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Abstract: In this paper, we seek to build and apply an exponentially fitted collocation algorithm (EFCA) for the
solutions of nth-order Fredholm type integrodifferential equations. For this purpose, an EFCA was formulated and
applied to solve four examples from the literature. Numerical experiment was performed and the results were
compared with the exact solutions, and some existing methods. From the four examples considered, the results
obtained showed that the proposed algorithm is fast, efficient, and reliable.
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1. Introduction

Integrodifferential equations occur in many areas of applied mathematics such as inventory science, electrical
engineering, biomathematical, and solid state physics which can be categorized into two type: Fredholm and Volterra
Integrodifferential equations. The Volterra equations possess variable at the upper bound limit while the Fredholm
equation possess a fixed bound of limits [1-3]. Generally, the study of integral and integrodifferential equations have an
important role in investigating and understanding the physical phenomenon in many fields of applied sciences and
engineering which are modeled by partial differential equations, ordinary differential equations, integral equations, and
integrodifferential equations of different orders.

In this paper, we consider the nth-order Fredholm integrodifferential equation of the form:

n [ m
YO | o) = f ko2 ey m<n o))
atn a dx™
with initial conditions:
y(a) = Q
y/(a) =,
y//(@) = Q, (2)
y(n—l)(a.) =0y
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Where @, Q,, Q,,Q,..,Q,_, are real constants, n and m are integers, k(x, t) is the kernel function, and f (t),

h(t) are smooth functions.

In the last two decades, some authors have proposed and applied several numerical techniques to solve Fredholm
type of Integrodifferential equations, among which [4] proposed and used a polynomial method to solve Fredholm
integrodifferential equations with coefficient constants, Authors [5] presented a modified homotopy perturbation method
for the numerical solutions of the nonlinear Fredholm integral equation, [6] a numerical technique proposed and applied
to solve Fredholm type integrodifferential equations, [7] conjugate gradient method was used to solve first-order
Fredholm integrodifferential equations, [8] proposed and employed Legendre Galerkin method for the numerical
solutions of linear differentials Fredholm integrodifferential equations, numerical solutions for the Fredholm
integrodifferential equations with arbitrary polynomial bases by Tau method was presented in [9], Authors [10] used the
general minimum remainder method for the numerical solutions of the second-order linear Fredholm integrodifferential
equations, [11] built a direct computational algorithm for the numerical solutions of system of Fredholm
integrodifferential equations, [12] used trigonometric scaling functions for the numerical solutions of the second-order
linear Fredholm integrodifferential equations, and [13] employed power series for the numerical solutions of second-
order Fredholm linear integral equations. In this paper, we seek to extend the numerical method proposed by [14] to
solve Fredholm integrodifferential equations of nth-order and compare with exact solutions and some available methods
in the literatures.

2. Description of Exponentially Fitted Collocation Method (EFCM)
The idea is to consider the power series as a basis function of the form

N

YO = 2tk ®

k=0
And Exponentially fitted approximate solution of the form

N
YO =)zt +et O)
k=0

Taking the nth derivate of equation (3) and substitute into equation (1), we have

N

N 1) N
Z Zik(k — 1) (k — 2) ... (k — )tk + £(£) Z ztk = f k(x, ) Z 2 k(k — Dk —2) ... (k — m)xkdx + h(t) (5)
k=0 k=1

k=1 a

Slightly perturb and collocate equation (5) respectively, we have
N N N
®
Z zik(k — 1) (k — 2) ... (k — )tk + £(©) Z zth— j k(x,t) z 2 k(k — Dk — 2) ... (k — m)xkdx — Ty (t,)7,
a k=1

=1 %=0 =
—Ty()Ty — Tn(t)T3 — - — Ty(t)Tuq — h(£) =0 (6)

Here 4, 75, T3, T,_1 are free tau parameter to be determined, Ty (t;) are the Chebyshev polynomials of degree N
suggested by [16]

_ (b-wi
i=etTNT

;t=1,2,3,..,N+1 (7

Hence, equation (6) gives rise to (N+n+1) algebraic linear system of equations in (N+n+2) unknown constants. The
extra equations are obtained from the initial conditions given in equation (2)
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N

y(a) ~ sz th +eto=Q,
k=0
y/(a) = Z kzy th=1 +efo =,
k=1
®)
Y/ (@) = Z k(k — Dz 572 +eto = Q,
k=2
N
Y@= D k(=10 —n— Dz th T 4 el =0,
k=n-1

Altogether, we obtained (N + n + 1) algebraic linear equations in (N + n + 1) unknown constants. Thus, we put the
(N +n + 1) algebraic equations in matrix form as

QY = H(®) €)]
Where Q is a square matrix, Y = [y, ¥1, Y2, ¥3» - Yn> T1, T2, T35 -, Ty 1T @Nd H(Y) = [h(ty), h(t1), h(t,), h(t3),.., h(tx) 1T

We use Gaussian elimination method to obtain the unknown constants yq, y1, v2, V3, ... ¥, T1, T2, T3, ., Ty and
substitute into the exponential fitted approximate solution (4) to obtain unknown coefficients.

2.1 Exponentially Fitted Collocation Algorithm (EFCA)

In order to automate the mathematical procedures and reduce the computational length of the description given in
section 2.0, we therefore propose a five-step algorithm (EFCA) using the MAPLE 18 software package to solve nth-order
Fredholm integrodifferential equation (1) as follows:

Stepl:

withplot:

Digits = R™;

¢ =R*;
H = R";
a = [1,0];

n = order of FIDE ;

forifrom 1to Hdo

fkua*fmn
ali] == value(g[i]);

m := order of FIDE,

end do

Step 2:
basis function = t';
v := sum (y[i] * basis function,i = 0..,H);
z[0] == eval(v,t = 0);
z[1] = eval(diff (v,t),t = 0);
z[2] = eval(dif f (v, t$2),t = 0);
z[3] = eval(dif f (v, t$3),t = 0);

z[n — 1] == eval(dif f (v, t$n — 1), t = 0);
T[0] := 1;
T[1]:=2*t+1;
forn from1to Hdo
T[n+ 1] = simplify(2 « 2+t — 1) * T[n] — T[n — 1]);
end do;
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Step 3:
Y = tV;
forifromOto Hdo
P = (52 = F© *¥(© - ali]) * (@)
Ali] == eval(P,N =1i);
do
X:= (sum(A[j],j =0..N)—sum(T[p—k]*t[k+1],k=0..n— 1)) =g();
form from1lto N + 1do
eqn[r] = eval (T, t=

end do
eqn[H + 2] := z[0] + e%1[n] = Q;

r
T2

eqn[H + 3] := z[1] + e%t[n] = Qq;
eqn[H + 4] == z[2] + e%t[n] = Qy;

eqn[H +n+ 1] = z[n — 1] + e%t[n] = Q,_5;

Step 4:
sys == seq(eqnlil,i=1.. H+n+ 1);
sol = evalf(solve({sys}));
Q= eval([seq(y[i],i =0.. H),T[n]],sol);
forr from1lto Hdo

ylr]=Q[r+1];
end do

t[n] = Qlp +2[;

Step 5:
solution = sum(y[jl «t/,j = 0..H) + 7[n] * t;
fort from0by0.1to1do
EFCA[t] := evalf (eval(solution, t);
end do
[2Dplot] := plot([Exact, EFCA],t = 0...1, color[blue, red], axes = boxed, title = FIDE);
[2Dplot] := logplot([Exact, EFCA],t = 0...1, color[blue,red], axes = boxed, title = FIDE);

Output: = see Tables 1,2,3,4 and Figs. 1, 2,3,4,5,6,7,8.

2.2 Absolute Errors E;

To show the effectiveness of the algorithm presented, four examples are considered and the results are compared
with the exact solution and available methods. We define the absolute errors as follow:

E, = |y(te) - y(tnumerical)l (10)

Where y(t,) and Y (tpumericar) are exact and approximate solutions of the given Fredholm integrodifferential
equations respectively.

3. Numerical Examples

In this section, four examples are considered to demonstrate the effectiveness of the proposed technique and results
obtained are compared with exact solutions by evaluating the maximum absolute errors.

Example 1. Consider the first-order Fredholm integrodifferential equation [15].
y/(t) = tet + et —t + fol ty(x)dx (11)

with initial condition

y(0) =0 (12)
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Exact solution

y(0) = tef (13)
Table 1 - Numerical solutions for example 1
t y(te) Egrca Eqpy [15] Eyy [15]
0 0.000000 0.0E-00 0.0E-00 0.0E-00
0.1 0.110517 1.7E-09 3.0E-09 3.0E-09
0.2 0.244280 6.6E-09 1.2E-09 1.2E-09
0.3 0.404957 1.5E-08 2.7E-08 2.7E-08
0.4 0.596729 2.6E-08 4.8E-08 4.8E-08
0.5 0.824360 4.1E-08 7.4E-08 7.4E-08
0.6 1.093271 5.9E-08 1.1E-07 1.1E-07
0.7 1.409626 8.1E-08 1.5E-07 1.7E-07
0.8 1.780432 1.1E-07 1.9E-07 1.9E-07
0.9 2.213643 1.3E-07 2.4E-07 2.4E-07
1.0 2.718282 1.6E-07 2.9E-07 2.9E-07

Example 2. Consider the second-order Fredholm integrodifferential equation [17].

1
y/1(t) + ty/ (t) — y(t) = et — 2sin(t) + f e*sin(t)y(x)dx (14)
“1

with initial conditions

{y(O) =1 (15)
y/(0) =1
Exact solution
y() = e (16)

Table 2 - Numerical solutions for example 2

t EEFCA EMTEM [17] ETEM [17]

-1.0 1.04E-04 8.2E-04 1.1E-03

-0.8 2.42E-05 4.6E-04 4.2E-04

-0.6 3.76E-06 2.1E-04 1.2E-04

-0.4 1.79E-07 6.4E-05 2.1E-05

-0.2 3.62E-08 8.1E-06 4.6E-07

0.0 0.00E-00 ----

0.2 5.74E-08 8.2E-06 8.2E-06

0.4 3.76E-07 6.4E-05 1.4E-04

0.6 1.18E-06 2.1E-05 9.2E-04

0.8 1.64E-06 4.7E-04 3.9E-03

1.0 4.87E-06 8.7E-04 1.3E-02
--- Not available for comparison
Example 3. Consider the third-order Fredholm integrodifferential equation [19]

T
y"(t) = sin(t) +t — [2 xty/ (x)dx (17)

with initial conditions
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y(0) =1
y/(0) =0
y7(0) = -1

Exact solution

y(t) = cos(t)

Table 3 - Numerical solutions for example 3

t y(te) Egrca Eyy [19]
0 1.00000 0.0E-00 0.0E-00
0.1 0.99500 2.5E-17 -

0.2 0.98007 3.9E-16 6.9E-08
0.3 0.95534 1.9E-15 -

0.4 0.92106 6.2E-15 1.1E-06
0.5 0.87758 1.4E-14 -

0.6 0.82534 2.7E-14 5.7E-06
0.7 0.764842 4.1E-14 -

0.8 0.696707 45E-14 1.8E-05
0.9 0.621609 1.3E-14 -

1.0 0.540302 9.8E-14 4.4E-05

--- Not available for comparison

Example 4. Consider the eight-order Fredholm integrodifferential equation [19].
1

yVII(t) = —8et + t2 + y(t) + f t2y/ (x)dx

with initial conditions

Exact solution

0

(y(0)=1
y/(0) =0
y/1(0) = -1
< y/// (0)=-2
" (0) = =3
y'(0) = —4
y"/(0) = -5
y(©) =(1-0)e’
Table 4 - Numerical solutions for example 4
t y(t,) Errca Eypy [19]
0 1.000000 0.0E-00 0.0E-00
0.1 0.9946534 9.9E-18
0.2 0.9771222 1.1E-17 1.1E-16
0.3 0.9449012 1.3E-17
04 0.8950948 7.5E-18 1.2E-14
0.5 0.8243606 3.9E-17
0.6 0.7288475 1.4E-15 6.6E-13
0.7 0.6041258 4.1E-15
0.8 0.4451082 1.1E-14 1.2E-11
0.9 0.2459603 2.5E-14
1.0 0.0000000 5.6E-14 1.1E-10

--- Not available for comparison
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4. Results and Discussions
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Fig. 1 - Depict comparison between exact and exponentially fitted collocation algorithm solutions on interval 0 <
t <5 for example 1

First order FIDE Logartlm w(f) Example 1

| Exact solutions === EFCA solutions|

Fig. 2 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solutions on
interval 0 < t < 5 for example 1
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Fig. 3 - Depict comparison between exact and exponentially fitted collocation algorithm solutions on interval 0 <
t < 5 for example 2
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Fig. 4 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solutions on
interval 0 < t < 5 for example 2
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054

Third order FIDE w(f) Example 3
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| == Exact solutions == EFCA solutions]

Fig. 5 - Depict comparison between exact and exponentially fitted collocation algorithm solutions Example 3
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Fig. 6 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solution on
interval 0 < t < 5 for example 3
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Eight arder FIDE w(f) Example 4

|== Exact solutions === EFCA solutions|

Fig. 7 - Depict comparison between exact and exponentially fitted collocation algorithm solutions on interval 0 <

t < 5 for example 4
IDQ_
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10-24
ID—J_
10-4_
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Eight arder FIDE L ogarthin ) Example 4

10-% T T T T T T T T 1

|== Exact solutions == EFCA solutions|

Fig. 8 - Depict logarithm comparison between exact and exponentially fitted collocation algorithm solutions on
interval 0 < t < 5 for example 4

5. Conclusion

In this paper, we have demonstrated the feasibility of the newly formulated exponentially collocation algorithm for
the numerical solutions of the nth-order Fredholm's integrodifferential equations. Comparing the exact solutions and
some of the techniques available in the literatures with EFCA indicated that the presented algorithm is efficient and
simple. Furthermore, approximate solutions are obtained and presented in graphical form (see Tables 1, 2, 3, 4) and Figs.
(1,2,3,4,5,6,7,8) which demonstrated that the proposed algorithm gives solutions that comprisable with exact solutions
and some existing methods available in literatures. All computations work was performed using the MAPLE 18 software
package.
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Appendix:

Example 4

Step 1:

restart : with(plots); Digits := 20;

[ animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot,
implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot,
listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple,
odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d,
polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions,
setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot|

Digits =20
H:=15:

forlfromOtoHdo

gll]:=Inf( P2-(1-47"),t=0.1):
all] = value( g[!]) :

end do:

Step 2:

basisfunction = X
v = sum(y[i]-basisfunction,i=0.H) :
z[0] = eval(v,x=0) :

z[ 1] = eval( diff (v, x),x=0) :
z[2] = eval( diff (v, x$2),x=0) :
z[3] = eval( diff (v, x$3),x=0) :
z[4] = eval( diff (v, x$4),x=0) :
z[5] = eval( diff (v, x$5),x=0) :
z[6] = eval( diff (v, x$6),x=0) :
z[7] = eval( diff (v, x$7),x=0) :

Step 3:

T[0] == 1:

T[1]=2x—1:

for nfrom 1 to Hdo T[n + 1] := simplify(2-(2-x — 1)-T[n] — T[n — 1]) : end do:
Ye=x":n:=38:

for i from 0 to H doP = (diff (Y,x$n) — Y)-y[i]: A[i] == eval(P,N=1i) : od:

X = sum(A[j1,j=0.H) - sum(T[H - k]-1[k + 11,k=0.n— 1) =-8-¢" +x*:

for mfrom 1to H + 1 doegn[m] := eval(L,x= ) :enddo:

m
H+2

40



eqn[ H+2] = z{0] + e -1[n] =1
eqn[ H+3] = z[1] + -1[n] =0
eqn| H+ 4] = z[2] + eo-‘t[n] =-1:
eqn[ H+ 5] = z[3] + eo-r[n] =-2:
eqn[ H+ 6] := z[4] + &-1[n] =-3 :
eqn[ H+ 7] = z[5] + &-1[n] =-4:
eqn[ H+ 8] = z[6] +-1[n] =-5:
eqn[ H+ 9] = z[7] + " 1[n] =6
Step 4:

sys = seq(egn[i],i=1.H+n+1):

sol == evalf (solve({sys})) :

Q = eval([seq(y[i],i=0.H),[n]],sol) :

for rfrom 0 to H do

sl = Olr+11:
end do:

tn] = Q[H+2]:

Step 5:
soll := sum(y[ j1-#,j=0..H) +t[n]-¢:

Falade et al., J. of Science and Technology Vol. 15 No. 1 (2023) p. 29-42

forx from 0 by 0.1 to 1 doEFCA[ x| = evalf(eval(soll, t=x)) end do:

Exact == evalf(1—1) -¢':

EFCA = (soll) :

yi=soll :

for nfrom O by0.1to 1 do

E[n] == evalf(eval(Exact, t =n));
Y[n] := evalf(eval(y,t=n));
Error[n] == abs(E[n]-Y[n]);
end do;

E,=1.

YO :=1.0000000000000000099

Error, = 991078

EO'1 :=0.99465382626808286232
Y, =0.99465382626308287299

Error, | =1.06710""7
E,, = 0.97712220652813586712

Y, , = 0.97712220652813587991

Errory,=127910""7

E, 5 = 0.94490116530320217280
Y, 5 = 0.94490116530320218025
Errory ,:=7.45107'%

E, , = 0.89509481858476219068
Y, 4 = 0.89509481858476212634

Error, , = 6.43410""7
E, 5 = 0.82436063535006407340
Y, 5 = 0.82436063535006368284

Error, s ==3.9056 107"
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E, ¢ = 0.72884752015620358996

Y, ¢ = 0.72884752015620217762

Error, o :=1.4123410°"
E,, == 0.60412581224114295648
Y, , == 0.60412581224113885570

Errory ,:=4.10078 10"
E, ¢ = 0.44510818569849352092
Y, g = 0.44510818569848296664

Errory g = 1.055428 10"
E, o = 0.24596031111569496638
Y, o = 0.24596031111566987981

Error, o :=2.508657 10"
E 10 = 0.
Y, o= -5.6102412445748 107
Error| ,=5.6102412445748 107
plot([ Exact, soll |, t =0 ..5, color = [ blue, red), axes = BOXED, title =" FIDE", labels = ["t",
" Eight order FIDE y(t) Example 4 "], labeldirections = [ HORIZONTAL,
VERTICAL));
logplot([ Exact, soll ],t =0 .5, color = [ blue, red], axes = BOXED, title =" FIDE", labels
=["t"," Eight order FIDE Logarthm y(¢) Example4 "], labeldirections

=[HORIZONTAL,
VERTICAL))
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