah et al., (2015).  
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Fig. 7- TGA-DTA analysis of clay soil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8- TGA-DTA analysis of POFA 

 

3.4 Geotechnical properties of raw materials 

The physical characteristics of raw materials used in this study are shown in Table 3. The specific gravity of POFA 

(1.76) is lower than clay soil (2.56), suggesting that POFA contains high porous structure which subsequently lower 

their specific density (Oyeleke et al., 2011). As predicted, SEM image of POFA in Fig. 6a indicates the presence of 

pores on surface. Hence, incorporation of POFA into fired clay bricks will therefore reduce the weight of bricks.  

 From Table 3, liquid limit and plastic limit of clay soil were reported as 29.9 and 14.6%, respectively. The 

plasticity index was calculated as 15.3%, indicating that clay soil used in this study was silty clay. This clay shows low 

plasticity due to a low plastic limit, which is not essential for developing plasticity during the mixing process. 

According to the previous studies, selection of high plasticity clay soil for producing bricks would make it easier during 

extrusion and simultaneously increase homogeneity when it encounters water (Johari et al., 2011; Ukwatta et al., 2016).    
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The values of loss of ignition (LOI) for clay soil and POFA were reported as 1.92 and 4.95%, respectively. LOI of 

POFA is considered high due to the incomplete combustion of organic matter (Pourakbar et al., 2015). Meanwhile, the 

relationship between maximum dry density (MDD) and optimum moisture content (OMC) in Fig. 9 shows the 

incorporation of POFA from 1 to 10% significantly reduced MDD values while increasing OMC value. The increased 

in OMC values is attributed to the lower density of POFA. As expected, POFA has a porous structure capable of 

absorbing more water than clay soil particles during compaction test (Jamo, Noh, & Ahmad, 2013). 

Table 3 - Physical Characteristic of raw materials. 

Parameter Clay (g) POFA (g) 

Specific gravity, Gs 2.56 1.76 

Atterberg Limit Test 

Liquid limit, wl (%) 29.9 n.a 

Plastic limit, wp (%) 14.6 n.a 

Plasticity index, Ip (%) 15.3 n.a 

Standard Proctor Test   

OMC (%) 17.0 17.6-19.9 

MDD, ρDmax (g/cm3) 1.75 1.74-1.66 

Loss of ignition, LOI (%) 1.92 4.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9- Relationship of MDD and OMC 

 

3.5 Properties of manufactured brick 

Firing shrinkage of manufactured brick is shown in Fig. 10. From the figure, firing shrinkage varies from 0.3 to 

0.9% depending on the POFA content. As the POFA increases, firing shrinkage of manufactured bricks also increased. 

POFAB10% showed higher firing shrinkage value with 67% difference compared to control bricks due to the large 

amount of waste inclusion along with the high-water intake. This can be explained by the presence of pores on POFA 

surface which absorb more water during the mixing stage. As a result, more water is removed during the drying and 

firing stage (Kizinievič, Kizinievič, & Malaiškienė, 2018). Therefore, POFAB10% appears to shrink more compared to 

other bricks. According to the standard, firing shrinkage is recommended to fall within 2.5 to 4% (BIA, 1992). The 

results showed that firing shrinkage values for all manufactured bricks were below the requirements. 

Good bricks have therefore been made. 
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Fig. 10- Firing shrinkage of brick 

 

Dry density of manufactured brick is presented in Fig. 11. From the figure, density values varied from 1599 to 

1799 kg/m3 depending on the POFA content. As the POFA increases, dry density of bricks decreased by a difference of 

13% compared to control bricks. The density was anticipated to decrease due to the organic matter completely burnt at 

high temperature during the firing process. This can be explained by exothermic and endothermic reactions in Fig. 8 

where almost 83% of POFA had decomposed close to 500°C, thus reducing weight of bricks (Hafizah et al., 2015). BS 

EN 771-1 (British Standard Institution, 2011a) specified that low gross dry density (LD) unit should have gross dry 

density less than or equal to 1000 kg/m3 while high gross dry density (HD) unit should have gross dry density greater 

than 1000 kg/m3. Results have shown that density of manufactured bricks can be classified using HD units. A lower 

brick density is preferred to reduce load during construction work as well as reducing logistic costs (Kadir and 

Mohajerani, 2015; Celik, Depsi, & Kılıc, 2014). The incorporation of POFA into fired clay bricks could therefore be 

useful for producing lightweight bricks. 
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Fig. 11- Dry density of brick 

 

Initial rate of absorption (IRA) of manufactured bricks is presented in Fig. 12. From Fig. 12, it can be observed that 

IRA values vary from 1.3 to 6.2 kg/m2.min depending on the POFA content. When the POFA content increases, IRA of 

manufactured bricks also increased by a difference of 79% compared to control brick. The incorporation 10% of POFA 

into clay bricks increased the number of pores inside brick body and eventually allowed more water to seep through the 

brick (Zarina et al., 2013). Moreover, porosity results in Fig. 14 also proved that porosity increased by 20% with 10% 

of waste inclusion, which further increases IRA rates. The standard recommended that IRA should be lower than 2 

kg/m2.min. Nevertheless, the results obtained in this study were not very promising when IRA reached the acceptable 

limit, except for control bricks. Therefore, bricks should be soaked 3 to 24 hours before to prevent weak bonding 

between brick and mortar (British Standard Institution, 2011a). 
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Fig. 12 - Initial rate of absorption of the brick 

 

Water absorption of manufactured bricks is presented in Fig. 13. Water absorption values varied from 3 to 9% 

depending on the POFA content. As the POFA content increases, water absorption of manufactured bricks also 

increased. Brick incorporated with 10% of POFA showed high water absorption with 67% difference compared to 

control bricks. This phenomenon can be explained by testing mechanism. During the boiling period, air within pore 

space is replaced by steam which eventually changes to water during cooling period. As a result, the pressure in the 

pore space is lowered (Wilson, Carter, & Haff, 1999). This lower pressure forces water to absorb into numerous pores 

due to atmospheric pressure, thereby increasing water content inside the brick. Manufactured bricks in this study were 

found exceeded the limit of ≤ 4.5% and ≤ 7.0% by mass except for control bricks. Thus, these bricks can be used for 

non-loading purposes only. The incorporation 10% of POFA into clay brick increases porosity by 20%, causing water 

absorption to increase tremendously. However, the trends of water absorption in this study were found consistent with 

previous findings (Silva et al., 2017; Sicakova, Draganovska, & Kovac, 2017).  
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Fig. 13 - Water absorption of the brick 

 

Porosity of manufactured brick is presented in Fig. 14. From the figure, porosity varied from 13 to 20% depending 

on POFA contents. As the POFA content increases, porosity of manufactured bricks also increased. The results showed 

that incorporation 1 to 10% of POFA has increased porosity with 35% difference compared to control brick. High 

porosity can be explained by the addition of organic matter inside the brick which is easily burnt at high temperature 

during the firing process (Zarina et al., 2013). The presence of pores is beneficial in reducing the density and thermal 

conductivity of brick. The findings observed in this study are comparable to previous study, suggesting that the 

incorporation of organic waste could increase porosity up to 50% (Kizinievič, Kizinievič, & Malaiškienė, 2018; Jordán 

et al., 2014).  
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Fig. 14 - Porosity of the brick 

 

Compressive strength of manufactured bricks is presented in Fig. 15. Compressive strength values ranged from 6.2 

to 24.6 MPa depending on the POFA content. As the POFA increases, compressive strength also decreased by 74% 

compared to control bricks. The decline in strength was due to the weakening bonds between the brick particles. This 

was caused by the disintegration of organic materials during firing stage, as reported by Kazmi et al., (2016). Besides 

disintegration effects, the decrease in brick strength was also affected by porosity. In accordance with the present data, 

Šveda has demonstrated that increased pore volume or total porosity significantly reduces compressive strength of brick 

(Šveda, 2007). The results demonstrated that manufactured bricks in this study can be used as moderate-weather-

resistant bricks (≥ 17.2 MPa), loading bearing walls 1 and 2 (≥ 7 and ≥ 14 MPa), non-loading bearing partitions (≥ 1.4 

MPa) and load-bearing internal walls (≥ 5.2 MPa) (ASTM International, 2017; MS 76, 1972).  
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Fig. 13 - Compressive strength of the brick 

 

4. Summary 

In the early stages, several additional mixtures were formulated for 20 to 30% of POFA waste for  comparative 

purposes. Furthermore, since the brick is inert, the incorporation of more than 10% of POFA waste led to weak bonding 

between clay soil and POFA particles. Therefore, the incorporation of POFA waste into clay bricks is restricted to a 

maximum of 10%. 

In terms of physical and mechanical properties, the replacement of up to 5% of POFA was considered to be the 

optimal composition for brick production as it enhanced certain properties of bricks with acceptable limitations. 

Therefore, from a technical point of view, the production of bricks incorporated with POFA is a feasible solution. This 

offers some benefits such as reduced density and increased porosity, resulting in the development of lightweight fired 

clay brick. This would help reduce labour load during construction work. In comparison, fired clay bricks incorporated 

with 1 to 5% of POFA are ideal for non-loading applications or external works. In conclusion, the incorporation of 

POFA waste from palm oil mill industry into fired clay bricks appears to be a potential solution to waste disposal 

problems in landfills.  
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