Explaining the Conceptual Model of Valuing Indicators of Urban Housing; Hedonic Method Meta-Analysis

Atefeh Sedaghati1*, Mohammad Taghi Pirbabaei2, Farshad Nourian3, Hamed Beyti2

1University of Bojnord, Bojnord, Khorasan-e Shomali, IRAN
2Tabriz Islamic Art University, Tabriz, Azarbayej-an-e Sharghi, IRAN
3Tehran University, Tehran, IRAN

*Corresponding Author

DOI: https://doi.org/10.30880/ijscet.2021.12.04.005
Received 08 March 2020; Accepted 22 December 2021; Available online 29 December 2021

Abstract: The Hedonic valuation method has been considered in various fields by researchers in order to estimate the value of a commodity or the demand for exploitation of a commodity for many years. Besides, the “Hedonic method” has been widely used to identify “value” in the housing market. Although the Hedonic model has been used in the housing market for various purposes, a main and practical context of the model has been identifying the indicators that explain the value of housing and the application of these indicators in urban housing planning. This article tries to develop a “conceptual model” of value and inference from the research of others, by meta-analyzing the existing theoretical literature regarding the valuing indicators in the Hedonic model. The present study, which has been done by meta-analysis method, uses MAXQDA software and open and axial coding to analyze the texts in order to compile and classify the features that explain the value of housing. The research findings, which are taken from 335 highly cited articles between 2009 and 2019, show that despite the long period of application and theoretical development of the model, there is no theoretical consensus on the explanatory indicators of housing value. So that 7 main categories can be identified in the form of 350 concepts and 5883 codes (including frequency) which can show the range of housing value dimensions, in addition to summarizing the issue. Also, the share of basic structural-physical and peripheral categories, with 53.5 and 25.5 percent, respectively, has the most application in the Hedonic housing valuation model. In the two mentioned categories, the share of variables affecting the residential unit, building of the property and access to services and land uses with relative shares of 23.6, 19.2 and 16.5%, is more than other variables. The results show that while the concepts of many explanatory indicators of value are the same, a suitable range of explanatory indicators of housing value can be used in the Hedonic model according to the goals and the target community, and this can lead to the formation of indigenous and specific values of a society.

Keywords: Hedonic method, residential unit, concept of value, indicator

1. Introduction

Housing is not a homogeneous commodity, unlike many others. If two housing units with very similar quality and quantity characteristics, located in two different places in the same city, offer different housing services, so their prices in the housing market will be completely different. Why is an apartment in a certain area of the city, next to the main street, more expensive than a similar apartment next to a side street?
The answer lies in the heterogeneity of housing goods. Are the two mentioned apartments similar in terms of the quality of residential services they provide, although they are the same in terms of area? Studies on housing or housing demand focus on two main approaches. A method assumes a housing product or service as a homogeneous commodity and tries to estimate demand and price elasticity (homogenization method). The second method considers housing goods and services as a combination and tries to estimate the effect of housing characteristics on its price (Hedonic method). Triplett believes that the Hedonic method is a useful alternative to traditional and common approaches to measuring the value of housing when faced with quality changes in housing units (Triplett, 1986: 36).

The present study faces two main questions: What are the explanatory indicators of housing value? And what conceptual model of value in housing can be presented? The main purpose of the research is to explain the valuing features of housing. Since the Hedonic housing valuing method deals directly with the explanatory features of value and has been going on for about a century, in this study meta-analysis of the theoretical literature on the more citation articles have been considered, which have used the hedonic method directly.

2. Methodology

This research has been done by using qualitative research to collect the required data by searching in reputable online research databases and seeks to identify the indicators that explain the value of housing. Also, the valuing features of the housing sector are identified from the content of selected articles and texts, and then categorized using MAXQDA software.

Research Methodology and Data Collection: The present study was conducted with the aim of integrated analysis of indicators explaining the concept of "value" of urban housing in the application of Hedonic housing model, using meta-analysis method. One of the most important dimensions of meta-analysis is related to the selection of researches that are included in the analysis. The selection criteria should be broad enough to allow a large number of studies to be considered, yet systematic enough to be reproducible. (Cottineau, 2017: 4). Meta-analysis is the art of combination of research and analysis and defines it as a combination of independent studies results in order to consolidate their findings (Yazdanpanah et al., 1398: 20, quoted in: Glass, 1977). Pigot defines meta-analysis as quantitative statistical analysis of a set of results from individual studies. Today, meta-analysis is considered as a systematic review that has a specific and defined research question and uses accurate and systematic methods to identify, select and evaluate relevant research and collect and analyze data from the researches that is included in this review (ibid. Quoted from Pigott, 2012).

In this study, which is based on reviewing and analyzing highly cited articles by searching the Google Scholar online database, conducted between 2009 and 2019, 335 researches have been included in the analysis process. The main keywords searched were "Hedonic Valuation Model" and "Housing". In the search process, half of the articles were related to the years 2009 to 2017 (177 articles identified) and the other half were related to the years 2017 to 2019; In this way, the share of newer studies in evaluation and analysis will increase. From 335 articles reviewed in this study more experimental articles have been selected, in order to better cover the purpose and a wider range of housing indicators. But there are also ten highly cited theoretical articles (about two percent of the total volume of articles) in the volume of reviewed articles. Regarding the research topic, among the articles, Selim (2009) and Sander et al. (2010) had the most citations (262 and 242, respectively).

Data Analysis: In the present study, the information of 335 identified articles were analyzed, using MAXQDA software version 10. This means that according to the possibilities of open and pivotal coding in this software, indicators explaining the value of housing used by various researchers, were first identified from the content of articles (by open coding method). Then, in the next step and in the axial coding, the hidden axial concepts are identified due to the commonalities of the codes, and the main categories in which the concepts can be explained are compiled. 5883 codes have been identified in the present study, which are categorized in the form of 17 hidden concepts and 10 main categories.

3. Theoretical Background

An Analysis of the Hedonic Model Application: From the Beginning to the Application of the Model in Housing Market Studies: Although there is no theoretical consensus on the history of the use of the Hedonic model for the first time in relation to property valuation, Abidoye & Chan (2017) claim that it can be attributed to the early 1920s; and they introduce Haas (1922) as the first study to use the Hedonic model in property valuation research. Haas used the model to assess agricultural land in Minnesota (USA). However, they refer more to Court (1939) in the researches, who used the Hedonic valuation method for car pricing, as a pioneering researcher, which contributes to the theoretical development of the model; especially where he points out that car demand can be explained by many variables. But a review of the research background shows that the use of the hedonic model in the housing market and its application occurred later. In this regard, the US Bureau of Economic Analysis first adopted the Hedonic method in 1963, exactly to calculate the value-adjusted indicator of new housing, in order to consider a slow but steady increase in the quality that occurs in construction. (Bover and Velilla, 2003: 7). Finally, Griliches (1964 and 1971), Rosen (1974), Berndt, Griliches and Rappaport (1993) developed the theory. The model was also proposed in the theoretical works of Lancaster (1966) and Rosen. The main assumption of the Hedonic model of housing is that the exchanged price of housing as a heterogeneous commodity can be considered as a sign of preferences to acquire a set of features (Xiao, 2017: 12 /
Mohammadzadeh et al., 2012: 24). In fact, the theoretical framework of the Hedonic method has been established in a research by Ridker & Henning, and Rosen. Croc 2005 and 2007 have also greatly contributed to the application of the model in housing studies. Hedonic price model is interesting because its results are easy to interpret and can almost always be consistent with observations (Kuethe et al, 2008, 2).

A review of previous research shows that there are articles in the field of reviewing the theoretical literature of the Hedonic model of housing. Paez (2009), in his research "Recent Research in Spatial Real Estate Hedonic Analysis", by reviewing 5 main articles, deals with the process and trend of Hedonic studies and emphasizes the application of spatial economics in the study of housing value and identification of the features. He introduced the experimental application of the model as well as its performance in general in selected articles (Paez, 2009). Herath & Maier (2010) analyzed the theoretical literature on the method of housing hedonic valuation in an article and presented two main diagrams as research findings; including, first, the type of housing studies that have used the Hedonic method, and second, the type of environmental characteristics used in the Hedonic method. Of their 471 review articles, only 3 were review articles and about 321 were experimental articles. Also, out of 134 features related to the neighborhood unit, 14 social factors, 56 environmental factors, 33 items related to infrastructure facilities and the remaining 31 items related to visibility, open space and proximity to the city have been mentioned and classified (Herath & Maier, 2010). Abidoye and Chan (2017) in a study entitled "Critical review of hedonic pricing model application in property price appraisal: A case of Nigeria" concluded that in order to achieve operational and sustainable housing in Nigeria, the gap between theoretical and experimental studies must be filled. Because most studies have been done by non-housing experts. Although the first Hedonic study was conducted in Nigeria in 1986, there is a large fluctuation in the number of such annual articles. However, there has been a significant amount of focus since 2010, which emphasize specific areas of Nigeria more, and most of these studies are academic research. Musa and Yusoff (2017), reviewed the theoretical literature on the impact of housing components on the value of housing units in a study. They considered the three categories of characteristics related to the location of the settlement, the characteristics of the neighborhood unit and the structural characteristics to have the greatest impact on the value of housing. Also, antiquity, design quality, room size, number of rooms, bedrooms, toilets and bathrooms, quality of construction and materials, protection, entrance door, view, plan and available space have been presented as the main indicators of the structural sector. Despite the above-mentioned articles, any theoretical study and review of the explanatory features of housing value, in a comprehensive manner so as not to focus on a specific dimension of housing value, has not been done between 2009 and 2019. The present study tries to consider an appropriate classification of housing value-based characteristics according to the application of the Hedonic model, emphasizing the above range, and also to consider newer approaches in the studies of Hedonic housing and selected indicators of researchers; In this regard, half of the 335 selected articles are based on more recent studies (2017-2019).

4. Max QDA Analysis: Application of The Hedonic Valuation Model in Housing Studies

Leading researchers in discussing the application of the Hedonic valuation model in housing studies have used a variety of indicators according to the subject of their research. These researches have been analyzed and monitored in order to show the value of these researches. In order to achieve this goal, the keywords "Hedonic Valuation Model" and "Housing" were searched in the titles of articles, using the search facilities in articles, books, reports and other documents available in the Google Scholar database. Based on the search results, 335 articles were finally selected according to the number of citations to the work, as well as the years considered. After entering the articles in MAXQD software environment, the values were coded. Finally, 5883 codes were found in the software environment (Figure 1), which according to the theoretical literature, as well as the opinion of related experts towards homogeneous and similar codes, the hidden concepts (from the combination of several codes) were identified. In addition, related and homogeneous concepts were explained and classified in the form of 7 central categories. The result of this classification is presented in Table 1.

48
Table 1 - Summary of collected information from the experiences of using Hedonic model in housing valuation using MAXQDA software

<table>
<thead>
<tr>
<th>Number of reviewed articles</th>
<th>Number of codes including frequency</th>
<th>Total number of concepts</th>
<th>Axial category</th>
</tr>
</thead>
<tbody>
<tr>
<td>335</td>
<td>53.5</td>
<td>38</td>
<td>Affecting the building</td>
</tr>
<tr>
<td>23.6</td>
<td>1390</td>
<td>53</td>
<td>Affecting the residential unit</td>
</tr>
<tr>
<td>19.2</td>
<td>1130</td>
<td>37</td>
<td>Affecting the property land</td>
</tr>
<tr>
<td>10.7</td>
<td>628</td>
<td>16.5</td>
<td>Peripheral features</td>
</tr>
<tr>
<td>5.8</td>
<td>341</td>
<td>24</td>
<td>Socio-cultural features</td>
</tr>
<tr>
<td>4.7</td>
<td>277</td>
<td>25</td>
<td>Economic features</td>
</tr>
<tr>
<td>3.3</td>
<td>197</td>
<td>27</td>
<td>Environmental features</td>
</tr>
<tr>
<td>25.5</td>
<td>16.5</td>
<td>21</td>
<td>Access to land uses and services</td>
</tr>
<tr>
<td>9.0</td>
<td>529</td>
<td>39</td>
<td>Adjacent to urban land uses and services</td>
</tr>
<tr>
<td>5.4</td>
<td>316</td>
<td>14</td>
<td>Features related to sales information</td>
</tr>
<tr>
<td>1.0</td>
<td>57</td>
<td>26</td>
<td>Features related to urban management (providing urban services)</td>
</tr>
<tr>
<td>0.8</td>
<td>46</td>
<td>46</td>
<td>Other non-housing variables in total surveys</td>
</tr>
<tr>
<td>100.0</td>
<td>5883</td>
<td>350</td>
<td>total</td>
</tr>
</tbody>
</table>

Based on the above table, the value-expressing features can be classified into the following 7 central categories according to the research:
- Structural-physical features: affecting the building, affecting the building unit, affecting the property land
- Socio-cultural features
- Economic features
- Environmental features
- Peripheral features: access to land uses and services, neighborhood and proximity to urban land uses and services
- Features related to sales information
- Features related to urban management (providing urban services)

In this regard, 350 hidden concepts were identified, each of which includes a variety of codes. The highest frequency of use was related to "structural and physical features" with a relative share of 53.5%, according to the researches and experiments analyzed. Peripheral characteristics are in the next category with a share of 25.5%. Also, the categories of "physical structural features affecting the residential unit" and then "physical structural features affecting the building" and "environmental features including access to land uses and services" with relative shares of 23.6, 19.2 and 16.5% had the most applications among the identified categories in the Hedonic housing model.
5. Explaining the Conceptual Model of Housing Value

A meta-analysis of extracted and selected articles in MAXQDA software shows that seven main categories affecting the value of urban housing can be explained. Structural, physical, economic, socio-cultural, peripheral, environmental, sales information and urban management features are the seven main categories. Each of the identified categories has central subcategories (hidden concepts) that in the form of each of the hidden concepts, the codes are included that have been used by various researchers in Hedonic housing studies.

The main categories and concepts are categorized based on the most common and homogeneous indicators. Although many codes can be exemplified in the form of each concept, Figure 2 tries to show the conceptual model of the value of urban housing in a schematic and general way. Effective characteristics on property, building and residential unit (in the form of structural-physical category), incidental expenses, housing loan, income and job of the head of the household (in the form of economic category), demographic indicators, crime and delinquency, education and others (such as rates Urbanization, marital status, etc.) (In the form of socio-cultural categories), access to services and uses and proximity to them (in the form of peripheral categories), pollution, climate, natural crises and others (such as green cover, Thermal islands, etc.) (In the form of environmental category), type of purchase and sales details (in the form of sales information category) and programs, plans and others (such as deprivation index, cleanliness, etc.) (In the category of urban management) includes the most important categories and concepts of each.

![Explanatory model of the housing value concept](image)

Table 2 - Practically explained indicators in the field of urban housing studies

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Main concept</th>
<th>Main category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of the residential unit, location, date, ownership, home security, number of rooms, bathrooms, toilets, terraces and balconies, internal installations of the unit, heating system, sound insulation, aristocracy and shading, view from the unit to the surroundings and ...</td>
<td>Affecting the residential unit</td>
<td>Structural-physical features</td>
</tr>
<tr>
<td>Floor area – yard area, number of units, number of floors, permitted land use, type of building, parking, quality of buildings, façade condition, equipment for the elderly, disabled and children, condition of building facilities, elevator, sauna, jacuzzi, visibility and ...</td>
<td>Affecting property building</td>
<td></td>
</tr>
<tr>
<td>Plot area, geographical location, proximity to the highway, location, rate of accidents and crimes in the immediate area, situation in relation to contaminated areas, soil type, construction rules and boundaries, adjacent roads, land use, topography</td>
<td>Affecting the property land</td>
<td></td>
</tr>
<tr>
<td>Travel costs, construction costs, service costs, fuel and energy costs, etc.</td>
<td>Housing ancillary costs</td>
<td></td>
</tr>
<tr>
<td>Eligible discount rate, repayment credit, loan-to-value ratio, interest rate, …</td>
<td>Housing loan</td>
<td></td>
</tr>
<tr>
<td>Monthly income, job of household head and…</td>
<td>Income - Job</td>
<td></td>
</tr>
<tr>
<td>Population, age, indigenous population, percentage of ethnic groups, number of households</td>
<td>Demographic indicators</td>
<td></td>
</tr>
<tr>
<td>Crime rate, percentage of violent crimes</td>
<td>Crime and delinquency</td>
<td></td>
</tr>
<tr>
<td>Literacy rate (by education category), students' educational scores, illiteracy rate, …</td>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Urbanization rates, marital status, customs, Gated neighborhood, relationship with neighbor, neighborhood with family, social capital</td>
<td>others</td>
<td></td>
</tr>
<tr>
<td>Access to health, medical, educational, commercial, administrative centers, city center, employment centers, catering services, cultural, religious, recreational, sports services, public transportation, main communication routes, banks and ATMs, post office, etc..</td>
<td>Access to land uses and services</td>
<td></td>
</tr>
<tr>
<td>Adjacent to urban land uses and facilities, to water resources, industrial land use, hospitals, railways, airports, canals and canals, prisons, meadows, landfills, pastures, lakes, rivers, …</td>
<td>Proximity to land uses and services</td>
<td></td>
</tr>
<tr>
<td>Water pollution, air pollution, noise pollution and…</td>
<td>Pollution</td>
<td></td>
</tr>
<tr>
<td>Rainfall, temperature, wind...</td>
<td>Climate</td>
<td></td>
</tr>
<tr>
<td>Earthquakes, floods and...</td>
<td>Natural crises</td>
<td></td>
</tr>
<tr>
<td>Green cover (number of trees), thermal islands, soil, environmental awareness and...</td>
<td>others</td>
<td></td>
</tr>
<tr>
<td>First hand purchase, buyer type</td>
<td>Shopping type</td>
<td></td>
</tr>
<tr>
<td>Type of sales advertisement, seller information, condition of the house at the time of sale, type of contract, …</td>
<td>Sales details</td>
<td></td>
</tr>
<tr>
<td>Planned growth area of the city, having a plan for the development of green space and...</td>
<td>Plans / Designs</td>
<td></td>
</tr>
<tr>
<td>Providing government social services, deprivation index, cleanliness, local power, aesthetics, …</td>
<td>Others</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Features related to urban management</td>
<td></td>
</tr>
</tbody>
</table>

Different researchers with different interpretations but in the form of the main categories mentioned in the above conceptual model, have tried to estimate the value of urban housing. Structural-physical features with a greater share in explaining the value of urban housing have been predominately considered in all reviewed studies. There are three main classes of concepts related to this category, among which, the variables related to the housing unit have a significant share. The indicators are described with the greatest frequency to provide some of the most important indicators considered by the reviewed researchers, in the form of each of the central categories. In indicators affecting property land, "land location" have been used under various headings such as neighborhood, region and location in the city, with a frequency of 302, by many researchers such as: Cerin et al, 2014 and Daneshvary et al, 2011 and Czembrowski & Jakub, 2016 And Deng, 2012. The "total land area" with a frequency of 99 is in the next category (for example, see: Yoon, 2017 and Walsh et al, 2017 and Votsis, 2017 and Noh, 2019). Land use with a frequency of 63 has also been one of the most widely used indicators in the under study category (see, for example: Shen & Karimi, 2017 and Schlüpf, 2015). In the structural-physical category related to property building, the indicator of "building age" with a frequency of 364 has been the most used (such as Zhang & Zhao, 2018 and Ye et al, 2019 and Wen et al, 2018). The indicator of "type of building" (including villas, rows, apartments, etc.) is also in the next priority with a frequency of 195 (for example, see: Belcher & Chisholm, 2018 and Beimer & Maennig, 2017 and Casado et al, 2016). In the structural-physical category related to the housing unit, the variable "area of the housing unit" with 238 frequencies has been the most used (such as: Zhang & Yi, 2017 and Yang et al, 2018 and Walsh et al, 2017 and Seo et al, 2017). The next most commonly used variable is "number of bedrooms" with a frequency of 154 (See similar cases: Wan et al, 2018 and Yang et al, 2018 and Tian et al, 2017). "The number of baths" with 147 cases with a slight difference from the previous variable, has been the next priority of researchers (for example: Hussain et al., 2018 and Rivas Casado et al., 2016 and Saphores & Li, 2012). In the economic category, the variable "household head income" with a frequency of 90, is at the top of the researchers' attention (for example, see: Tajani et al, 2017 and Roebeling et al, 2016 and Acolin & Green, 2017). In the socio-cultural category, the variable "population / density" with a frequency of 87 items is the most widely used indicator.
So, the concept of "value" in relation to housing, which directly affects housing planning, was examined by meta-analysis. The "Hedonic model" of housing, which has been used for a long time and about a century ago in estimating value in various scientific topics and in the subject of housing, is perhaps one of the most comprehensive methods of indirect study of the "value" of housing. Since housing is a heterogeneous commodity that not all its qualities are market valued in the process of supply and demand, it is necessary to have methods to measure the non-market benefits of housing. The Hedonic model is one of the models in this field. The present meta-analysis in line with the above, showed that the explanatory indicators of the value of urban housing are related to seven main categories that have broad topics at the heart of each category under the concept. The existence of 350 hidden concepts and 5883 identified codes (taking into account the frequency) in the reviewed studies, shows that despite the long time that has passed since the emergence of the Hedonic model, there is no unified theoretical consensus on the indicators of urban housing value. It can be seen that the researchers have included indicators in estimating the value of urban housing in the Hedonic model according to the purpose; Where the goal has been to estimate social values, the share of social variables has become stronger, while the goal has been to estimate the effects of proximity to public transportation hubs, proximity to public transportation has gained a greater share of variables. Although the output of the Hedonic model does not have the same effect of the indicators that explain the value of urban housing, but researchers have entered similar indicators into the model according to the purpose.

So, in the explanatory model of value, various dimensions, indicators and components are presented that should be considered in the housing planning process to be able to fulfill value housing planning in the process of urban housing development management as a new and comprehensive approach. The end result of this process is an approach that considers housing planning in accordance with the needs and demands of the target community and the values that govern their community, and presents the development of urban housing beyond the common plans and connected to a comprehensive, multifaceted, interdisciplinary and interactive value-based approach. Urban housing planning is not just about the structural-physical features of the building and it should be seen with a set of economic, socio-cultural, environmental, and environmental and other indicators.

In conclusion, it can be argued that since the Hedonic model measures non-market interests and does it indirectly, it seems that the preferences of the individuals shaping this value cause the inherent desire of the individuals and their preference for maximizing their own interests and somehow seeking the maximum benefit from the material benefits of life, makes the role of economic indicators and components in the model significant. The results of the model often double the share of structural-physical variables such as "area" and "floor area", which can also be considered as "financial" in the housing market (for example, the specific price per square meter of housing). However, none of the ancillary housing services are free, and more detailed studies of how they affect housing value can be modeled. The present study pays more attention to the valuing indicators of housing that have been considered in Hedonic studies, but other studies with appropriate scope can be done around significant indicators as the output of the Hedonic model.
Acknowledgement

This article has been extracted from the doctoral dissertation of Islamic urban planning under the guidance of the second author (supervisor) and consultation with third and fourth authors (consulting professors) at Tabriz Islamic Art University.

References

Bover, Olympia & Velilla, Pilar (2002), hedonic house prices without characteristics: the case of new multiunit housing, working paper No. 117, presented at the workshop on "issues in the measurement of price indices", held at the European central bank , Germany, pp 4-51.

Czembrowski, Piotr & Kronenberg, Jakub (2016), Hedonic pricing and different urban green space types and sizes: Insights into the discussion on valuingecosystem services, Landscape and Urban Planning, 146, pp 11-19.

Herath, s.k & Maier, G. (2010), The hedonic price method in real estate and housing market research: a review of the literature, Institute for Regional development and environment, Vienna, Austria: University of Economics and Business, pp 1-21.

Hu, Lirong & He, Shenjing & Han, Zixuan & Xiao, He & Su, Shiliang & Weng, Min & Cai, Zhongliang (2019), Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies, Land Use Policy, 82, PP 657–673.

Paez, Antonio (2009), Recent research in special real estate hedonic analysis, Journal of Geographical Systems, no11, pp311-316.

Poudyal, Neelam C. & Hodges, Donald G. & Merrett, Christopher D. (2009), A hedonic analysis of the demand for and benefits of urban recreation parks, Land Use Policy, 26, pp 975–983.

Tian, Guang & Wei, Yehua Dennis & Li, Han (2017), Effects of accessibility and environmental health risk on housing prices: a case of Salt Lake County, Utah, Applied Geography, 89, pp 12–21.

Trojanek, Radoslaw & Gluszak, Michal, (2017), Spatial and time effect of subway on property prices, Search Results Web results Journal of Housing and the Built Environment, springer, DOI 10.1007/s10901-017-9569-y.

Yoon, Heeyeun, (2017), Transforming the economic value of hillside housing- A case study of Seoul, South Korea, Urban Forestry and Urban Greening, 24, pp 35-44.

Zhang, Lei & Yi, Yimin (2017), Quantile house price indices in Beijing, Regional Science and Urban Economics, 63, pp 85–96.
