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Diabetes has become one of the most severe and prevalent chronic 
diseases, leading to life-threatening, costly, and disabling consequences 
and reduced life expectancy. Uncontrolled blood glucose (BG)  
conditions become a factor in diabetes mellitus sufferers, which then 
causes BG levels that are too high (hyperglycemia) and too low 
(hypoglycemia). People with Type 1 Diabetes Mellitus (T1DM) require 
long-term BG management to keep BG levels. Deep learning models 
using Continuous Glucose Monitoring (CGM) data to monitor and 
regulate BG concentrations in diabetic patients with prediction values to 
prevent hypoglycemia and hyperglycemia is very important. Based on 
some of the latest research, the deep learning Temporal Fusion 
Transformer (TFT) model is considered an approach method with 
superior performance in time-series prediction. Therefore, in this study, 
two TFT models, the TFT and AutoTFT univariate models, were 
proposed for the time-series BG prediction for T1DM patients. In this 
study, the two proposed TFT models with two baseline models, were 
trained and tested on the ShanghaiT1DM dataset. The proposed and 
baseline models were trained using manual and auto-tuning 
hyperparameters with Optuna on cross-validation for prediction 
horizons (PHs) of 30 and 60 minutes, respectively. The performance 
metrics used to evaluate the models were mean absolute error (MAE), 
mean absolute percentage error (MAPE), and root mean squared error 
(RMSE). As a result, the TFT model is superior to the baseline LSTM 
model, also the proposed AutoTFT models achieved the smallest MAE, 
MAPE, and RMSE  for both 30 and 60-minute PHs, respectively of all 
models used. Besides, the BG prediction results with 30-minute PHs are 
better than those with 60-minute PHs for all the models. This shows 
that the AutoTFT model stands as a promising tool for the accurate 
prediction of adverse glycemic events. 
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1. Introduction 

Diabetes is now recognized as one of the most severe and widespread chronic illnesses today, resulting in life-
threatening, expensive, and disabling outcomes and a decrease in average life span. Over 500 million people 
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globally are affected by diabetes, imposing an increasing financial burden on numerous countries[1]. Individuals 
experiencing unregulated blood glucose (BG) levels due to diabetes are in danger of elevated (hyperglycemia) or 
low (hypoglycemia) BG levels. In 2019, approximately 463 million individuals were estimated to have diabetes 
(with a 95% confidence interval ranging from 369 to 601 million). If swift and efficient measures are not taken, 
it is projected that the number of diabetes cases will increase to 578 million by 2030 and escalate to 700 million 
by 2045[2]. 

To date, there is no cure for diabetes. Most diabetes cases stem from the body's inability or failure to 
produce or release insulin, known as Type 1 Diabetes Mellitus (T1DM). Individuals diagnosed with T1DM must 
manage BG levels to maintain safe BG levels. It involves administering insulin externally and closely monitoring 
BG levels due to the lack of natural insulin secretion. Otherwise, there is a heightened risk of experiencing 
hypoglycemia and hyperglycemia, leading to various immediate and long-term consequences. Conditions such as 
nephropathy, retinopathy, and coronary heart disease are primarily attributed to elevated BG levels[3].  

Simultaneously, severe hypoglycemia poses a greater risk and can lead to unconsciousness, seizures, or 
potentially fatal outcomes[4]. This issue will elevate healthcare expenses related to diabetes in the concerned 
nations. Presently, there is no viable approach to prevent T1DM. Individuals with T1DM must maintain 
continuous and consistent management of their BG levels, effectively managing these significant risks 
necessitates precise controls[5]. Nevertheless, maintaining the optimal BG levels in individuals with diabetes is a 
complex task because glycemic control, involving insulin bolus injections, can pose an elevated risk of 
unexpected glycemic episodes, which can be highly detrimental to the individual. Precise prediction of BG levels 
utilizing patient time series data for those with T1DM is a valuable resource for enabling proactive intervention 
and timely administration of medications to enhance the management of T1DM patients. 

Recent research has centered on predicting BG levels by utilizing data collected from Continuous Glucose 
Monitoring (CGM) devices employed to oversee and manage BG levels in individuals with diabetes. Most of these 
studies have primarily involved patients diagnosed with T1DM[6,7,8]. Research has shown that previous BG 
readings can be leveraged to foresee upcoming BG levels, as demonstrated in initial efforts to predict BG levels 
using historical BG data acquired from CGM records[3]. Since then, numerous investigations have been carried 
out to anticipate BG levels by implementing statistical learning methods and conventional machine 
approaches[9,10].  

There are two types of time series models based on input variables, namely univariate and multivariate 
models. Univariate time series models focus solely on analyzing and forecasting blood glucose levels over time 
without considering other variables[11]. Conversely, multivariate time series models take into account the 
interdependencies between multiple variables, such as insulin and dietary intake, to enhance the accuracy of 
blood glucose level predictions[12]. Univariate models have the advantage of simplicity and ease of 
interpretation. They are particularly useful when the relationships between different factors influencing blood 
glucose levels are unclear [13]. On the other hand, multivariate models consider the interactions between 
multiple variables, providing a more comprehensive understanding. However, multivariate models are more 
complex to develop and interpret compared to univariate models, requiring careful consideration of the 
interplay between various input variables[14]. 

Predicting BG levels is crucial for managing T1DM. Fortunately, with the expansion of CGM data, there has 
been increased interest in machine-learning methods, resulting in the testing of numerous techniques to predict 
BG readings[15]. The standard strategy in this scenario is to treat BG prediction as supervised learning 
assignments, utilizing continuous sets of CGM data as input for the models and future BG levels as the intended 
outcomes (univariate model). Many researchers have researched for this task such as conventional machine 
learning choices encompass employing the ARIMA method with Random Forest for regressive integration[16], 
Artificial Neural Networks (ANN)[17], and Support Vector Machines (SVM)[18]. 

Deep learning-based regression techniques have gained significant attention due to their ability to 
effectively handle complex patterns and large datasets. These techniques leverage deep neural networks to 
automatically learn representations from data, enabling them to capture intricate relationships and achieve 
state-of-the-art performance across various domains[19]. In the context of regression, the gradient computation 
using backpropagation in deep neural networks facilitates the implementation of these techniques[20]. Applied 
to time series data deep learning-based regression techniques are well-suited for capturing temporal 
dependencies in sequential data[21]. Deep learning models for predicting BG time series have exhibited strong 
prediction capabilities. The research focus involves leveraging various Deep Neural Network (DNN) 
architectures. A recent study demonstrated that model-based deep learning surpassed the conventional 
approach of training traditional machines and yielded superior outcomes in BG prediction. Furthermore, 
challenges and limitations such as the vanishing and exploding gradient of vanilla recurrent neural network 
(vanilla RNNs) problems were addressed through the utilization of long short-term memory (LSTM) and 
recurrent gate units (GRU)[22]. This approach has seen extensive application in prior research to predict BG 
levels. LSTM-based models were employed to analyze the physiological patterns of BG dynamics utilizing solely 
CGM input[23]. 



67 J. of Science and Technology Vol. 16 No. 1 (2024) 65-75 

 

 

The Bidirectional LSTM model accurately predicted BG concentrations and demonstrated superior 
performance compared to the standard ARIMA baseline[24]. LSTM is an effective deep-learning model utilizing 
gradient-based techniques. It efficiently addresses the challenge of recurrent backpropagation, which typically 
takes considerable time to learn to retain information over extended periods due to diminishing error backflow. 
LSTM, by default, can maintain data for extended durations and finds application in processing, predicting, and 
classifying time-series data[25]. Temporal Fusion Transformers (TFT) are known for their interpretability, 
setting them apart from black-box machine learning models [1]. This interpretability is crucial in healthcare 
applications such as blood glucose prediction, where understanding the reasoning behind predictions is 
essential for medical decision-making. Additionally, TFT is designed for multi-horizon time series forecasting, 
allowing it to predict blood glucose values accurately over varying time intervals [2]. Compared to single 
regression prediction models, TFT leverages model fusion techniques, such as incorporating LSTM in its 
architecture, to address the high volatility of blood glucose levels in diabetic patients [3]. This fusion approach 
enhances the model's ability to capture complex patterns and dependencies in the data, leading to more robust 
and accurate predictions. Furthermore, TFT transformer-based architecture enables it to efficiently capture 
long-range dependencies in the data, which is crucial for accurate forecasting of blood glucose values [4]. 
Moreover, TFT has been successfully applied in various domains beyond healthcare, such as electric demand 
forecasting and PV power forecasting, showcasing its versatility and effectiveness across different time series 
prediction tasks [5][6]. This broad applicability highlights TFT robustness and scalability in handling diverse 
forecasting challenges. In summary, TFT’s interpretability, multi-horizon forecasting capabilities, fusion 
techniques, transformer-based architecture, and proven success in various forecasting tasks make it a robust 
and reliable model for predicting blood glucose values with the specific approach applied.  

Therefore, in this work, the future BG values were predicted from the BG time series based on the TFT 
model in 30 and 60-minute prediction horizons (PHs). The reasons for selecting those PHs settings are because 
the PH of 30 to 60 minutes is considered a practical timeframe for anticipating and managing glucose level 
changes [26], and they are well supported by previous research works [27][28][29] for comparison purposes. 
The TFT model was trained, tested, and compared to the LSTM baseline models using the established 
ShanghaiT1DM dataset [30], the latest open-source dataset of type 1 diabetics. Furthermore, the prediction 
performance of each model was assessed using mean absolute error (MAE), mean absolute percentage error 
(MAPE), and mean squared error (RMSE) performance matrices to produce error scores. 

2. Methodology 

This study proposes a deep learning BG prediction with TFT and AutoTFT univariate models using past BG 
values from CGM (mg/dL) to time-series values as input to the univariate model. The difference between TFT 
and AutoTFT is that TFT is only trained based on fixed set values of hyperparameters model during training that 
refers to previous work that has been produced. Meanwhile, AutoTFT is trained with several hyperparameter 
models based on an auto-tuning function, with the same approach for LSTM and AutoLSTM as baseline models.  
 

 

Fig. 1 Block diagram of the BG prediction framework 
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The overall research block diagram of this study is shown in Fig 1. which consists of three main stages 
which are the data setting, BG prediction based on the DNN models, and performance evaluation of the models. 
In Stage 1, the data were set for preprocessing before it was used in Stage 2 for the DNN modeling. In Stage 2, the 
models of four univariate models were trained with the BG time-series data and according to a time-series cross-
validation method for selecting and optimizing hyperparameters[31][32][33], in 30 and 60 minutes prediction 
horizons (PHs). The four univariate models are the proposed models (AutoTFT and TFT) and baseline models 
(AutoLSTM and LSTM) as a comparison of the best model performance.  Finally, Stage 3 is the performance 
evaluation of the models for BG time-series prediction using MAE, MAPE, and RMSE. This step is also greatly 
assisted by the implementation of cross-validation to provide a more robust and accurate evaluation of model 
performance by avoiding overfitting on a particular data set. This is done by dividing the data into chunks and 
ensuring that the model is tested on data that has never been seen during the training process[34][35]. Here, the 
performance accuracy of the model to produce BG prediction is important to maintain glucose for Type 1 
diabetes patients in acceptable range glucose values which are 90-130 mg/dL, with the minimum threshold to 
avoid hypoglycemia being less than 80 mg/dL, and to effectively manage blood glucose levels and reduce the 
risk of diabetes-related complications[36][37]. 

2.1 Stage 1: Data Setting 

We conducted an 80/20 data split for each individual in the ShanghaiT1DM dataset, using the first 80% of the 
data for training and the remaining 20% for testing. A validation set was created from the last 25% of each 
training set such as Figure 2. In the current work on machine learning-based BG prediction, this two-step data 
split is frequently employed[38][39] [40][41]. 
 

 

Fig. 2 Graf of individual ShanghaiT1DM dataset 

 The summary of the ShanghaiT1DM dataset used in this study which consists of 16 samples of CGM data is 
shown in Table 1. The dataset used is the ShanghaiT1DM dataset, and it is publicly available for research [30].  

Table 1 Summary of the ShanghaiT1DM dataset (T1DM)[30] 

Patient 
Number 

Record 
Number 

Age Gender 
(Female=1, Male=2) 

Total Number of 
CGM Samples data 

1001_0_20210730 1A 66 1 658 
1002_0_20210504 2A 68 2 948 
1002_1_20210521 2B 68 2 933 
1002_2_20210909 2C 68 2 357 
1003_0_20210831 3A 37 2 1339 
1004_0_20210425 4A 67 1 917 
1005_0_20210522 5A 58 2 1256 

1006_0_20210114 6A 57 2 1236 
1006_1_20210209 6B 57 2 1339 
1006_2_20210303 6C 57 2 1135 
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1007_0_20210726 7A 40 2 1337 
1008_0_20210713 8A 73 1 766 
1009_0_20210803 9A 59 1 681 
1010_0_20210915 10A 65 1 918 
1011_0_20210622 11A 51 1 536 
1012_0_20210923 12A 53 1 1339 

  
The dataset is from 12 adult T1DM patients which were acquired in actual life conditions. Of the 12 T1DM 

patients, there are 10 patients with one CGM recording period and the other two with three recording periods 
(written in bold in Table 1) which makes 16 samples in total. The dataset contains CGM readings (mg/dL) for 3 
to 14 days with a sample interval of 5 minutes per sample, insulin doses, and daily dietary information. In 
addition, clinical characteristics, laboratory measurements, and patient care are provided. For the deep learning 
modeling of the BG time-series prediction, the data was indexed based on the date and time using the datetime 
function in Python, and a series of BG values were set as input to predict the future BG value sequentially[30]. 
The CGM readings have missing values for a variety of realistic causes, including sensor calibration and signal 
loss. The missing values were handled by applying clip values and linear extrapolation with the 40–400 mg/dL 
sensor working range[42]. 

2.2 Stage 2: Prediction Algorithm  

This research proposed model design architecture of TFT and AutoTFT models as the time-series prediction 
model to predict BG values with the PHs of 30 and 60 minutes, respectively[43]. MAE was chosen as a loss 
function of the proposed model architecture. In the meantime, hyperparameter configuration is important to 
achieve better prediction value performance and hyperparameter tuning is a crucial aspect of optimizing models 
for time series forecasting by reducing the error scores in predicting blood glucose levels. Meanwhile, the 
baseline models of LSTM and AutoLSTM were also developed in the same way as the proposed models for a 
comparative purpose on the model performance. 

Initially, the hyperparameter values for all of the models were referred to as the default configuration value 
of Neural_forecast library[44], and previous work[45][46][42], and then the hyperparameters were tuned to 
optimize the models. For the TFT dan LSTM (Non-Automodel) models, the best hyperparameters were 
determined through trial-and-error(manual tuning)[47]. On the other hand, an auto-tuning function, Optuna 
was used in AutoTFT and AutoLSTM to get the best hyperparameter values. This auto-tuning function is a search 
algorithm from the Ray Tune library[44], which is designed for hyperparameter optimization. Optuna offers 
advantages in automating hyperparameter tuning, optimizing complex hyperparameter spaces, and supporting 
various optimization algorithms[43]. By leveraging Optuna in time series modeling, researchers can enhance the 
accuracy and efficiency of forecasting models[48]. This automation saves time and effort compared to manual 
tuning, allowing for a more systematic and comprehensive exploration of hyperparameter configurations[49].  

In this research, developing the deep learning model for the BG prediction involved cross-validation with 
time-series data makes it possible to train and test data on a prediction model by defining a transition window 
across the data and sliding the window in time for better estimation of the model’s predictive abilities. The time-
based cross-validation was used in this study to maximize the use of the data in the model evaluation. The cross-
validation method was taken from the NeuralForecast class cross-validation employs a sliding window approach 
to predict future periods based on past observations, maintaining chronological order. This method enhances 
the estimation of the model's predictive performance by considering multiple periods. It resembles a standard 
train-test split when only one window is used, with the test data being the last set of observations and the 
training set comprising earlier data[44].  

Then, the prediction and test output were analyzed using MAE, MAPE, and RMSE performance metrics. The 
prediction models were developed using Python 3.10.12, PyTorch 2.0.1, and Nvidia GeForce GTX 1650 SUPER as 
the computing device on the (Graphics Processing Unit) GPU. 

2.3 Stage 3: Evaluation 

Stage 3 describes assessing the mode performance based on BG prediction value compared to BG actual value 
using statistical metrics. In BG prediction, the most common metrics error scores are the RMSE and MAE[50], as 
well as the MAPE, a percentage metric that offers insights into relative prediction errors[46]. Performance 
assessment of univariate models on 16 records of time-series data measuring BG values of T1DM patients 
provided by the ShanghaiT1DM dataset[30]. The deep learning models were trained in an offline environment 
using the Graphics Processing Unit (GPU) in Python programming language for the training data and evaluated 
using the testing data for each of the 16 records mentioned in Table 1. MAE, MAPE, and RMSE were used to 
evaluate model performance and can be calculated based on equations(1), (2), and (3), respectively. 
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(3) 

In this study, the variables are defined as follows: 𝑛 represents the amount of data in the variables 𝑎𝑖  (actual 
value) and  𝑏𝑖  (predicted value). Here, 𝑎𝑖  denotes the actual data value at the 𝑖-th observation, and 𝑏𝑖  
indicates the predicted data value at the 𝑖 -th observation. The index 𝑖 is the value index of each observation. 

3. Results and Discussion 

This section is based on the BG time-series prediction conducted by univariate input models, the proposed TFT, 
and AutoTFT models, which used CGM time-series data from the ShanghaiT1DM dataset. The models predict the 
BG value based on PHs of 30 and 60 minutes. The results from the proposed models were also compared with 
those from the baseline models (LSTM and AutoLSTM). Figure 3 to Figure 6 show the comparison graphs of the 
BG time-series data between the actual (measurement) data from the test data and its prediction data from each 
model. There are three zones of blood glucose levels hypoglycemia, euglycemia, and hyperglycemia. 
Hypoglycemia occurs when blood glucose levels drop below 70 mg/dL. Euglycemia refers to normal blood 
glucose levels, which range from 70 to 100 mg/dL when fasting and remain below 140 mg/dL after eating. 
Meanwhile, hyperglycemia occurs when blood glucose levels are above normal, with fasting levels exceeding 
126 mg/dL and postprandial levels above 180 mg/dL [36][37]. 

Due to the limited space, the comparison graphs shown in this paper are only from the ShanghaiT1DM 
dataset with record numbers of 7A and 11A. The graphs show the BG values in the 30 and 60-minute PHs based 
on historical BG values (CGM). From the observation of the graphs between the actual and the prediction data, 
the two proposed models of TFT and AutoTFT especially the AutoTFT outperformed the LSTM and Auto-LSTM, 
and the difference is more clearly visible when observing the graph in Figure 6. Moreover, from the proposed 
two models, at PHs of 30 minutes, the graphs show that the actual and prediction BG values are closer than those 
at PHs of 60 minutes. 

 

Fig. 3 A T1D individual in the Shanghai (T1DM) dataset on record number 7A (PH=30 minutes) 
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Fig. 4 T1D individual in the ShanghaiT1DM dataset on record number 7A (PH=60 minutes) 

 

Fig. 5 T1D individual in the ShanghaiT1DM dataset on record number 11A (PH=60 minutes) 

 

Fig. 6 T1D individual in the ShanghaiT1DM dataset in record number 11A (PH=60 minutes) 

The performance evaluation results based on the testing of the four models, which are according to the 
performance metrics of error scores shown in Table 2, are for the mean error scores from a total of 16 records. 
According to the results, the mean error scores of AutoTFT were the smallest in MAE, MAPE, and RMSE 
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compared with the TFT, LSTM, and AutoLSTM. This proves that our approach to the proposed AutoTFT model is 
the best model compared to the other three models. Besides, by comparing with the previous research work that 
used the AutoTFT with a different hyperparameter auto-tuning method and with a similar dataset [45], this 
work has shown smaller error scores. Meanwhile, although the AutoLSTM outperformed the TFT, it is 
interesting to note that the proposed TFT model has smaller error scores than the LSTM baseline model. This 
proves that the TFT model has a better performance, compared to the LSTM model.  

On the other hand, the auto-tuning function for optimal hyperparameters is important as it enhances the 
model's performance. This improvement is evident in the error scores shown in Table 2, indicating the 
significance of the hyperparameter tuning in improving not only the performance of the AutoTFT model when it 
is compared to the TFT model but also the performance of the AutoLSTM baseline model compared to the LSTM 
baseline model. 

Table 2 Mean error scores for univariate time-series model from the 16 records of the ShanghaiT1DM dataset 

  
Models 

PH = 30 min PH = 60 min 

MAE  

(mg/dL) 

MAPE 

(%) 

RMSE 

(mg/dL) 

MAE 

(mg/dL) 

MAPE 

(%) 

RMSE 

(mg/dL) 

LSTM 11.92+1.59 10.10+1.60 16.23+2.31 13.55+2.03 11.24+2.02 18.40+2.79 

TFT 8.73+0.81 6.73+0.65 13.36+1.42 9.49+0.84 7.32+0.71 14.06+1.43 

AutoLSTM 7.27+0.72 5.56+0.51 9.10+0.88 8.40+1.23 6.97+1.52 11.13+1.60 

AutoTFT 5.88+0.56 4.48+0.51 7.71+0.74 6.44+0.45 4.86+0.32 8.44+0.58 

 
Regarding the prediction results between the PH of 30 and 60 minutes, from Table 2, it is found that the 

error scores from the PH of 30 minutes are smaller compared to those from PH of 60 minutes. The larger error 
scores of PH of 60 minutes could be due to the dynamic nature of the BG time-series data that makes the BG 
values more complex to predict in longer PHs. Furthermore, there is a tradeoff between the computation time 
and the performance of the prediction system when determining the length of PH, as a low PH would call for less 
calculation time. 

4. Conclusion 

The TFT model, a new high-performance model for the prediction, is presented in this research as the proposed 
model. Two models were proposed in this work, the TFT and AutoTFT models. They were trained and tested on 
the ShanghaiT1DM dataset by a specific approach using Optuna auto-tuning hyperparameters setting at the Auto 
model and using cross-validation as a strategy to evaluate the model performance. The TFT model is superior to 
the baseline LSTM model, although TFT with manual tuning has no better accuracy than AutoLSTM, the 
proposed AutoTFT models achieved the smallest MAE, MAPE, and RMSE  for both 30 and 60-minute PHs, which 
stands as a promising tool in the accurate prediction of adverse glycemic events. For all the models, the BG 
prediction results with 30 minutes PH are better than those with 60 minutes PH. Soon, the proposed TFT model 
will be trained and tested on several other datasets to further evaluate the model's performance in predicting 
the BG values before it can potentially be implemented on edge computing devices for particular use in BG 
treatment and management.  
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