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Abstract
In this paper, the problem of steady laminar three-dimensional 
magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a 
stretching surface in a viscoelastic fluid is investigated. The equations which 
govern the flow are coupled nonlinear ordinary differential equations, which 
are solved numerically using a finite-difference scheme known as the Keller-
box method. Various physical governing parameters such as the magnetic 
parameter M, the material or viscoelastic parameter K and the Prandtl number 
Pr are considered and the effects of these parameters are investigated. It is found 
that the material parameter K and the magnetic parameter M present opposite 
effects on the fluid flow and heat transfer characteristics. The numerical results 
obtained for the skin friction coefficient and the local Nusselt number are 
presented in tables. The features and profiles of the flow and heat transfer 
characteristics are illustrated in the forms of graphs.
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1.	 INTRODUCTION

Problems involving flows over stretching sheet are widely applied in various 
industries. Some of the applications can be found in the extrusion of a polymer 
in a melt-spinning, cooling of an infinite metallic plate in a cooling bath, hot 
rolling, wire drawing, glass–fiber production, manufacturing of plastic and 
rubber sheet and paper production. Pioneering work done by Crane (1970) to 
get the analytical solution for the steady two-dimensional boundary layer flow 
caused by the stretching surface with velocity varying linearly with distance 
from a fixed point has initiated many researchers to study different aspects 
of this problem either by integrating the problem with heat and mass transfer, 
MHD, chemical reaction, suction/injection, non-Newtonian fluids or other 
various situations. Some of the huge collections of research papers existing in 
literature can be found in Chakrabarti and Gupta (1979), Chen (1998), Fan et 
al. (1999), Sajid (2007), Xu and Liao (2009), Jat and Chaudary (2009), Ishak 
et al. (2009, 2010), Salleh et al. (2010) and Ali et al. (2011), to name just a few.
	
	 Due to the increasing interest and importance of non-Newtonian fluid 
flows, a great deal of work on non-Newtonian fluids has been done vastly. 
However, it is known that the governing equations of the non-Newtonian fluid 
are of higher order than the Navier-Stokes equations. Thus, the constitutive 
equations of the fluid are very complex as it involves a number of material 
parameters of the fluid.  One of the simplest of the non-Newtonian fluids is 
the second grade fluid which has received considerable attention. Rajagopal 
et al. (1984) examined a special class of the second order fluids known as the 
viscoelastic fluids which exhibit both elastic and viscous properties. Further 
investigations on this second grade fluid were done by Dandapat and Gupta 
(1989) who discussed the flow of an incompressible second-order fluid due 
to stretching of a plane elastic surface in the approximation of boundary layer 
theory. Further, Andersson (1992) investigated the flow of viscolelastic fluid 
past a stretching sheet with the presence of transverse magnetic field, while 
Abel et al. (2001) carried out a study of the effect of magnetic field on the 
viscoelastic fluid flow and heat transfer over a non-isothermal stretching sheet 
with internal heat generation, and Cortell (2006) considered the flow and heat 
transfer of an incompressible homogeneous second grade fluid past a stretching 
sheet by considering two cases, i.e. sheet with constant surface temperature (CST 
case) and sheet with prescribed surface temperature (PST case). Again, Cortell 
(2007) investigated the problem of flow and heat transfer of an incompressible 
homogeneous second grade fluid over a non-isothermal stretching sheet in 
the presence of non-uniform internal heat generation/absorption. On the other 
hand, Abel et al. (2008) came out with the viscoelastic MHD flow and heat 
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transfer over a stretching sheet with viscous and Ohmic dissipations in which 
the governing equations were solved using the fifth order Runge-Kutta-
Fehlberg method along with the shooting technique. Very recently, Arnold et 
al. (2010) studied the viscoelastic fluid flow and heat transfer characteristics 
over a stretching surface with frictional heating and internal heat genaration or 
absorption for the case of prescribed surface temperature (PST) and prescribed 
surface heat flux (PHF), and Prasad et al. (2010) has carried out a study on the 
momentum and heat transfer characteristics in an incompressible electrically 
conducting non-Newtonian boundary layer flow of a viscoelastic fluid over 
a stretching sheet which are then solved numerically using the shooting 
technique with fourth order Runge-Kutta integration scheme.  

	 All the problems mentioned above dealt with the two-dimensional 
fluid flow. On the other hand, Hayat et al. (2008) solved the three-dimensional 
flow over a stretching surface in a viscoelastic fluid analytically, while Nazar 
and Latip (2009) solved the three-dimensional boundary layer flow due to a 
stretching surface in a viscoelastic fluid numerically but with different sign of 
k0 (viscoelastic parameter).  Hence, motivated by their works, the present work 
is an extension of Nazar and Latip (2009) by considering the three-dimensional 
MHD flow and heat transfer of a viscoelastic fluid over a stretching surface. 
The present model which is a modification and extension of the existing model 
has been solved numerically by an implicit finite-difference scheme known as 
the Keller-box method.

2.	 ANALYSIS

Consider the steady, three-dimensional laminar flow of an incompressible 
electrically conducting fluid bounded by a stretching surface. Under the 
Boussinesq and boundary layer approximations, the system of equations 
which model the boundary layer flow is given by
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where a and b are positive constants, while uw(x) and vw(y) are the stretching 
velocities in the x and y directions, respectively. Equations (1) to (4) can 
be transformed into the ordinary differential equations by the following 
transformation:

where prime denotes the differentiation with respect to η, while T∞ and Tw are 
the ambient temperature and wall temperature, respectively. The continuity 
equation (1) is identically satisfied and the transformed ordinary differential 
equations (2) to (4) are

subject to the boundary conditions (5) which become

where K=k0a/v is the dimensionless material or viscoelastic parameter, 
M=σB0

2/ρa is the dimensionless magnetic parameter, c=b/a is the dimensionless 
stretching ratio, and Pr is the Prandtl number. It is worth mentioning that   
K=0 describes the classical Navier–Stokes equations for a viscous and 
incompressible fluid.

When c = 0 (g = 0) the problem reduced to the two-dimensional case, described 
by

	 f''' - f'2 + ff'' - Mf' - K[ ffiv + f''2 - 2f'f''' ] = 0			   (11)

and when c = 1 (f = g), the problem reduced to the axisymmetric flow and the 
new Eqs.(7) and (8) are given by	

	 f''' - f'2 + 2ff''- Mf' - 2K[ ffiv - 2f'f'''] = 0				    (12)

Equations (11) and (12) are subjected to the new transformed boundary 
conditions given by

	 f(0) = 0, f'(0) = 1, s(0) = 1, f'(∞) = 0, f''(∞) = 0, s(∞) = 0		  (13)
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The physical quantities of interest are the skin friction coefficient Cf on 
the surface along the x and y directions, which are denoted by Cfx and Cfy, 
respectively, and the local Nusselt number Nux which are defined as

where τw and qw are the wall shear stress and the wall heat flux, respectively. 
Thus, the wall shear stresses along the x and y directions are denoted by τwx and 
τwy, respectively. Using the variables (6), we obtain

where Rex is the local Reynolds number which is defined by Rex=uw x/ν.

3.	 RESULTS AND DISCUSSION

The nonlinear ordinary differential equations (7) to (9) subject to the boundary 
conditions (10) have been solved numerically using the implicit finite-
difference scheme known as the Keller-box method as discussed and described 
in the book by Cebeci and Bradshaw (1988), for several values of parameters, 
namely the material parameter K, the magnetic parameter M, the stretching 
ratio c and the Prandtl number Pr. The values of the step size ∆η in η and 
the edge of boundary layer, η∞, have to be adjusted for different values of 
the parameters to maintain accuracy. Throughout this study, we consider the 
value of ∆η = 0.02 and it has been found to be satisfactory for a convergence 
criterion of 10-5 which gives four decimal places accuracy. On the other hand, 
the edge of the boundary layer is chosen to be between 5 to 10.

Tables 1 and 2 present the numerical results obtained for the wall skin friction 
coefficients -f"(0), -g"(0) and the local Nusselt number -s'(0)  for various values 
of the magnetic paramater M, viscoelastic parameter K and the stretching ratio 
c for Pr = 0.7 and 10, respectively. It is worth pointing out that the entire values 
of the skin friction coefficients f"(0) and g"(0)  given in Table 1 are negative. 
Physically, the negative sign of the skin friction coefficient corresponds to the 
surface exerts a drag force on the fluid. For a specific value of c, it is seen that 
as K increases, the magnitude of the skin friction coefficient decreases and 
the local Nusselt number increases. The increase in the parameter M will lead 
to the increase of the magnitude of the skin friction coefficient. The opposite 
trend is observed for the local Nusselt number. It is also seen that as the sheet 
(surface) is stretched (given by the parameter c), the magnitude of the skin 
friction coefficients in both x and y directions and the local Nusselt number 
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will increase. The presence of the viscoelasticity in the fluid (given by the 
parameter K) also increases the magnitude of the skin friction coefficients and 
the local Nusselt number as the surface is stretched.

Table1. Values of -f"(0) and -g"(0) for different values of K and M 
when c = 0, 0.5 and 1.

   M	  K	     c = 0	                               c = 0.5	          	 c = 1
		   -f"(0)		   -f"(0)		   -g"(0)		  -g"(0)
  0	 0	 1.0042		  1.0932		  0.4653	 1.1748
	 0.2	 0.9225		  0.9291		  0.4066	 0.9444
	 1.0	 0.7504		  0.6513		  0.2943	 0.6461
  10	 0	 3.3165		  3.3420		  1.6459	 3.3667
	 0.2	 3.0276		  2.8048		  1.3840	 2.6317
	 1.0	 2.3452		  1.9175		  0.9482	 1.6667
  100	 0	 10.0498		 10.0582		 5.0208	 10.0663
	 0.2	 9.1742		  8.4315		  4.2096	 7.8471
	 1.0	 7.1063		  5.7552		  2.8741	 4.9551

Table 2.  Values of the local Nusselt number -s'(0)  for several values of K and M 
when Pr = 0.7 and 10. 

   M	  K		  Pr = 0.7				   Pr = 10
		  c = 0          c = 0.5 	 c = 1	 c = 0	    c = 0.5     c = 1
  0	 0	 0.4909       0.5789        0.6800	  2.3067    2.8609     3.3078
	 0.2	 0.5007       0.6099        0.7228     2.3243    2.8941     3.3587
	 1.0	 0.5221       0.6693        0.7867     2.3606    2.9538     3.4256
  10	 0	 0.3497       0.2907        0.4584     1.8085    2.3572     2.8309
	 0.2	 0.3582       0.3278        0.5018     1.8682    2.4629     2.9807
	 1.0	 0.3902       0.4246        0.6027     2.0379    2.6663     3.1973
  100	 0	 0.2353       0.2221        0.2739     0.8906    1.2415     1.5471
	 0.2	 0.2386       0.2317        0.2919     0.9842    1.4711     1.9430
	 1.0	 0.2499       0.2614        0.3433     1.1925    1.8513     2.4453

Figures 1 to 5 show the effects of the viscoelastic or material parameter K on 
the fluid flow and heat transfer characteristics, namely  f(η), g(η), f'(n), g'(η) 
and s(η), respectively, when c = 0.5, Pr = 0.7, M = 0 (without magnetic field) 
and M = 10. It is found from Figures 1 and 2 that the magnitudes of f and g 
increase by increasing the value of the fluid parameter K for a specific value 
of the magnetic parameter M, but this change is larger in f when compared to 
g. The presence of the magnetic field M in the fluid decreases the values of f 
and g.  Furthermore, increasing the value of K will increase the boundary layer 
thickness. The same trend is also observed for the f ’(n) and  g’(η) profiles as 
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depicted by Figures 3 and 4. However, the opposite trend is observed 
from Figure 5 for the temperature profiles  . It is seen that as K increases, 
the temperature profiles decrease, and thus, the thickness of thermal 
boundary layer also decreases. It is also found in this figure that the profiles 
increase with magnetic effect.

	 On the other hand, Figures 6 to 10 show the effects of the magnetic 
parameter M on the fluid flow and heat transfer characteristics, namely f(η), 
g(η), f'(n), g'(η) and s(η), respectively, when c=0.5, Pr=0.7 and K=1. As 
illustrated in Figures 6 to 9 that, as M increases, the velocity profiles decrease 
and hence the effects of the magnetic parameter towards the flow will contribute 
to the decrease of the boundary layer thickness. The changes in f and f' almost 
double the changes of g and g' as shown in Figures 6 and 7 and 8 and 9, 
respectively.  However, the opposite trend is observed again from Figure 10 
for the temperature profiles s(η). It is seen that as M increases, the temperature 
profiles also increase, and thus, the thickness of thermal boundary layer also 
increases. It is seen in all figures that the material or viscoelastic parameter K 
and the magnetic parameter M presents opposite effects on the fluid flow and 
heat transfer characteristics.

	 Finally, it is worth mentioning that all the profiles presented in Figures 
1 to 10 satisfy the boundary conditions (10), and thus support the numerical 
results obtained.

4.	 CONCLUSION

In the present study, we have investigated theoretically the three-dimensional 
MHD flow and heat transfer of a viscoelastic fluid over a stretching surface. 
Numerical computation has been carried out to study the effects of the material 
or viscoelastic parameter K, the magnetic parameter M, the stretching ratio 
parameter c and the Prandtl number Pr on the skin friction coefficients, the 
local Nusselt number, as well as the velocity and temperature profiles. Results 
are presented in tables and figures for certain parameter conditions. It is found 
that the material parameter K and the magnetic parameter M present opposite 
effects on the fluid flow and heat transfer characteristics.
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Figure 1.  Variations of f(η) for various values of K when c=0.5, Pr=0.7, M=0 and 10.

Figure 2. Variations of g(η) for various values of K when c=0.5, Pr=0.7, M=0 and 10.

Figure 3.Variations of f'(η) for various values of K when c=0.5, Pr=0.7, M=0 and 10.
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Figure 4.Variations of g'(η) for various values of K when c=0.5, Pr=0.7, M=0 and 10.

Figure 5. Variations of s(η) for various values of K when c=0.5, Pr=0.7, M=0 and 10.

Figure 6. Variations of f(η) for various values of M when c=0.5, Pr=0.7, K=1
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Figure 7. Variations of g(η) for various values of M when c=0.5, Pr=0.7, K=1

Figure 8. Variations of f '(η) for various values of M when c=0.5, Pr=0.7, K=1

Figure 9. Variations of g'(η) for various values of M when c=0.5, Pr=0.7, K=1
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