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1. Introduction

Human body tolerance to acceleration (due 

to travelling etc.) depends on some of the vital 

facts including the duration of acceleration 

stress. Mathematical analysis has a 

significance to quantify the effects of periodic 

acceleration in an inclined stenosed artery. 

These problems can be used to describe the 

effect of body accelerations on the 

physiologically important flow dynamics of 

human blood flow through artery. The above 

mentioned fact has exhilarated the study of 

flow through constrictions during the past 

decade. Realizing the fact that pulsatile nature 

of the flow cannot be neglected, many 

theoretical analysis and experimental studies 

of the flow through stenosis have been 

performed.  

Abdullah et.al. [1] studied the micropolar 

model for axi-symmetric blood flow through 

an axially non-symmetric but radially 

symmetric mild stenosis tapered artery. 

Abdullah et.al. [4] investigated numerically 

the magnetohydrodynamics (MHD) effects on 

the blood flow. It was found that an applied 

magnetic field reduces the blood flow rate. 

Bodnar et.al. [5]described and discussed the 

results of numerical comparative study 

performed in order to demonstrate and 

quantify some of the most relevant non-

Newtonian characteristics of blood flow in 

medium-sized blood vessels, namely, its shear-

thinning and viscoelastic behavior. Mekheimer 

and Elkot [6] investigated the influence of heat 

and chemical reactions on blood flow through 

anisotropically tapered elastic artery with 

time-variant overlapping stenosis. The nature 

of blood in small arteries has been analyzed 

mathematically by considering it as a Sisko 

fluid. Ali et.al.  [7] presented a mathematical 

study for unsteady pulsatile flow of blood 

through a tapered stenotic artery using a finite 

difference method. Akbar and Nadeem [8] 

examined the blood flow through tapered 

artery with stenosis. The non-Newtonian 

nature of blood in small arteries has been 

analyzed mathematically by considering the 

blood as Carreau fluid. Srivastava [2] has 

investigated analytically   blood flow in a 

porous inclined stenotic artery under the 

influence of the inclined magnetic field. 

Srivastava [3] has investigated the Casson 

model for axisymmetric pulsatile blood flow 

through an inclined stenosed artery of a 

periodically accelerated body under the 

influence of a magnetic field.  

Priyadharshini et.al. [9] has analysed that 

the blood flow through a tapered artery with 

stenosis and dilatation has been carried out 

where the blood is treated as incompressible 

Herschel-Bulkley fluid. A comparison 

between numerical values and analytical 

values of pressure gradient at the midpoint of 
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stenotic region shows that the analytical 

expressions for pressure gradient works well 

for the values of yield stress till 2.4. Sriyab 
[10] has derived the expressions for velocity, 

plug flow velocity, wall shear stress, and the 

flux flow rate for the Herschel Bulkley fluid 

model. Singh [11] developed a mathematical 

model for studying the magnetic field effect on 

blood flow through an axially non-symmetric 

but radially symmetric atherosclerotic artery. 

Herschel-Bulkley equation has been taken to 

represent the non-Newtonian character of 

blood. The response of magnetic field, stenosis 

height, shape parameter on velocity, 

volumetric flow rate in stenotic section and 

wall shear stress at the surface of stenosis are 

revealed analytically and graphically 

With this motivation and purpose, a 

mathematical model for Herschel-Bulkley 

fluid through stenosed inclined artery of an 

accelerated body in the presence of an inclined 

magnetic field has been considered. In this 

paper, an attempt has been made to derive and 

study the physiologically important flow 

quantities such as volumetric flow rate, 

impedance for blood flow in an artery by 

modeling blood as Herschel–Bulkley fluid. 

The physical quantities involved in the 

problem are non-dimensionalized and the 

expressions for flow quantities such as 

velocity, flow-rate, wall shear stress and 

longitudinal impedance of the artery are 

obtained for pulsatile flow. Assuming that the 

stenoses are mild, analytical solutions have 

been obtained, using the perturbation method. 

 

2.    Mathematical Formulation 

 

Consider an axially symmetric, laminar, 

pulsatile, and fully developed flow of blood 

(assumed to be incompressible) in the axial 

direction through a circular narrow artery with 

constriction. The constriction in the artery is 

assumed as due to the formation of stenosis in 

the lumen of the artery and is considered as 

mild. In this study, we consider the shape of 

the stenosis, as asymmetric. The geometry of 

segment of a narrow artery with asymmetric 

shape of mild stenosis is shown in Fig. 1(a). 

The segment of the artery under study has 

been considered to be long enough so that the 

entrance, end, and special wall effects can be 

neglected. Due to the presence of the stenosis 

in the lumen of the segment of the artery, it is 

appropriate to treat the segment of the 

stenosed artery under study as rigid walled. 

Assume that there is periodical body 

acceleration in the region of blood flow and 

blood is modelled as non-Newtonian fluid 

model with yield stress. In this study, we use 

Herschel-Bulkley non-Newtonian fluid models 

with yield stress. It has to be noted that 

Herschel-Bulkley fluid model’s constitutive 

equation reduces to the constitutive equation 

of Newtonian fluid when the yield stress 

parameter becomes zero. The cylindrical polar 

coordinate system (𝑟 , 𝜃 , 𝑧 ) has been used to 

analyze the blood flow. 

 

(a) 

 

(b) 

Fig.1   (a) Geometry of a stenosed artery and (b) 

Schematic of tapered artery region. 

3.   Governing Equation and Boundary 

Condition 

The momentum equations governing the blood 

flow in the radial and axial directions can be 

written as: 

𝜌𝐻̅̅̅̅ (
𝜕𝑢𝐻̅̅ ̅̅

𝜕𝑡
+ 𝑔 sin 𝛼) = −

𝜕𝑝̅

𝜕𝑧̅
−

1

𝑟̅

𝜕(𝑟𝜏𝐻̅̅ ̅̅ ̅̅ )

𝜕𝑟̅
+

𝐹̅(𝑡) + 𝜇0𝑀
𝜕𝐻̅

𝜕𝑧̅
cos 𝜓,                                   (1) 

 
𝜕𝑝̅

𝜕𝑟̅
= 0                                                           (2) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sriyab%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25587350
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where 𝑟̅ and 𝑧̅ denotes the radial and axial co-

ordinates respectively, is magnetic 

permeability, M is magnetisation of fluid 

particles, 𝐻̅ is magnetic field intensity, 𝛼 is the 

inclination of artery, 𝜓 is the angle of inclined 

magnetic field, 𝑃̅ is the pressure, 𝑡̅ is the 

time, 𝜏𝐻̅̅ ̅̅  is the shear stress of the Herschel 

Bulkley fluid,  𝐹̅(𝑡) is the term which 

represents the body acceleration and is given 

by, 

             𝐹̅(𝑡) = 𝑎 0̅̅ ̅̅ cos(𝜔𝑏𝑡 + 𝜙)               (3) 

 

where 𝑎 0̅̅ ̅̅  is the amplitude of the body 

acceleration, 𝜔𝑏 = 2𝜋𝑓𝑏, 𝑓𝑏 is the frequency 

in Hz and is assumed to be small so that the 

wave effect can be neglected, 𝜙 is the lead 

angle in with respect to the heart action. Since 

the blood flow is assumed to be pulsatile, so 

the pressure gradient can be given as: 

 

−
𝜕𝑝̅

𝜕𝑧
(𝑧, 𝑡) = 𝐴 0̅̅ ̅̅ +A1

̅̅ ̅cos(𝜔𝑝𝑡̅̅ ̅̅ ̅), 

 

where 𝐴 0̅̅ ̅̅  is the steady component of the 

pressure gradient, 𝐴 1̅̅ ̅̅  is the amplitude of the 

pulsatile component of the pressure gradient, 

𝜔𝑝̅̅ ̅̅ = 2𝜋𝑓𝑝̅, 𝑓𝑝̅ is the frequency in Hz. The 

constitutive equation for the Herschel-Bulkley 

fluid is given by, 

 

For  𝜏𝐻𝐵̅̅ ̅̅ ̅ ≥ 𝜏̅𝑦 

  𝜏𝐻𝐵̅̅ ̅̅ ̅ = 𝜇𝐻𝐵̅̅ ̅̅ ̅ (−
𝜕𝑢̅𝐻𝐵

𝜕𝑟
(𝑧, 𝑡))

1/𝑛
+ 𝜏̅𝑦 ,    

 

For  𝜏𝐻𝐵̅̅ ̅̅ ̅ ≤ 𝜏̅𝑦 
𝜕𝑢̅𝐻𝐵

𝜕𝑟̅
(𝑧, 𝑡) = 0,                   (4) 

 

where 𝜏̅𝑦 is the yield stress is of the H-B fluid 

and 𝜇𝐻𝐵̅̅ ̅̅ ̅ is the coefficient of viscosity of 

Herschel –Bulkley fluid. The geometry of the 

asymmetric shape of stenosis in the arterial 

segment is mathematically represented by; 

 

   ℎ(𝑧̅)= 𝑑(𝑧̅) 

{
1 − 𝐺̅(𝑏𝑚−1(𝑧̅ − 𝑎̅) − (𝑧̅ − 𝑎̅)𝑚), 𝑎 ≤ 𝑧 ≤ 𝑎 + 𝑏 

1       ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                     

                                                                     (5) 

 

where 𝐺̅ = (
𝛿̅

𝑅0𝐿0̅̅ ̅̅ ̅̅ ̅
) 𝑚𝑚/(𝑚−1) , 𝑑(𝑧) = 𝑑0 +

𝜀𝑧 and 𝛿̅ denotes the maximum height of the 

stenosis at 

                     𝑧 = 𝑑̅ +
𝐿0̅̅ ̅

𝑚𝑚/(𝑚−1) ,                 (6) 

 

such that 
𝛿̅

𝑅0̅̅̅̅
≪ 1, 𝐿0 is the length of stenosis, d 

denotes its location, 𝑅̅(z) is the radius of the 

artery in the stenosed free region, 𝑅0 is the 

radius of artery in the stenosed region, m is a 

parameter determining the shape constriction 

profile and referred to as a shape parameter. 

The boundary condition for the momentum 

and constitutive equations for the velocity and 

shear stress: 

 

At 𝑟̅ = 0, 𝜏𝐻𝐵̅̅ ̅̅ ̅ is finite                                (7) 

 

At   𝑟̅ = 𝑅(𝑧), 𝑢𝐻𝐵̅̅ ̅̅ ̅=0.                                (8) 

 

Introducing the non-dimensional variables as: 

 

𝑧 =
𝑧̅

𝑅0
,𝑅(𝑧) =

𝑅(𝑧)̅̅ ̅̅ ̅̅

𝑅0
, 𝑟 =

𝑟̅

𝑅0
, 𝑡 = 𝜔̅𝑡̅, 𝜔 =

𝜔𝑏̅̅ ̅̅

𝜔𝑝̅̅ ̅̅
, 

𝛿 =
𝛿̅

𝑅0
,𝑢𝐻𝐵 =

4𝜇0𝑢𝐻̅̅ ̅̅

𝐴0𝑅0
2 , 𝜏𝐻𝐵̅̅ ̅̅ ̅ =

4𝜇0𝜏𝐻𝐵̅̅ ̅̅ ̅̅

𝐴0𝑅0
,𝜃 = 2

𝜏̅𝑦

𝐴0𝑅0

 

,  𝛼𝐻𝐵̅̅ ̅̅ ̅2 =
𝜔𝑅0

2𝜌𝐻𝐵̅̅ ̅̅ ̅̅

𝜇𝐻𝐵̅̅ ̅̅ ̅̅
, 𝑒 =

𝐴1̅̅ ̅̅

𝐴0̅̅ ̅̅
, 𝐵 =

𝑎0̅̅̅̅

𝐴0̅̅ ̅̅
, 𝐻 =

𝐻̅

𝐻0
,(9) 

 

where 𝛼𝐻𝐵 is the Womersely frequency 

parameter or pulsatile Reynolds number of 

Herschel-Bulkley fluid model. Substituting the 

non-dimensional parameters (9) in the 

momentum equation (1) and constitutive 

equation (3) we can have the following 

equations: 

 

𝛼𝐻𝐵̅̅ ̅̅ ̅2 𝜕𝑢𝐻𝐵

𝜕𝑡
= 4(1 + 𝑒 𝑐𝑜𝑠𝑡) + 4𝐵 cos(𝜔𝑡 +

𝜙) −
2

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝐻𝐵̅̅ ̅̅ ̅) + 4𝐹1

𝜕𝐻

𝜕𝑧
cos 𝜓 −

𝑅𝑒

𝐹𝑟
sin 𝛼,                

                                                                    (10) 

 

where 𝐹1 =
4𝑀𝐻0𝜇0

𝜌𝐴0𝑅0
2 , Reynolds number 𝑅𝑒 =

𝜌𝑐𝑅0𝑢0

𝜇𝐻𝐵
 and Froude number 𝐹𝑟 =

𝑢0
2

𝑔𝑅0
. 

For  𝜏𝐻𝐵̅̅ ̅̅ ̅ ≥ 𝜃                                   

   𝜏𝐻𝐵̅̅ ̅̅ ̅ = (−
1

2

𝜕𝑢̅𝐻𝐵

𝜕𝑟
(𝑧, 𝑡))

1/𝑛
+ 𝜃 ,   

  For  𝜏𝐻𝐵̅̅ ̅̅ ̅ ≤ 𝜃                                                         

   
𝜕𝑢̅𝐻𝐵

𝜕𝑟̅
(𝑧, 𝑡) = 0 ,                                       (11) 

 

Non-dimensional form for the boundary 

conditions can be re-written as: 

 

At = 0 ,  𝜏𝐻𝐵̅̅ ̅̅ ̅ is finite,                                 (12) 

 

At 𝑟 = 𝑅(𝑧), 𝑢𝐻𝐵̅̅ ̅̅ ̅ = 0                                 (13) 
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The volumetric flow rate can be given by, 

 

𝑄 = 4 ∫ 𝑟𝑢𝐻𝐵
𝑅(𝑧)

0
𝑑𝑟,                                  (14) 

 

where 𝑄 =
8𝜇𝐻𝐵𝑄̅

𝜋𝐴0̅̅ ̅̅ 𝑅0̅̅̅̅ 4, 𝑄̅ is the volumetric flow 

rate. The resistive impedance for the flow can 

be written as: 

 

𝜆 =
Δ𝑝

𝑄
=

1

𝑄
[∫ Δ𝑝 𝑑𝑧

𝑎

0
+ ∫ Δ𝑝 𝑑𝑧

𝑎+𝑏

𝑎
+

∫ Δ𝑝 𝑑𝑧
𝐿0

𝑎+𝑏
] ,                                               (15)                                               

 

4.    Solution of Equation 

 

The perturbation method is applied to solve 

the system of non-linear partial differential 

equations. Let us expand the velocity in the 

perturbation series about the square of the 

pulsatile Reynolds number as below (where 

𝛼𝐻𝐵̅̅ ̅̅ ̅2 ≪ 1) 
 

𝑢̅𝐻𝐵(𝑟, 𝑧, 𝑡) = 𝑢̅𝐻𝐵0(𝑟, 𝑧, 𝑡) +
𝛼𝐻𝐵̅̅ ̅̅ ̅2𝑢̅𝐻𝐵1(𝑟, 𝑧, 𝑡) + ⋯ … … … … ….           (16) 

                                       

 

Similarly, one can expand the shear stress 

𝜏𝐻𝐵̅̅ ̅̅ ̅(𝑟, 𝑧, 𝑡), the plug core radius 𝑅𝑝(𝑧, 𝑡), the 

plug core velocity  𝑢𝑝(𝑧, 𝑡),and the plug core 

shear stress 𝜏𝑝̅̅ ̅(𝑧, 𝑡), in terms of 𝛼𝑐̅̅ ̅2. 

Substituting the perturbation series expansions 

of 𝑢𝐻𝐵 and 𝜏𝐻𝐵  in [9] and then equating the 

constant term and 𝛼𝐻𝐵̅̅ ̅̅ ̅2 terms respectively one 

can obtain the first approximation and the 

second approximation as, 

 
𝜕(𝑟𝜏𝐻𝐵)

𝜕𝑟
= 2(1 + 𝑒 𝑐𝑜𝑠𝑡) + 2𝐵 cos(𝜔𝑡 + 𝜙) +

𝐹1
𝜕𝐻

𝜕𝑧
cos 𝜓 −

𝑅𝑒

𝐹𝑟
sin 𝛼,                               (17) 

 
𝜕(𝑢𝐻𝐵0)

𝜕𝑡
= −

2𝜕(𝑟𝜏𝐻𝐵1)

𝑟𝜕𝑟
,                                (18) 

 

Substituting the perturbation series expansions 

of and in (10) and then equating the constant 

term and terms respectively one can obtain 

first approximation and the second 

approximation as, 

 

−
𝜕(𝑢𝐻𝐵0)

𝜕𝑟
= 2𝜏𝐻𝐵0

𝑛−1[𝜏𝐻𝐵0 − 𝑛𝜃],          (19) 

 

−
𝜕(𝑢𝐻𝐵1)

𝜕𝑟
= 2𝑛𝜏𝐻𝐵0

𝑛−2𝜏𝐻𝐵1[𝜏𝐻𝐵0 − (𝑛 −

1)𝜃],                                                          (20) 

 

Applying the perturbation series expansion of 

𝑢𝐻𝐵 and 𝜏𝐻𝐵 in the boundary conditions and 

then equating the constant terms and  𝛼𝐻𝐵̅̅ ̅̅ ̅2 

term, we get: 

 

  𝜏𝐻𝐵0, 𝜏𝐻𝐵1 are finite at 𝑟 = 0. 

  𝑢𝐻𝐵0 = 0, 𝑢𝐻𝐵1 = 0 at 𝑟 = 0.                 (21) 

 

Solving (18) and (19) with the help of (20) we 

can have a solution as, 

 

𝜏𝑝0 = 𝑔(𝑡)𝑅0𝑝,                                          (22) 

 

𝜏𝐻𝐵0 = 𝑔(𝑡)𝑟,                                            (23) 

 

𝑢𝐻𝐵0 = 2[𝑔(𝑡)𝑅]𝑛𝑅 [
1

𝑛+1
{1 − (

𝑟

𝑅
)

𝑛+1
} −

𝑞2

𝑅
{1 − (

𝑟

𝑅
)

𝑛
}],                                          (24) 

 

𝑢𝑝0 = 2[𝑔(𝑡)𝑅]𝑛𝑅 [
1

𝑛+1
{1 − (

𝑞2

𝑅
)

𝑛+1

} −

𝑞2

𝑅
{1 − (

𝑞2

𝑅
)

𝑛

}],                                        (25) 

 

𝜏𝑝1 = −[𝑔(𝑡)𝑅]𝑛𝐷𝑅2 [
𝑛

2(𝑛+1)
(

𝑞2

𝑅
) −

𝑛−1

2
(

𝑞2

𝑅
)

2

−
𝑛

2(𝑛+1)
{(

𝑞2

𝑅
)

𝑛+2

}],                 (26) 

 

𝜏𝐻𝐵1 = −[𝑔(𝑡)𝑅]𝑛𝐷𝑅2 [
𝑛

(𝑛+1)(𝑛+3)
{

𝑛+3

2
(

𝑟

𝑅
) −

(
𝑟

𝑅
)

𝑛+2
} −

𝑛−1

𝑛+2
(

𝑞2

𝑅
) {

𝑛+2

2
(

𝑟

𝑅
) −  (

𝑟

𝑅
)

𝑛+1
} −

3𝑛(𝑛2+2𝑛−3)

2(𝑛+1)(𝑛+3)
(

𝑅

𝑟
) (

𝑞2

𝑅
)

𝑛+3

] ,                         (27) 

 

𝑢𝐻𝐵1 =

−2𝑛 [𝑔(𝑡)𝑅]2𝑛−1𝐷𝑅3 [
𝑛

2(𝑛+1)2(𝑛+3)
{(𝑛 +

2) − (𝑛 + 3) (
𝑟

𝑅
)

𝑛+1
+ (

𝑟

𝑅
)

2𝑛+2
} +

𝑛

(𝑛+1)(𝑛+2)(𝑛+3)(2𝑛+1)
(

𝑞2

𝑅
) × {(𝑛 + 2)(𝑛 +

3)(2𝑛 + 1) [(
𝑟

𝑅
)

𝑛
+  (

𝑟

𝑅
)

𝑛+1
] − 2[(2𝑛3 +

9𝑛2 + 11𝑛 + 3) + (2𝑛2 + 6𝑛 +

3) (
𝑟

𝑅
)

2𝑛+1
]} +

(𝑛−1)2

2𝑛(𝑛+2)
(

𝑞2

𝑅
)

2

{(𝑛 + 1) −

(𝑛 + 2) (
𝑟

𝑅
)

𝑛
+ (

𝑟

𝑅
)

2𝑛
} +
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3𝑛(𝑛2+2𝑛−2)

2(𝑛+1)(𝑛+2)(𝑛+3)
{(

𝑟

𝑅
)

𝑛−1
− 1} (

𝑞2

𝑅
)

𝑛+3

+

3(𝑛−1)(𝑛2+2𝑛−2)

2(𝑛+1)(𝑛+2)(𝑛+3)
{1 − (

𝑟

𝑅
)

𝑛−2
} (

𝑞2

𝑅
)

𝑛+4

] ,  (28) 

 

𝑢𝑝1 =

−2𝑛 [𝑔(𝑡)ℎ]2𝑛−1𝐷ℎ3 [
𝑛

2(𝑛+1)2(𝑛+3)
{(𝑛 +

2) − (𝑛 + 3) (
𝑞2

ℎ
)

𝑛+1

+ (
𝑞2

ℎ
)

2𝑛+2

} +

(𝑛−1)

2(𝑛+1)(𝑛+2)(𝑛+3)(2𝑛+1)
(

𝑞2

ℎ
) × {(𝑛 + 2)(𝑛 +

3)(2𝑛 + 1) [(
𝑞2

ℎ
)

𝑛

+  (
𝑞2

ℎ
)

𝑛+1

] −

2[(2𝑛3 + 9𝑛2 + 11𝑛 + 3) + (2𝑛2 + 6𝑛 +

3) (
𝑞2

ℎ
)

2𝑛+1

]} +
(𝑛−1)2

2𝑛(𝑛+2)
(

𝑞2

ℎ
)

2

{(𝑛 + 1) −

(𝑛 + 2) (
𝑞2

ℎ
)

𝑛

+ (
𝑞2

ℎ
)

2𝑛

} +

3𝑛(𝑛2+2𝑛−2)

2(𝑛+1)(𝑛+2)(𝑛+3)
{(

𝑞2

ℎ
)

𝑛−1

− 1} (
𝑞2

ℎ
)

𝑛+3

+

3(𝑛−1)(𝑛2+2𝑛−2)

2(𝑛+1)(𝑛+2)(𝑛+3)
{1 − (

𝑞2

ℎ
)

𝑛−2

} (
𝑞2

ℎ
)

𝑛+4

] , (29) 

 

where 𝑞2 =
𝜃

𝑔(𝑡)
 , 𝑔(𝑡) = [2[1 + 𝑒 cos 𝑡] +

𝐵 cos(𝜔𝑡 + ∅)] + 𝐹1
𝜕𝐻

𝜕𝑧
cos 𝜓 −

𝑅𝑒

𝐹𝑟
sin 𝛼 and 

𝐷 =
1

𝑔

𝑑𝑔

𝑑𝑡
. 

 

The expression for wall shear stress 

                 𝜏𝑤 = (𝜏𝑐0 + 𝛼𝑐
2𝜏𝑐1)𝑟=𝑅. 

 

The expression for the volumetric flow rate 

𝑄(𝑧, 𝑡) = 4[(∫ 𝑟𝑢𝑝0𝑑𝑟
𝑅𝑝0

0

+ ∫ 𝑟𝑢𝑝0𝑑𝑟
𝑅

𝑅𝑝0

)

+ 𝛼𝑐
2 (∫ 𝑟𝑢𝑝0𝑑𝑟

𝑅𝑝0

0

+ ∫ 𝑟𝑢𝑝0𝑑𝑟
𝑅

𝑅𝑝0

)] 

 

The expression for the plug core radius can be 

written as: 

𝑅𝑝 = 𝑞2 + 𝛼2[𝑔(𝑡)ℎ]𝑛−1
𝑛𝐷ℎ3

2(𝑛 + 1)
[(

𝑞2

𝑅
)

−
𝑛2 − 1

𝑛
(

𝑞2

𝑅
)

2

− (
𝑞2

𝑅
)

𝑛+2

] 

 

The longitudinal impedance to flow in the 

artery is defined as: 𝜆 =
𝑃(𝑡)

𝑄(𝑧,𝑡)
, where  𝑝(𝑡) =

4(1 + 𝑒 cos 𝑡)is a pressure gradient in the 

non-dimensional form. 

 

5.   Result and Discussion 

 

In converging and diverging region, for 

the analysis of the salient features of the 

Herschel Bulkley blood flow model, the effect 

of vital parameters defining flow geometries 

and fluid behavior such as Reynolds Number, 

Froude number, inclination angle for artery (𝛼) 

as well as of magnetic field (θ) on the flow 

characteristic plug flow radius, wall shear 

stress, shear stress at stenosis throat, axial 

velocity and volumetric flow rate are discussed 

numerically with computational illustrations. 

All graphs are plotted for the values of 𝜎 =
𝑏

𝑎
= 0,𝑏 = 1, 𝜉 = tan 𝜙 = 0.005, 0, −0.005 ,

𝑅𝑒 = 0.1, 𝐹𝑟 = 0.1, 𝑀 = 2,3,4 and shape 

parameter 𝑚 = 2, 6 and 11 with the stenosis 

height from 0 to 0.2 using mathematica 

software. Fig. 2 represents the variation of 

volumetric flow rate with the pressure gradient 

and yield stress. This graph shows that with 

the increase of yield stress, the volumetric 

flow rate increases. This could be because of 

the decrease in plug flow region with the 

increase of yield stress. With the increase of 

pressure gradient, the flow rate increases 

confirming that the plug flow region is 

reduced. Fig. 3 represents the variation of 

impedance with an axial distance. The 

resistive impedance in a diverging region is 

smaller than those in converging region 

because of the flow rate is higher in the former 

than those in latter, as anticipated. Obstruction 

to the flow is less in case of diverging artery as 

compared to the converging artery. Fig. 4 

represents that impedance appears to be 

uniform for smaller values of pressure gradient 

for both the cases of yield stress. It appears 

from the graph that the impedance is more for 

the converging region as compared to 

diverging region. Fig. 5 represents that 

volumetric flow rate appears to maximum in 

core region of the artery. For the converging 

region the flow rate is less as compared to the 

diverging region.  
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Fig. 2   Variation of volumetric flow rate with a 

pressure gradient ‘e’. 

 

 
Fig. 3 Variation of impedance ‘A’ with an axial 

distance ‘z’. 

 

 
Fig. 4   Variation of impedance ‘A’ with pressure 

gradient ‘e’. 

 

 
Fig. 5   Variation of volumetric flow rate with the 

axial distance ‘z’. 

 

 

6.   Conclusions  

 

The present study deals with the analysis 

of flow characteristics of the blood flowing 

through an inclined stenosed tapered artery 

under the influence of an inclined magnetic 

field. This investigation can play a vital role in 

the determination of axial velocity, volumetric 

flow rate and impedance in particular 

situations and some interesting predictions 

related to the medical interest has been 

analysed. The main findings of the present 

mathematical analysis are as follows; with the 

increase of pressure gradient, the flow rate 

increases confirming that the plug flow region 

is reduced; obstruction to the flow is less in 

case of accelerated diverging artery as 

compared to the accelerated converging artery; 

volumetric flow rate appears to be maximum 

in the core region of the artery. 
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