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1. Introduction 

Vibration method has been widely applied to estimate cable force in bridge engineering since because of simplicity 

and speediness as presented in Nugroho, Priyosulistyo, and Suhendro (2014). It was applied on tensioned cable 

structure such as of suspension bridge as well as of cable-stayed bridge. On the suspended cable structure, such as 

hanger-on a suspension bridge, a vibration method is the most common approach used for the force measurement of 

hanger cables. Evaluation of force of hanger cables is very important to ensure the stability of the structure.   

Recently, vibration methods are not only applied to evaluate the force of the cable but also to develop the 

analitical formula based on the fundamental theory of string as well as theory of beam. A formula that considers sag-

extensibility, derived from the modern cable theory, was proposed by Russell and Lardner (1998). This method requires 

unstrained length of the cable as well as the solution of a nonlinear frequency equation using trial-and-error. This 

method was limited by the unavailable data of unstrained length in practice. 

Zui et al. (1998) solved the limitation of the Russell and Lardner (1998) by proposing a practical formulas for the 

vibration method was proposed by taking into account the effects of flexural rigidity and sag of a cable. This method 

was not limited by the unavailable data of unstrained length in practice. The approximate solutions with high accuracy 

for the equation of inclined cable with flexural rigidity was used to consider in these pactical formulation. The force of 

Abstract: Health monitoring using vibration technique is usually conducted on cable structure. The hanger cable 

on the suspension bridge has a difference of span. To predict axial force of cable, the beam-string theory includes a 

parameter of bending stiffness. However, string theory has neglected the effect of bending stiffness. The shorter the 

span of the cable the greater the effect of the bending stiffness would be. This paper raises parameter moment of 

inertia to span ratio (I/L) to determine the apropriate analytical formula between string and beam-string. 

Experimental research was conducted using a vibration technique. The specimens use solid cylindrical steel beam, 

having length specimens of 2 m, hinge-hinge of boundary condition, and difference variations I/L of 0.024, 0.08, 

0.58, 1.53 and 10.22. Numerical analysis was simulated by using Abaqus software v 6.13. The result shows that the 

ratio of I/L equally lowers than 0.082 has close to the analytical string theory. The ratio of I/L greather than 0.082 

has close to the beam string theory. 
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cable can be calculated by using the natural frequencies of low-order modes. The accuracy of the proposed practical 

formulas was verified  not only using the comparison of the values of practical formulas with experimental values for 

short and middle length cables but also  calculated values by using finite element method for very long cables. 

Tabatabai, Mehrabi and Yen (2003) also solved the limitation of the Russell and Lardner (1998), by proposing a 

nondimensional equation that based on parametric studies using a unified finite-difference formulation. This method 

was not limited by the unavailable data of unstrained length in practice. This method raises parametric study that not 

only consider the effect of bending stiffnes of cable and its sag-extensibility, but also provides a tool for accurate 

detemination of vibration mode shapes and natural frequencies. The proposed formulation was verified by using 

available theoretical solutions and compared by using finite-element analysis. The accuracy of vibration method 

formulas proposed by Russell and Lardner (1998), Zui et al (1998) and Tabatabai et al (2003) were verified. However, 

these formulation were expressed either in a transcendental equation (Tabatabai et al., 2003), or in a complex piecewise 

function (Zui et al. 1998). A trial-and-error calculation should be conducted to estimate the cable tension. 

Fang and Wang (2012) solved the limitation of the Zui et al (1998) and Tabatabai et al (2003) by proposing non 

dimensional parameter that eliminated trial-and-error calculation in estimating the cable tension. The non dimensional 

parameter was included on the formulation of beam theory. Experimental was conducted using specimen of 3.4 m long 

cable with negligibly small sag effect, the results shows that  the Fang and Wang (2012) and the Zui et al (1998) have 

the maximum errors are 0.8% and 1.1%, respectively. 

Aplication of the vibration method used for field measurement of cable force under the construction of cable 

system bridges such as an arch bridge stiffened with suspended cables or suspension bridge as well as cable-stayed 

bridge. Kim and Park (2007) presents a comparative study of field measurment of cable supported bridge using 

vibration-based tension estimation techniques. Force measurement was conducted on the four inclined stay-cables on 

the Seohae Grand Bridge by using various formula of string theory, beam theory (Zui et al., 1998). The error was 

verified by using the lift-of method. The result show that the error of string theory, beam theory (Zui et al., 1998) have 

0,9%, 1,3% and 3,2% respectively. 

 Soojin, et al. (2013) had been conducted the fielt test of force measurement of cable by using various tension 

measurement methods. The under constructio of cable stayed bridge  (Hwamyung Bridge in Korea) was elected. Force 

measurement of cable had been conducted by using three widely used methods that is the lift-off test, electromagnetic 

sensor method, and vibration method. The result shows that the lift-off test, electromagnetic sensor method, and 

vibration method have less than 3.5% difference from the design tensions. 

Although the vibration method have several formula, it was based on the fundamental theory of string as well as 

beam theory. The different between the string theory and beam theory are the parameter of bending stifness. The string 

theory neglects the parameter effect of bending stifnes but the beam theory includs the parameter of bending stifness. 

Application of cable structure in suspension bridge as well as of cable stayed bridge has significant difference of span. 

The shorter the span of the cable the closer the behavior cable to the beam theory would be. The longer the span of the 

cable the closer the compatible to the string theory would be. The objective of this paper is to introduce the new 

parameter of I/L to determine the cable, wether will apropriate to the beam or the string theory. 

 

2.  Analytical theory 

2.1 The string theory 

The first is string theory that ignores the effect bending stiffness.  The governing equation of motion related to the 

displacement for a continuously vibrating cable can be written as following (Zui et al.,1998), (Saxon and Chan, 1953), 

(Irvine, 1981): 
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For thin taut cables, the most basic of vibrating dynamic cables, neglecting the flexural stiffness of the cable, 

additional tension due to the cable vibration, and sag, the equation of motion (1) reduces to: 
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Equation (2) is the fundamental partial differential equation for a thin taut vibrating cable and can be extended too 

many different applications. The equation is simplified to relating the cable’s tension to the linear mass of the system 

by way of the partial differential equation. The solution to this equation, found in Dynamics of Structures (Clough and 

Penzien, 1995), can be used to estimate the tension of a cable through the frequency of vibration. Solving the 

eigenvalue problem associated with (2) yields the equation for the natural frequencies of the cable:   

 



Guntur Nugroho , Journal of Sustainable Construction Engineering and Technology Vol. 11 No. 2 (2020) p. 89-100 

 

 

 

91 

 
m

T

l

n
fn

2
           (3) 

 

By solving equation 3 for the tension yields, the cable force (T) can be written as (Nugroho et al., 2014), (Fang, 

and Wang, 2012), (Kim and Park, 2007): 
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where fn denotes the nth natural frequency in Hz; and T, m, and l denote the tension, mass density, and length, 

respectively. 

 

2.2 The beam string theory 

Axial forces, performing in a flexural direction on beam element (Fig.1), may also have a considerable affect at the 

vibration behavior of the member, generally resulting in changes of frequencies as well as mode shapes (Irvine, 1981) 

[9]. When considering free vibrations of a prismatic member having uniform physical properties, the equation of 

motion, including the effect of axial force, T overall its length, as follows:  

 
Fig. 1 - Tranverse vibration of beam  (Irvine, 1981). 
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the two independent ordinary differential equations are obtained as given by 

 

    02  tYtY       (7) 
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in which ω2  is defined by 
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and g2 is given by 
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The time-dependent Eq. 7 show that a uniformly distributed axial force does not affect the simple harmonic 

character of the free vibration; however, it does affect the mode shapes and frequencies due to the presence of the term 

-g2φ”(x) in Eq. 8. The solution of Eq. 7 yields the general form:  
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Introducing Eq. 10 (3.24) into Eq. 8 (3.22b) and dividing by . xAe , it can be concluded that the exponent s must satisfy 

the algebraic equation: 

 

04224  SgS    (12) 
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whose roots are (Clough and Penzien, 1995)  
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so that the general solution of Eq. 8 (3.22b) is expressed in the form 
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where C1, C2, C3and C4 are coefficients which is determined from the boundary conditions. Since the pairs of roots s1, 

s2  and s3, s4 , are opposite each other and are, respectively, real and purely imaginary 
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where ι is the imaginary unit. Expressing the exponential functions in terms of their trigonometric and hyperbolic 

equivalents and setting the entire imaginary part to zero, Eq. 15 can be re-written in the form 

 

  xDxDxDxDx  sinhcoshsincos 4321   (17) 

 

in which δ = t s3 and ε = s1 
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The coefficients D1, D2, D3, and D4 can be evaluated by exactly the same procedure presented for the system 

without axial force.  Considering the simply-supported tie-rod with the uniform section, subjected to a constant axial 

tensile force, its four boundary conditions are the same as follows 
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These two equations give D1 = D3 = 0 
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Adding these two equations and replacing D4 with an expression of D2. Only D2 remains as a nonzero constant 

 

  









2

2

1 1sin



 xDL          (23) 

 

Excluding the trivial solution D2 = 0, boundary condition  φ(L)  = 0  can be satisfied only when  0sin L , 
L
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and n = 1,2,3. 

The frequency can be expressied as following 

 

44

22

mL

T

mL

EIn
nn 


  Rad   (24) 

 

44

22

2 mL

T

mL

EIn

L

n
fn 

  Hz   (25) 

 

 

3.  Numerical model 

Numerical moodelling was simulated using Abaqus software. The hanger was modeled using solid element. By 

using a solid cylindrical beam, the the cross section of the specimen has similar span and the diference of diameter as 

presented in Table 1. The hanger was modelled using simplifiying and some assumptions as follows.  

 

Table 1 - Specimen of hanger using diference parameter of I/L 

No Diameter (mm) Length  L (mm) Momen of Inertia I (mm4) Elastic modulus (GPa) I/L 

1 5.6 2000 48.27 190.4 0.024 

2 7.6 2000 163.77 196.5 0.082 

3 12.4 2000 1160.53 196.6 0.580 

4 15.8 2000 3059.13 196,6 1.530 

5 25.4 2000 20431.71 199,7 10.21 

 

3.1 Material and Section properties 

The material is homogeneous, isotropic and linearly elastic. Steel material has material properties of poison ratio 

and mass density of 0.3 and 78.10-6 N/mm3 respectively. The specimen has the elastic modulus,  dimension and length 

as presented in Table 1. 

 

3.2 Load 

The axial load (T) was simulated as a pressure (P = T/A) uniformly distributed on the center of hanger element. 

The axial tensile force of 4000 N was equally applied to the specimens. By implementing the pressure load using a 

negative value, it will be defined as a tension force. 

3.3 Boundary Condition 

The end of the specimen has a two different shape. The flat side end used for the application of axial tension 

loading was shown in Fig 2 while the other end uses the mounting shape as shown in Fig 3. The flat end shape shown 

in Fig 2 was used to apply the axial tension force of the specimen. The boundary condition of the end shape of the 

specimen in Fig 2 is allowed to rotate and to deflect in the axis direction. On the other side, the boundary condition of 

hinge-hinge was implemented by using the mounting shape of the end, and it is constrained as hinge boundary 

condition as shown in Fig 3. 
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Fig. 2 - Flate end shape pf boundary condition 

 
Fig. 3 - Mounting end shape of boundary condition 

 

3.4 Modal Frequency 

To find the modal frequency of the model, the step in abaqus consists of two step as follows. To find the modal 

frequency of the model, the step in abaqus consists of two step as follows. 

Step 1:  Axial tension force is applied on the top end using pressure load. It will affect to the internal stress in the model 

and will be followed by increasing of tangent stiffness. The nonlinear geometry analysis must be performed in this step.  

Step 2: After the hanger model has been tensioned and elongated in step 1. The eigenvalue analysis is performed to 

obtain the modal frequencies of the model using the mass matrix and the tangent stiffness matrix. The mode shape of 

the natural frequency visualises in Fig. 4 – Fig.6. 

 

 
Fig. 4 - The first mode of visualisation 
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Fig. 5 - The second mode of visualisation 

 

 
Fig. 6 - The third mode of visualisation 

 

4.  Experimental Method 

A laboratory experiment was conducted using a solid circular steel specimen. The specimen uses several variations 

of the moment of inertia to span ratio I/L which is similar to the numerical modeling (0.024, 0.08, 0.58, 1.53 and 

10.22). The test set up of the experiment was shown in Fig 7.  

 

 
 

Fig. 7 - Set up of experimental testing 
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The circular steel specimen was hanged in the vertical direction and pinned supported at both ends. The axial 

tensile load was applied using hydraulic jack then recorded by using load cell that placed beneath the bottom pin 

support. The data logger viewed the axial tensile force. The natural frequency of the specimen was recorded by using 

two accelerometers attached laterally at the half and the quarter span. The type of the accelerometers is Bruel & Kjaer 

Type 4370 plugged on A/D Converter of Dewe-43 at one ends and. The analog signal responses recorded by 

accelerometer sensor were transferred to A/D converter of Dewe-43, converted into digital signals with a sampling rate 

of 250 Hz and analyzed by using FFT program using software Dewesoft program which had been installed in a laptop 

computer. 

 

5.  Result and Discussion 

5.1 Experimental Result 

Investigating the natural frequency of the specimen, the signal, recorded by the accelerometer sensor, were 

processed from the analog to digital signals using A/D converter then the signals were analyzed using the FFT program. 

Data of each specimen were presented in the relationship between natural frequency and amplitude as shown in Fig. 8 – 

Fig. 12. The first natural frequency of specimen was presented in Table 2. 

 

 

Fig. 8 - The natural frequency of the specimens using I/L of  0.024 

 

 
Fig. 9 - The natural frequencies of the specimens using I/L of 0.058 
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Fig. 10 - The natural frequencies of the specimens using I/L of 0.082 

 

 
Fig. 11 - The natural frequencies of the specimens using I/L of 1.53 

 

 
Fig. 12 - The natural frequencies of the specimens I/L of 10.21 
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Table 2 - First natural frequency of specimenas 

No  I/L fn (Hz) 

1 0.024 32.28 

2 0.082 24.71 

3 0.580 17.90 

4 1.530 15.14 

5 10.210 14.65 

 

Fig 8–Fig 12 and Table 2 show that the specimen using a ratio of the moment of inertia to length (I/L) of 0.024, 

0.082, 0.58, 1.53, and 10.21 have the first of natural frequency of 32.28 Hz, 24,71Hz, 17,09Hz, 15,14 and 14,65Hz 

respectively.  

The higher the value of the ratio of I/L the greater the value of the diameter of the cross-section of the specimen 

could be. Increasing the diameter of the specimen will be folowed by the increasing of the bending stiffness (EI) as well 

as the mass per unit length (m). In the analytical formula of beam-string theory, the natural frequency has directly 

proportional to the bending stiffness (EI) but has inversely proportional to the mass per unit length (m). Although the 

value of bending stiffness increases coincide with the value of mass per unit length, the natual frequency of specimens  

decreases. It shows that the influence of mass per unit length to the natural frequency was dominant than that of the 

bending stiffness. 

 

5.2 Numerical Result 

Numerical modeling, using specimen in Table 3, was simulated using Abaqus software. The first natural frequency 

was used as presented in Table 3. 

Table 3 - Natural Frequency using Numerical Method 

No I/L Natural frequency (Hz) 

1 0.024 34.97 

2 0.082 26.10 

3 0.580 17.50 

4 1.530 14.97 

5 10.210 14.68 

 

5.3 Analytical Result 

Analytical method was conducted by using string theory and beam  theory as presented in Eq.3 and Eq.23. The 

first natural frequency of specimens was shown in Table 4. 

Table 4 - Natural frequency using analytical method 

No  I/L String Theory (Hz)  Beam-string Theory (Hz) 

1 0.024 34.71 34.83 

2 0.082 26.49 26.68 

3 0.580 16,24 17.06 

4 1.530 12.74 14.96 

5 10.210 7.87 14.88 

 

5.4 Comparison between experimental, analytical and numerical 

The relationship between natural frequency and various parameters of I/L was shown in Fig 13. The diferencies of 

experimental, analytical and numerical results of the first pick of natural frequency of specimens (using ratio I/L of 

0.024, 0.082, 0.58, 1.53, and 10.21) were presented in Table 5. 
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Table 5 - The differencies natural frequency between analytical and numerical to experimental 

No 
I/L 

Differencies natural frequency (%) 

 Analytical String Theory  Analytical Beam Theory Numerical   Abaqus 

1 0.024 6.27 6.51 6.20 

2 0.082 7.20 7.97 6.47 

3 0.580 9.27 6.48 5.14 

4 1.530 14.85 1.18 3.07 

5 10.210 46.27 1.59 1.29 

 

 
 

Fig. 13 - The comparison of natural frequency between experimental, numerical and analytical formula (using 

string and beam-string formula) in diference ratio of I/L 

 

As shown in Table 5, natural frequency of experimental testing of the specimen using the ratio of I/L 0,024 has the 

diference of 6.27% to the analitical formulasion string theory, meanwile it has the diference of 6.51% to the analitical 

formulasion of beam-string theory and has the diference of 6.20% to the numerical modeling. The natural frequency of 

experimental testing of the specimen using the ratio of I/L 0,082 has the diference of 7.20% to the analitical 

formulasion string theory, meanwile it has the diference of 7.97% to the analitical formulasion of beam-string theory 

and has the diference of 6.47% to the numerical modeling. 

The natural frequency of experimental testing of the specimen using the ratio of I/L 0.58 has the diference of 

9.27% to the analitical formulasion string theory, meanwile it has the diference of 6.48% to the analitical formulasion 

of beam-string theory and has the diference of 5.14% to the numerical modeling. The natural frequency of experimental 

testing of the specimen using the ratio of I/L 1.53 has the diference of 14.85% to the analitical formulasion string 

theory, meanwile it has the diference of 1.16% to the analitical formulasion of beam-string theory and has the diference 

of 3.07% to the numerical modeling.  The natural frequency of experimental testing of the specimen using the ratio of 

I/L 10.21 has the diference of 46.27% to the analitical formulasion string theory, meanwile it has the diference of 

1.59% to the analitical formulasion of beam-string theory and has the diference of 1.29% to the numerical modeling.  

Acording to beam-string theory in Eq 25, the parameters  influencing the naural frequency of beam were the length, 

load, mode number, mass per unit langth and bending stifness. The specimens used in this research have the similar tof 

he boundary condition, length, mode number, axal load but it have the diference of mas per unit length and bending 

stifness. It mean that the natural frequency of secimens only influenced by the parameter of mass per unit length and 

bending stifness. For the specimen using I/L of 0.024 and 0.082, have the diferencies of natural frequency between 

string formula and beam-string formula of 1.17% and 1.46% respectively.  

On the other hand, specimen using I/L of 0.58, 1.53 and 10.21 have the diferencies of natural frequency between 

string formula and beam-string formula of 2.79%, 13.67% and 44,68% respectively. The bigger the rasio of I/L of 

specimens the bigger the diferences between the natural frequency calculated by using analitical string and beam-string 

theory would be. The natural frequencies of experimental testing of specimens using ratio I/L more than 0.082 are close 
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to the analytical formula using beam-string theory. the effect of the bending stifness clearly raises on the specimen 

having the ratio of I/L more than 0,082. It can be concluded that the specimen using the ratio of I/L more than 0,082, 

are cloas to the beam-string theory. On the other hand, the natural frequency of specimen using ratio of I/L lower than 

0,082, are cloas to thenatural frequency calculated by string theory as well as beam-string theory. It can be concluded 

that the effect of bending stifness can be neglected when the specimen having the ratio of I/L lower than 0,082. 

 

6. Conclusion 

The objective of this research is to introduce the parameter of I/L to determine the apropriate of analitical formula 

between string and beam-string formula. The primary research was conducted by using several specimen varioused in 

diferences parameter of I/L. The result show that the effect of bending stifness can be neglected when the specimen 

having the ratio of I/L lower than 0,082. It can be concluded, that the analytical formula of string and beam-string 

theory can be used to estimate the axial tension force if the ratio of I/L are lower than 0,082. On the other hand,  the 

analytical formula of  beam-string theory can be used if the ratio of I/L more than 0.082. 
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