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1. Introduction 

Integrodifferential equations occur in many areas of applied mathematics such as inventory science, electrical 

engineering, biomathematical, and solid state physics which can be categorized into two type: Fredholm and Volterra 

Integrodifferential equations. The Volterra equations possess variable at the upper bound limit while the Fredholm 

equation possess a fixed bound of limits [1-3]. Generally, the study of integral and integrodifferential equations have an 

important role in investigating and understanding the physical phenomenon in many fields of applied sciences and 

engineering which are modeled by partial differential equations, ordinary differential equations, integral equations, and 

integrodifferential equations of different orders.  

In this paper, we consider the nth-order Fredholm integrodifferential equation of the form: 

 
𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
+ 𝑓(𝑡)𝑦(𝑡) = ∫ 𝑘(𝑥, 𝑡)

𝑑𝑚𝑦(𝑥)

𝑑𝑥𝑚

𝜑

𝑎

𝑑𝑥 + ℎ(𝑡)           𝑚 < 𝑛                           (1) 

 

with initial conditions: 

                  

{
 
 

 
 

𝑦(𝑎) = Ω0
𝑦/(𝑎) = Ω1
𝑦//(𝑎) = Ω2

⋮
𝑦(𝑛−1)(𝑎) = Ω𝑛−1

                                                                                    (2) 

 

Abstract: In this paper, we seek to build and apply an exponentially fitted collocation algorithm (EFCA) for the 

solutions of nth-order Fredholm type integrodifferential equations. For this purpose, an EFCA was formulated and 

applied to solve four examples from the literature. Numerical experiment was performed and the results were 

compared with the exact solutions, and some existing methods. From the four examples considered, the results 

obtained showed that the proposed algorithm is fast, efficient, and reliable. 

 

 

Keywords: Fredholm integrodifferential equations, exponentially fitted collocation algorithm, four examples, exact 
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Where 𝜑, Ω0, Ω1, Ω2. . , Ω𝑛−1 are real constants, 𝑛 𝑎𝑛𝑑 𝑚 are integers,  𝑘(𝑥, 𝑡) is the kernel function, and 𝑓(𝑡),
ℎ(𝑡) are smooth functions. 

In the last two decades, some authors have proposed and applied several numerical techniques to solve Fredholm 

type of Integrodifferential equations, among which [4] proposed and used a polynomial method to solve Fredholm 

integrodifferential equations with coefficient constants, Authors [5] presented a modified homotopy perturbation method 

for the numerical solutions of the nonlinear Fredholm integral equation, [6] a numerical technique proposed and applied 

to solve Fredholm type integrodifferential equations, [7] conjugate gradient method was used to solve first-order 

Fredholm integrodifferential equations, [8] proposed and employed  Legendre Galerkin method for the numerical 

solutions of linear differentials Fredholm integrodifferential equations, numerical solutions for the Fredholm 

integrodifferential equations with arbitrary polynomial bases by Tau method was presented in [9], Authors [10] used the 

general minimum remainder method for the numerical solutions of the second-order linear Fredholm integrodifferential 

equations, [11] built a direct computational algorithm for the numerical solutions of system of Fredholm 

integrodifferential equations, [12] used trigonometric scaling functions for the numerical solutions of the second-order 

linear Fredholm integrodifferential equations, and [13] employed power series for the numerical solutions of second-

order Fredholm linear  integral equations. In this paper, we seek to extend the numerical method proposed by [14] to 

solve Fredholm integrodifferential equations of nth-order and compare with exact solutions and some available methods 

in the literatures. 

 

2. Description of Exponentially Fitted Collocation Method (EFCM) 

The idea is to consider the power series as a basis function of the form 

 

𝒚(𝒕) = ∑𝒛𝒌

𝑵

𝒌=𝟎

𝒕𝒌                                                                           (𝟑) 

 

And Exponentially fitted approximate solution of the form 

 

𝒚(𝒕) ≈ ∑𝒛𝒌

𝑵

𝒌=𝟎

𝒕𝒌  + 𝒆𝒕                                                                (𝟒) 

 

Taking the nth derivate of equation (3) and substitute into equation (1), we have 

 

∑𝒛𝒌

𝑵

𝒌=𝟏

𝒌(𝒌 − 𝟏)(𝒌 − 𝟐)… (𝒌 − 𝒏)𝒕𝒌 + 𝑓(𝑡)∑𝒛𝒌

𝑵

𝒌=𝟎

𝒕𝒌  = ∫ 𝑘(𝑥, 𝑡)
𝜑

𝑎

∑𝒛𝒌

𝑵

𝒌=𝟏

𝒌(𝒌 − 𝟏)(𝒌 − 𝟐)… (𝒌 −𝒎)𝒙𝒌𝑑𝑥 + ℎ(𝑡)     (5) 

 

 

Slightly perturb and collocate equation (5) respectively, we have 

∑𝒛𝒌

𝑵

𝒌=𝟏

𝒌(𝒌 − 𝟏)(𝒌 − 𝟐)… (𝒌 − 𝒏)𝒕𝒌 + 𝑓(𝑡)∑𝒛𝒌

𝑵

𝒌=𝟎

𝒕𝒌 −∫ 𝑘(𝑥, 𝑡)
𝜑

𝑎

∑𝒛𝒌

𝑵

𝒌=𝟏

𝒌(𝒌 − 𝟏)(𝒌 − 𝟐)… (𝒌 −𝒎)𝒙𝒌𝑑𝑥 − 𝑻𝑵(𝒕𝒊)𝝉𝟏

− 𝑻𝑵(𝒕𝒊)𝝉𝟐 − 𝑻𝑵(𝒕𝒊)𝝉𝟑 −⋯− 𝑻𝑵(𝒕𝒊)𝝉𝒏−𝟏 − ℎ(𝑡) = 0                                  (6) 
 

 

 

Here 𝝉𝟏, 𝝉𝟐, 𝝉𝟑, 𝝉𝒏−𝟏 are free tau parameter to be determined, 𝑻𝑵(𝒕𝒊) are the Chebyshev polynomials of degree N 

suggested by [16] 

 

𝒕𝒊 = 𝒂 +
(𝒃 − 𝒂)𝒊

𝑵 + 𝟐
; 𝒕 = 𝟏, 𝟐, 𝟑,… ,𝑵 + 𝟏                                   (𝟕) 

 

Hence, equation (6) gives rise to (N+n+1) algebraic linear system of equations in (N+n+2) unknown constants. The 

extra equations are obtained from the initial conditions given in equation (2) 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑦(𝑎) ≈ ∑𝑧𝑘

𝑁

𝑘=0

𝑡𝑘  + 𝑒𝑡0 = Ω0

𝑦/(𝑎) = ∑𝑘𝑧𝑘

𝑁

𝑘=1

𝑡𝑘−1  + 𝑒𝑡0 = Ω1

𝑦//(𝑎) = ∑𝑘(𝑘 − 1)𝑧𝑘

𝑁

𝑘=2

𝑡𝑘−2  + 𝑒𝑡0 = Ω2

. .

. .

𝑦(𝑛−1)(𝑎) = ∑ 𝑘(𝑘 − 1)(𝑘 − 𝑛 − 1)𝑧𝑘

𝑁

𝑘=𝑛−1

𝑡𝑘−𝑛−1  + 𝑒𝑡0 = Ω𝑛−1

     (8) 

 

 

Altogether, we obtained (𝑁 + 𝑛 + 1) algebraic linear equations in (𝑁 + 𝑛 + 1)  unknown constants. Thus, we put the 

(𝑁 + 𝑛 + 1) algebraic equations in matrix form as 

     
QY = H(t)                                                     (9) 

 

Where Q is a square matrix, Y = [𝑦0, 𝑦1, 𝑦2, 𝑦3, … 𝑦𝑁, 𝜏1 , 𝜏2, 𝜏3, . . , 𝜏𝑁  ]
𝑇 and H(t) = [ℎ(𝑡0), ℎ(𝑡1), ℎ(𝑡2), ℎ(𝑡3), . . , ℎ(𝑡𝑁) ]

𝑇 

 

We use Gaussian elimination method to obtain the unknown constants 𝑦0, 𝑦1, 𝑦2, 𝑦3, … 𝑦𝑁, 𝜏1, 𝜏2, 𝜏3, . . , 𝜏𝑁  and 

substitute into the exponential fitted approximate solution (4) to obtain unknown coefficients. 

 

2.1 Exponentially Fitted Collocation Algorithm (EFCA) 

In order to automate the mathematical procedures and reduce the computational length of the description given in 

section 2.0, we therefore propose a five-step algorithm (EFCA) using the MAPLE 18 software package to solve nth-order 

Fredholm integrodifferential equation (1) as follows: 

 

Step1:  

withplot: 

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ ℝ+; 

𝜑 ≔ ℝ+; 

𝐻 ≔ ℝ+; 
𝑎 ≔ [−1, 0]; 

𝑚 ≔ 𝑜𝑟𝑑𝑒𝑟  𝑜𝑓 𝐹𝐼𝐷𝐸; 

𝑛 ≔ 𝑜𝑟𝑑𝑒𝑟  𝑜𝑓 𝐹𝐼𝐷𝐸 ; 
𝒇𝒐𝒓 𝒊 𝒇𝒓𝒐𝒎 𝟏 𝒕𝒐  𝐻 𝒅𝒐 

𝑔[𝑖] ≔ ∫ 𝑘(𝑥, 𝑡)
𝜑

𝑎

∗ 𝑦(𝑚)[𝑖]𝑑𝑡; 

𝑎[𝑖] ≔ 𝑣𝑎𝑙𝑢𝑒(𝑔[𝑖]); 
end do 

 

Step 2: 

𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≔ 𝑡𝑖; 
𝑣 ≔ 𝑠𝑢𝑚 (𝑦[𝑖] ∗ 𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖 = 0. . , 𝐻); 

𝑧[0] ≔ 𝑒𝑣𝑎𝑙(𝑣, 𝑡 = 0); 
𝑧[1] ≔ 𝑒𝑣𝑎𝑙(𝑑𝑖𝑓𝑓(𝑣, 𝑡), 𝑡 = 0); 
𝑧[2] ≔ 𝑒𝑣𝑎𝑙(𝑑𝑖𝑓𝑓(𝑣, 𝑡$2), 𝑡 = 0); 
𝑧[3] ≔ 𝑒𝑣𝑎𝑙(𝑑𝑖𝑓𝑓(𝑣, 𝑡$3), 𝑡 = 0); 

    ⋮                            ⋮ 
𝑧[𝑛 − 1] ≔ 𝑒𝑣𝑎𝑙(𝑑𝑖𝑓𝑓(𝑣, 𝑡$𝑛 − 1), 𝑡 = 0); 

𝑇[0] ≔ 1; 
𝑇[1] ≔ 2 ∗ 𝑡 + 1; 

𝒇𝒐𝒓 𝒏 𝒇𝒓𝒐𝒎 𝟏 𝒕𝒐  𝐻 𝒅𝒐 

𝑇[𝑛 + 1] ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(2 ∗ (2 ∗ 𝑡 − 1) ∗ 𝑇[𝑛] − 𝑇[𝑛 − 1]); 
end do; 
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Step 3: 

𝑌 ≔ 𝑡𝑁; 
𝒇𝒐𝒓 𝒊 𝒇𝒓𝒐𝒎 𝟎 𝒕𝒐  𝑯 𝒅𝒐 

𝑃 ≔ (
𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
− 𝑓(𝑡) ∗ 𝑦(𝑡) − 𝑎[𝑖]) ∗ 𝑦(𝑖); 

𝐴[𝑖] ≔ 𝑒𝑣𝑎𝑙(𝑃, 𝑁 = 𝑖); 
do 

𝑋:= (𝑠𝑢𝑚(𝐴[𝑗], 𝑗 = 0…𝑁) − 𝑠𝑢𝑚(𝑇[ 𝑝 − 𝑘] ∗ 𝜏[𝑘 + 1], 𝑘 = 0…𝑛 − 1)) = 𝑔(𝑡); 

𝒇𝒐𝒓 𝒎 𝒇𝒓𝒐𝒎 𝟏 𝒕𝒐  𝑁 + 1 𝒅𝒐 

𝑒𝑞𝑛[𝑟] ≔ 𝑒𝑣𝑎𝑙 (𝑇, 𝑡 =
𝑟

𝐻 + 2
) ; 

𝒆𝒏𝒅 𝒅𝒐 

𝑒𝑞𝑛[𝐻 + 2] ≔ 𝑧[0] + 𝑒𝑎𝜏[𝑛] = Ω0;  
𝑒𝑞𝑛[𝐻 + 3] ≔ 𝑧[1] + 𝑒𝑎𝜏[𝑛] = Ω1; 

𝑒𝑞𝑛[𝐻 + 4] ≔ 𝑧[2] + 𝑒𝑎𝜏[𝑛] = Ω2; 
   ⋮                                         ⋮ 

𝑒𝑞𝑛[𝐻 + 𝑛 + 1] ≔ 𝑧[𝑛 − 1] + 𝑒𝑎𝜏[𝑛] = Ω𝑛−1; 
 

Step 4: 

𝑠𝑦𝑠 ≔ 𝑠𝑒𝑞(𝑒𝑞𝑛[𝑖], 𝑖 = 1…  𝐻 + 𝑛 + 1); 

𝑠𝑜𝑙 ≔ 𝑒𝑣𝑎𝑙𝑓(𝑠𝑜𝑙𝑣𝑒({𝑠𝑦𝑠})); 

𝑄 ≔ 𝑒𝑣𝑎𝑙([𝑠𝑒𝑞(𝑦[𝑖], 𝑖 = 0…  𝐻), 𝜏[𝑛]], 𝑠𝑜𝑙); 

𝑓𝑜𝑟 𝑟 𝑓𝑟𝑜𝑚 1 𝑡𝑜  𝐻 𝑑𝑜 

𝑦[ 𝑟] ≔ 𝑄[𝑟 + 1]; 
𝑒𝑛𝑑 𝑑𝑜 

𝜏[ 𝑛] ≔ 𝑄[𝑝 + 2]; 
 

Step 5: 

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ≔ 𝑠𝑢𝑚(𝑦[𝑗] ∗ 𝑡𝑗 , 𝑗 = 0…𝐻) + 𝜏[𝑛] ∗ 𝑡; 
𝑓𝑜𝑟 𝑡 𝑓𝑟𝑜𝑚 0 𝑏𝑦 0.1 𝑡𝑜 1 𝑑𝑜 

𝐸𝐹𝐶𝐴[𝑡] ≔ 𝑒𝑣𝑎𝑙𝑓 (𝑒𝑣𝑎𝑙(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑡); 
𝑒𝑛𝑑 𝑑𝑜 

[2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑝𝑙𝑜𝑡([𝐸𝑥𝑎𝑐𝑡, 𝐸𝐹𝐶𝐴], 𝑡 = 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒 = 𝐹𝐼𝐷𝐸); 
[2𝐷𝑝𝑙𝑜𝑡] ≔ 𝑙𝑜𝑔𝑝𝑙𝑜𝑡([𝐸𝑥𝑎𝑐𝑡, 𝐸𝐹𝐶𝐴], 𝑡 = 0…1, 𝑐𝑜𝑙𝑜𝑟[𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑], 𝑎𝑥𝑒𝑠 = 𝑏𝑜𝑥𝑒𝑑, 𝑡𝑖𝑡𝑙𝑒 = 𝐹𝐼𝐷𝐸); 

 

Output: = see Tables 1,2,3,4 and Figs. 1, 2,3,4,5,6,7,8. 

 

2.2 Absolute Errors 𝑬𝒕 

To show the effectiveness of the algorithm presented, four examples are considered and the results are compared 

with the exact solution and available methods. We define the absolute errors as follow: 

  

𝐸𝑡 = |𝑦(𝑡𝑒) − 𝑦(𝑡𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)|                             (10)   
 

Where 𝑦(𝑡𝑒)  and𝑦(𝑡𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)  are exact and approximate solutions of the given Fredholm integrodifferential 

equations respectively. 

 

3. Numerical Examples 

In this section, four examples are considered to demonstrate the effectiveness of the proposed technique and results 

obtained are compared with exact solutions by evaluating the maximum absolute errors. 

 

Example 1. Consider the first-order Fredholm integrodifferential equation [15]. 

                        𝑦/(𝑡) = 𝑡𝑒𝑡 + 𝑒𝑡 − 𝑡 + ∫ 𝑡𝑦(𝑥)𝑑𝑥
1

0
                                                   (11) 

 

with initial condition 

                                        𝑦(0) = 0                                                                                      (12)   
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Exact solution 

                                       𝑦(0) = 𝑡𝑒𝑡                                                                             (13)  
              

Table 1 - Numerical solutions for example 1 

t 𝑦(𝑡𝑒) 𝐸𝐸𝐹𝐶𝐴 𝐸𝐴𝐷𝑀 [15]  𝐸𝑉𝐼𝑀 [15] 

0 0.000000 0.0E-00 0.0E-00 0.0E-00 

0.1 0.110517 1.7E-09 3.0E-09 3.0E-09 

0.2 0.244280 6.6E-09 1.2E-09 1.2E-09 

0.3 0.404957 1.5E-08 2.7E-08 2.7E-08 

0.4 0.596729 2.6E-08 4.8E-08 4.8E-08 

0.5 0.824360 4.1E-08 7.4E-08 7.4E-08 

0.6 1.093271 5.9E-08 1.1E-07 1.1E-07 

0.7 1.409626 8.1E-08 1.5E-07 1.7E-07 

0.8 1.780432 1.1E-07 1.9E-07 1.9E-07 

0.9 2.213643 1.3E-07 2.4E-07 2.4E-07 

1.0 2.718282 1.6E-07 2.9E-07 2.9E-07 

 

Example 2. Consider the second-order Fredholm integrodifferential equation [17]. 

 

𝑦//(𝑡) + 𝑡𝑦/(𝑡) − 𝑦(𝑡) = 𝑒𝑡 − 2sin (𝑡) + ∫𝑒𝑥sin (𝑡)𝑦(𝑥)𝑑𝑥

1

−1

                     (14) 

 

with initial conditions 

 

                                 {
𝑦(0) = 1

𝑦/(0) = 1
                                                                                  (15)   

  

Exact solution 

                                            𝑦(𝑡) = 𝑒𝑡                                                                            (16)         
         

 

Table 2 - Numerical solutions for example 2 

t 𝐸𝐸𝐹𝐶𝐴 𝐸𝑀𝑇𝐸𝑀 [17] 𝐸𝑇𝐸𝑀 [17] 

-1.0 1.04E-04 8.2E-04 1.1E-03 

-0.8 2.42E-05 4.6E-04 4.2E-04 

-0.6 3.76E-06 2.1E-04 1.2E-04 

-0.4 1.79E-07 6.4E-05 2.1E-05 

-0.2 3.62E-08 8.1E-06 4.6E-07 

0.0 0.00E-00 ---- ---- 

0.2 5.74E-08 8.2E-06 8.2E-06 

0.4 3.76E-07 6.4E-05 1.4E-04 

0.6 1.18E-06 2.1E-05 9.2E-04 

0.8 1.64E-06 4.7E-04 3.9E-03 

1.0 4.87E-06 8.7E-04 1.3E-02 

--- Not available for comparison 

 

Example 3. Consider the third-order Fredholm integrodifferential equation [19] 

 

                                 𝑦///(𝑡) = sin(𝑡) + 𝑡 − ∫ 𝑥𝑡𝑦/(𝑥)𝑑𝑥
𝜋

2
0

                                          (17) 
 

with initial conditions 
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{

𝑦(0) = 1

𝑦/(0) = 0

𝑦//(0) = −1

                                                                                      (18) 

     

Exact solution 

        𝑦(𝑡) = cos (𝑡)                                                                              (19) 
                

Table 3 - Numerical solutions for example 3 

t 𝑦(𝑡𝑒) 𝐸𝐸𝐹𝐶𝐴 𝐸𝑉𝐼𝑀 [19] 

0 1.00000 0.0E-00 0.0E-00 

0.1 0.99500 2.5E-17 --- 

0.2 0.98007 3.9E-16 6.9E-08 

0.3 0.95534 1.9E-15 --- 

0.4 0.92106 6.2E-15 1.1E-06 

0.5 0.87758 1.4E-14 --- 

0.6 0.82534 2.7E-14 5.7E-06 

0.7 0.764842 4.1E-14 --- 

0.8 0.696707 4.5E-14 1.8E-05 

0.9 0.621609 1.3E-14 --- 

1.0 0.540302 9.8E-14 4.4E-05 

--- Not available for comparison 

 

Example 4. Consider the eight-order Fredholm integrodifferential equation [19]. 

𝑦𝑉///(𝑡) = −8𝑒𝑡 + 𝑡2 + 𝑦(𝑡) + ∫𝑡2𝑦/(𝑥)𝑑𝑥

1

0

                                      (20) 

with initial conditions  

                         

{
 
 
 
 

 
 
 
 

𝑦(0) = 1

𝑦/(0) = 0

𝑦//(0) = −1

𝑦///(0) = −2

𝑦/𝑉(0) = −3

𝑦𝑉(0) = −4

𝑦𝑉/(0) = −5

𝑦𝑉//(0) = −6

                                                                                        (21) 

 

  Exact solution 

                𝑦(𝑡) = (1 − 𝑡)𝑒𝑡                                                                                                  (22)    
      

Table 4 - Numerical solutions for example 4 

t 𝑦(𝑡𝑒) 𝐸𝐸𝐹𝐶𝐴 𝐸𝑉𝐼𝑀 [19] 

0 1.000000 0.0E-00 0.0E-00 

0.1 0.9946534 9.9E-18 --- 

0.2 0.9771222 1.1E-17 1.1E-16 

0.3 0.9449012 1.3E-17 --- 

0.4 0.8950948 7.5E-18 1.2E-14 

0.5 0.8243606 3.9E-17 --- 

0.6 0.7288475 1.4E-15 6.6E-13 

0.7 0.6041258 4.1E-15 --- 

0.8 0.4451082 1.1E-14 1.2E-11 

0.9 0.2459603 2.5E-14 --- 

1.0 0.0000000 5.6E-14 1.1E-10 

--- Not available for comparison 
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4. Results and Discussions 

 

 

Fig. 1 - Depict comparison between exact and exponentially fitted collocation algorithm solutions on interval 0 ≤
𝑡 ≤ 5 for example 1 

 

 

Fig. 2 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solutions on 

interval 0 ≤ 𝑡 ≤ 5 for example 1 
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Fig. 3 - Depict comparison between exact and exponentially fitted collocation algorithm solutions on interval 0 ≤
𝑡 ≤ 5 for example 2 

 

 

 

Fig. 4 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solutions on 

interval 0 ≤ 𝑡 ≤ 5 for example 2 
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Fig. 5 - Depict comparison between exact and exponentially fitted collocation algorithm solutions Example 3 

 

 

Fig. 6 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solution on 

interval 0 ≤ 𝑡 ≤ 5 for example 3 
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Fig. 7 - Depict comparison between exact and exponentially fitted collocation algorithm solutions on interval 0 ≤
𝑡 ≤ 5 for example 4 

 

 

Fig. 8 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solutions on 

interval 0 ≤ 𝑡 ≤ 5 for example 4 

 

5. Conclusion 

In this paper, we have demonstrated the feasibility of the newly formulated exponentially collocation algorithm for 

the numerical solutions of the nth-order Fredholm's integrodifferential equations. Comparing the exact solutions and 

some of the techniques available in the literatures with EFCA indicated that the presented algorithm is efficient and 

simple. Furthermore, approximate solutions are obtained and presented in graphical form (see Tables 1, 2, 3, 4) and Figs. 

(1, 2, 3, 4, 5, 6, 7, 8) which demonstrated that the proposed algorithm gives solutions that comprisable with exact solutions 

and some existing methods available in literatures. All computations work was performed using the MAPLE 18 software 

package.   
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Appendix:  

Example 4 

Step 1: 

  

 

 

 
Step 2:  

Step 3: 
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Step 4: 

 

 
 

 

Step 5: 
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