
83

Journal of Science and Technology

BPGD-AG: A New Improvement 
Of Back-Propagation Neural 

Network Learning Algorithms 
With Adaptive Gain

Nazri Mohd Nawi1, R.S. Ransing2, Norhamreeza Abdul Hamid1

1Faculty of Science Computer and Information Technology
Universiti Tun Hussein Onn Malaysia

86400, Parit Raja, Batu Pahat, Johor, MALAYSIA
2Civil and Computational Engineering Centre, School of Engineering

University of Wales Swansea
Singleton Park, Swansea, SA2 8PP, UNITED KINGDOM

Corresponding email : nazri@uthm.edu.my

Abstract
The back propagation algorithm is one of the popular learning algorithms to train 
self learning feed forward neural networks. However, the convergence of this 
algorithm is slow mainly because the algorithm required the designers to arbitrarily 
select parameters such as network topology, initial weights and biases, learning rate 
value, the activation function, value for gain in activation function and momentum. 
An improper choice of theses parameters can result the training process comes to 
as standstill or get stuck at local minima. Previous research demonstrated that in a 
back propagation algorithm, the slope of the activation function is directly influenced 
by a parameter referred to as ‘gain’. In this paper, the influence of the variation of 
‘gain’ on the learning ability of a back propagation neural network is analysed. Multi 
layer feed forward neural networks have been assessed. Physical interpretation of 
the relationship between the gain value and the learning rate and weight values is 
given. Instead of a constant ‘gain’ value, we propose an algorithm to change the gain 
value adaptively for each node. The efficiency of the proposed algorithm is verified 
by means of simulation on a function approximation problem using sequential 
as well as batch modes of training. The results show that the proposed algorithm 
significantly improves the learning speed of the general back-propagation algorithm.

Keywords : Neural Networks; Gain; Activation function; Learning rate; Training 
Efficiency.



84

Journal of Science and Technology

1	 INTRODUCTION

We consider standard multi-layer feed forward neural networks that have 
an input layer of neurons, a hidden layer of neurons and an output layer of 
neurons, and in that every node in a layer is connected to every other node 
in the adjacent forward layer. The back-propagation algorithm has been 
the most popular and most widely implemented for training these types 
of neural network. When using the back-propagation algorithm to train 
a multilayer neural network, the designer is required to arbitrarily select 
parameter such as the network topology, initial weights and biases, a learning 
rate value, the activation function, and a value for the gain in the activation 
function. An improper choice of any of these parameters can result in slow 
convergence or even network paralysis where the training process comes to 
a virtual standstill. Another problem is the tendency of the steepest descent 
technique, which is used in the training process, to get stuck at local minima.

	 In recent years, a number of research studies have attempted to 
overcome these problems. Theses involved the development of heuristic 
techniques, based on studies of properties of the general back-propagation 
algorithm. These techniques include such idea as varying the learning 
rate, using momentum, gain tuning of activation function. Perantonis et. 
al. [1] proposed an algorithm for efficient learning in feed forward neural 
networks using momentum acceleration. Kamarthi et. al. [2] presents a 
universal acceleration technique for the back-propagation algorithm based 
on extrapolation of each individual interconnection weight. Research has 
also focused on the use of standard numerical optimisation techniques. 
Moller [3] explained how conjugate gradient algorithm could be used 
to train multi-layer feed forward neural networks while Lera et. al. [4] 
described the use of Levenberg-Marquardt algorithm for training multi-layer 
feed forward neural networks. However, most of these methods are quite 
complex, require excessive memory and are computationally very expensive.

	 In order to improve the performance of the back-propagation 
algorithm an algorithm has been proposed in this paper to change the gain 
value adaptively. It is shown that changing the ‘gain’ value adaptively for 
each node can significantly reduce the training time. In order to verify the 
efficiency of the proposed method, and to compare it with the general back-
propagation algorithm, we perform simulation experiments on a function 
approximation problem using the sequential as well as batch modes of training.



85

Journal of Science and Technology

2	 EFFECT OF THE GAIN PARAMETER ON THE 			 
	 PERFORMANCE OF A NEURAL NETWORK

An activation function is used for limiting the amplitude of the output of a 
neuron. It generates an output value for a node in a predefined range as the 
closed unit interval [0, 1] or alternatively [-1, +1]. This value is a function 
of the weighted inputs of the corresponding node. The most commonly used 
activation function is the logistic sigmoid activation function. Alternative 
choices are the hyperbolic tangent, linear, step activation functions. For the 
jth node, a logistic sigmoid activation function which has a range of [0, 1] is a 
function of the following variables, viz.

	 						        (1)

Where,

	 					       (2)	
          				  
Where, 
	 oj		  Output of the jth unit.
	 wij		  weight of the link from unit i to unit j.
	 anet, j	 	 net input activation function for the jth unit.
 	 θj		  bias for the jth unit.
	 cj	 	 gain of the activation function.

	 The value of the gain parameter, cj, directly influences the slope of 
the activation function. For large gain values (c >> 1), the activation function 
approaches a ‘step function’ whereas for small gain values (0 < c << 1), the 
output values change from zero to unity over a large range of the weighted sum 
of the input values and the sigmoid function approximates a linear function.

	 Most of the application oriented papers on neural networks tend to 
advocate that neural networks operate like a ‘magic black box’, which can 
simulate the “learning from example” ability of our brain with the help of network 
parameters such as weights, biases, gain, hidden nodes etc. There are very 
few publications, or textbooks, which give physical interpretation for various 
parameters used in the network. Also, a unit value for gain has generally been 



86

Journal of Science and Technology

used for most of the research reported in the literature but a few authors have 
researched the relationship of the gain parameter with other parameters used 
in back-propagation algorithms. The recent results [5] show that learning rate, 
momentum constant and gain of the activation function have a significant impact 
on training speed. However, higher values of learning rate and/or gain cause 
instability [6]. Thimm et. al. [7] also proved that a relationship between the gain 
value, a set of initial weight values, and a learning rate value exists. Looney [8] 
suggested to adjust the gain value in small increments during the early iterations 
and to keep it fixed somewhere around halfway through the learning. Eom et. 
al. [9] proposed a method for automatic gain tuning using a fuzzy logic system.

	 However, the authors have not come across publications in the literature 
that have implemented adaptive gain variation as proposed in this research work.

3	 THE PROPOSED ALGORITHM USING SEQUENTIAL 		
	 MODE OF TRAINING.

We propose an algorithm for changing the gain value adaptively for each 
node which is implemented for the sequential mode of training. The 
following subsection describes the algorithm. The advantages of using 
an adaptive gain value have been explored. Gain update expressions 
as well as weight and bias update expressions for output and hidden 
nodes have also been proposed. These expressions have been derived 
using same principles as used in deriving weight updating expressions.

	 The sequential mode of training requires an immediate updating of 
weights, biases and gains after the presentation of training example. An epoch 
is said to be complete after the presentation of the entire training set. A sum 
squared error value is calculated after the presentation of each training example 
and compared with the target error. Training is done on an epoch-by-epoch 
basis until the sum squared error value falls below the desired target error value.

	 The following iterative algorithm is proposed by the authors for 
the sequential mode of training. Weight, biases and gains are calculated and 
updated for each training example, which is being presented to the network. 



87

Journal of Science and Technology

For a given epoch,
For each example,
Step 1
Calculate the weight and bias values using the previously converged 
gain value. 	
Step 2
Use the weight and bias value calculated in step (1) to calculate the new 
gain value. 	

Repeat Steps (1) and (2) for each example on an epoch-by-epoch basis until 
the error on the entire training data set reduces to a predefined value.

	 The gain update expression for a gradient descent method is calcu-
lated by differentiating the following error term E with respect to the corre-
sponding gain parameter.

The network error E is defined as follows:

	 				                   (3)	
     					   

For output unit,  needs to be calculated whereas for hidden units.  is 
also required. The respective gain values would then be updated with the fol-
lowing equations.

	 						        (4)

	 						        (5)

	 			     (6)
	
Therefore, the gain update expression for links connecting to output nodes is:



88

Journal of Science and Technology

	 			   (7)

	 	  (8)
  		
Therefore, the gain update expression for the links connecting hidden nodes is:

     (9)    	
	
Similarly, the weight and bias expressions are calculated as follows:

The weight update expression for the links connecting to output nodes with a 
bias is:

	 				                (10)

Similarly, the bias update expressions for the output nodes would be:

	 					     (11)

The weight update expression for the links connecting to hidden nodes is:

	 	              (12)

Similarly, the bias update expressions for the hidden nodes would be:

4	 VALIDATIONS ON THE ‘COSINE CURVE’ AND ‘SINE 		
	 CURVE’ EXAMPLES USING SEQUENTIAL MODE

The results of our proposed algorithm were validated on a standard feed 
forward neural network with one hidden layer having five hidden nodes. The 
training data set is created based on Bishop [10] by using the same function 

 and  where . The network is 
trained using the learning rate value of 0.3 to achieve a target error of 0.001. 
The Gradient Descent training algorithm was employed in a sequential mode 
with adaptive changes in weight, bias and gain values. The initial weight 



89

Journal of Science and Technology

and bias values were chosen as small random numbers in the range [-1, +1].

	 The network is trained with an adaptive gain with an initial value 
of unity for the gain parameter for all output as well as hidden nodes. 
In Figure 1(a) the network output (continuous curve) is shown against 
the training data points (circles) using the function 
. The output of the network using constant unit gain value is also plotted 
in Figure 1(a) (dotted curve). The gain values for the five hidden nodes 
at the end of training are 1.5831, 0.9126, 1.9954, 1.9959 and 1.1594 
respectively. The gain value for output node at the end of training is 1.9941. 

	 As shown in Figure 1(b) the speed of convergence of the 
proposed algorithm is high due to the modified gain values. The network 
required 1537 epochs to achieve the target error using the proposed 
adaptive gain algorithm in sequential mode, whereas using the same 
set of initial weight and biases the network required 17966 epochs to 
achieve the target error using constant unit gain value during training. 

(a) 



90

Journal of Science and Technology

(b)
Figure 1 : Output of the neural network training to learn a cosine curve with and 
without using the adaptive gain algorithm in sequential mode of training (a), and 

convergence speed for the cosine function with and without using the adaptive gain 
algorithm (b)

(a)



91

Journal of Science and Technology

(b)
Figure 2 : Output of the neural network training to learn a sine curve with and with-
out using the adaptive gain algorithm in sequential mode of training (a), and conver-
gence speed for the sine function with and without using the adaptive gain algorithm 

(b).

	 In Figure 2(a) the network output (continuous curve) is shown 
against the training data points (circles) y = x + sin(2*pi*x). The output of the 
network using constant unit gain value is also plotted in Figure 1(b) (dotted 
curve). The gain values for the five hidden nodes at the end of training are 
1.3048, 0.7119, 1.9958, 1.5527 and 1.9985 respectively. The gain value for 
output node at the end of training is 1.9956. Again, the result showed that 
the speed of convergence is high due to the modified gain values. As shown 
in figure 2(b) the network required 1154 epochs to achieve the target error 
using the proposed adaptive gain algorithm in sequential mode, whereas using 
the same set of initial weight and biases the network required 6014 epochs 
to achieve the target error using constant unit gain value during training. 

	 Comparing both the curves in Figure 1(a) and Figure 2(a) it can be 
seen that the training performance of the adaptive gain algorithm is similar 
to that using constant gain value. However the speed of convergence of 
adaptive gain algorithm is very high as compared to that using constant 
gain value as shown in Figure 1(b) and Figure 2(b). There is a dramatic 
improvement in the learning speed of back-propagation algorithm.



92

Journal of Science and Technology

5	 THE PROPOSED ALGORITHM USING BATCH MODE OF 	
	 TRAINING

We propose an algorithm for changing the gain value adaptive for each 
node which is implemented for the batch mode of training. The following 
subsection describes the algorithm. The advantages of using an adaptive 
gain value have been explored. The gain update expressions as well as 
weight and bias update expressions for output and hidden nodes have 
already been derived in Section 3. The only difference is that in the batch 
mode of training the weight, bias and gain updation terms are calculated and 
summed for all the training examples. Then the weights, biases and gains 
are updated after one complete presentation of the entire training set. An 
epoch is said to be complete after the presentation of the entire training set. 
A sum squared error value is calculated after the presentation of the training 
set and compared with the target error. Training is done on an epoch-by-
epoch basis until the sum squared error falls below the desired target value. 

	 The following iterative algorithm is proposed by the authors for 
the batch mode of training. Weights, biases and gains are calculated and 
updated for the entire training set, which is being presented to the network. 

For a given epoch,
For each example,
Step 1
Calculate the weight and bias and gain updation terms using the 
previously converged gain value. 
Step 2
Use the weight and bias values calculated in Step (1) to calculate the 
gain updation value
Repeat Steps (1) and (2) for each example and sum all the weights, 
biases and gain updation terms.

Update the weights, biases and gains using the summed updation terms and 
repeat this procedure on an epoch-by-epoch basis until the error on the entire 
training data set reduce to a predefined value.



93

Journal of Science and Technology

6	 VALIDATION ON THE ‘COSINE CURVE’ AND ‘SINE 		
	 CURVE’ EXAMPLES USING BATCH MODE

The results of our proposed algorithm were validated on a standard feed 
forward neural network with one hidden layer having five hidden nodes. 
The training data set is created based on Bishop [10] by using the function 

 and  where x є [0, 1]. The network 
is trained using 0.3 as the learning rate value to achieve a target error equal 
to 0.001. The Gradient Descent training algorithm was employed in a batch 
mode with adaptive changes in weight, bias and gain values. The initial weight 
and bias values were chosen as small random numbers in the range [-1, +1]. 
The network is trained with an adaptive gain with an initial value of unity for 
the gain parameter for all output as well as hidden nodes. In Figure 3(a) the 
network output (continuous curve) is shown against the training data points 
(circles) using the function . The output of the network 
using constant unit gain value is also plotted in Figure 3(a) (dotted curve).

	 In Figure 3(b) the network required 803 epochs to achieve the target 
error using the proposed adaptive gain algorithm in batch mode, whereas 
using the same set of initial weights and biases the network required 4559 
epochs to achieve the target error using unit gain value during training.  

(a)



94

Journal of Science and Technology

(b)

Figure 3 : Output of the neural network training to learn a cosine curve with 
and without using the adaptive gain algorithm in batch mode of training (a), and 

convergence speed for the cosine function with and without using the adaptive gain 
algorithm in batch mode of training (b).

	 In Figure 4(a) the network output (continuous curve) is shown 
against the training data points (circles). The output of the network using 
constant unit gain value is also plotted in Figure 4(a) (dotted curve). 
Again, the result showed that the speed of convergence of the proposed 
algorithm is high due to the modified gain values. As shown in Figure 
4(b) the network required 1148 epochs to achieve the target error using 
the proposed adaptive gain algorithm in batch mode, whereas using the 
same set of initial weight and biases the network required 4114 epochs to 
achieve the target error using constant unit gain value during training. 

	 Comparing both the curves in Figure 3(a) and Figure 4(a) it can be seen 
that the training performance of the proposed adaptive gain algorithm is similar 
to that using constant gain value. However the speed of convergence of the 
proposed adaptive gain algorithm is very high as compared to that using constant 
gain value as shown in Figure 3(b) and Figure 4(b). The results proved that there 
is a dramatic improvement in the learning speed of back-propagation algorithm. 



95

Journal of Science and Technology

(a)

(b)
Figure 4 : Output of the neural network training to learn a sine curve with and 

without using the adaptive gain algorithm in batch mode of training (a), and 
convergence speed for the sine function with and without using the adaptive gain 

algorithm in batch mode of training (b).



96

Journal of Science and Technology

7	 EFFECT OF NUMBER OF HIDDEN NODES, TARGET 		
	 NODES, TARGET ERROR AND INITIAL WEIGHT 		
	 AND BIAS VALUES ON NETWORK TRAINING.

A standard feed forward neural network with one hidden layer having fifteen 
hidden nodes is now used to validate the results of our approach. The network 
is trained using the learning rate value of 0.3 and momentum value of 0.4 
(in batch mode) to achieve a target error of 0.0001. The network was trained 
using the Gradient Descent training algorithm in both sequential and batch 
modes of training with adaptive changes in weight, bias and gain values. The 
network output for sequential mode (continuous curve) and batch mode (dotted 
curve) is shown against the training data points (circles) in Figure 5. It can be 
observed that outputs form both modes are almost the same and they overlap 
each other. Also, it can be seen that as the number of hidden nodes in the 
network is increased and the target error is reduced further, the trained network 
over fits the data and the curve passes through almost all the data points. 

	 The initial weights and biases were chosen as normally distributed 
random numbers in the range [-1, +1]. The same network is also trained on 
the same training data set using uniformly distributed random numbers in the 
range [0, 1].  However, there was 50% reduction in the training speed when 
using normally distributed random numbers. Hence, we conclude that the 
speed of training is also affected by the choice of initial weights and biases.



97

Journal of Science and Technology

Figure 5 : Output of the neural network trained to learn a cosine curve using the 
adaptive gain algorithm in both sequential (continuous curve) and batch mode (dotted 

curve) of training.

8	 EFFECT OF NOISE

A standard feed forward neural network with one hidden layer having five hidden 
nodes is trained using a training data set which is created by using the function 

 and  where x є [0,1], and adding 20% 
random Gaussian noise in it. The network is trained using the learning rate 
value of 0.3 and momentum value of 0.4 (in batch mode) to achieve a target 
error of 0.002. The initial weights and biases are small normally distributed 
random numbers in the range [-1, +1]. The network was trained using the 
Gradient Descent training algorithm in both sequential and batch modes of 
training with adaptive changes in weight, bias and gain values. The network 
output for sequential mode (continuous curve) and batch mode (dotted curve) 
is shown against the training data points (circles) in Figure 6(a) and Figure 7(a). 
It can be observed that network trained in both modes perform in a similar way. 

	 For the function , the network required 7449 
epochs to learn the target function using the sequential mode of training 
and only 609 epochs using the batch mode of training as shown in Figure 
6(b). And for the function , the network required 11813 
epochs to learn the target function using the sequential mode of training and 
1505 epochs using the batch mode of training as shown in Figure 7(b). In 



98

Journal of Science and Technology

practical both situations data is generally inherently noisy. The output from 
both modes for both functions shows that the network is also successful in 
learning the target function when there is noise present in the data. The results 
strengthen our belief in the better working of the adaptive gain algorithm.

(a)

(b)
Figure 6 : Output of the neural network trained to learned a cosine curve with 

20% random Gaussian noise using the adaptive gain algorithm in both sequential 
(continuous curve) and batch mode (dotted curve) of training (a), and convergence 
speed for the cosine function with using the adaptive gain algorithm in batch and 

sequential mode of training (b).



99

Journal of Science and Technology

(a)

(b)
Figure 7 : Output of the neural network trained to learned a sine curve with 20% 

random Gaussian noise using the adaptive gain algorithm in both sequential 
(continuous curve) and batch mode (dotted curve) of training (a), and convergence 

speed for the sine function with using the adaptive gain algorithm in batch and 
sequential mode of training (b).

9	 ADVANTAGES OF USING THE ADAPTIVE GAIN VARIATION

An algorithm has been proposed in this paper for the efficient calculation 
of the adaptive gain value in both sequential and batch modes of learning.



100

Journal of Science and Technology

	 We proposed that the total learning rate value can be split into two 
parts – a local (nodal) learning rate value and a global (same for all nodes in 
a network) learning rate value. The value of parameter gain is interpreted as 
the local learning rate of a node in the network. The network is trained using 
a fixed value of learning rate equal to 0.3 which is interpreted as the global 
learning rate of the network. However, as the gain value was modified, the 
weights and biases were updated using the new value of gain. This resulted 
in higher values of gain which caused instability [7]. To avoid oscillations 
during training and to achieve convergence, an upper limit of 2.0 is set for 
the gain value. This will be explained in detail in our next publication. The 
method has been illustrated for Gradient Descent training algorithm using 
the sequential and batch modes of training. An advantage of using the 
adaptive gain procedure is that it is easy to introduce into a back-propagation 
algorithm and it also accelerates the learning process without a need to invoke 
solution procedures other than the Gradient Descent method. The adaptive 
gain procedure has a positive effect in the learning process by modifying the 
magnitude, and not the direction, of the weight change vector. This greatly 
increases the learning speed by amplifying the directions in the weight space 
that are successfully chosen by the Gradient-Descent method. However, 
the method will also be advantageous when using other faster optimisation 
algorithms such as Conjugate-Gradient method and Quasi-Newton method. 
These methods can only optimise an equivalent of the global learning rate 
(the step length). By introducing an additional local learning rate parameter, 
further increase in the learning speed can be achieved. Work is currently 
under progress to implement this algorithm using other optimisation methods.

10	 CONCLUSION

While the back-propagation algorithm is used in the majority of practical neural 
networks application and has been shown to perform relatively well, there still 
exist areas where improvement can be made. We proposed an algorithm to 
adaptively change the gain parameter of the activation function to improve the 
learning speed. It was observed that the influence of variation in the gain value is 
similar to the influence of variation in the learning rate value. An algorithm has 
been proposed in this paper to change the gain value adaptively for each node.

	 In order to verify the effectiveness of the proposed algorithm, 
the function approximation problem was simulated and analysed using 
both sequential and batch modes of training. The results showed that 
the proposed adaptive gain algorithm has a better convergence rate and 
learning efficiency as compared to the general back-propagation algorithm.



101

Journal of Science and Technology

	 The network also demonstrated the principles of over fitting 
vs. generalization as the number of hidden nodes in the network was 
increased and the target error was reduced further. The choice of normally 
distributed random numbers in the range [-1, +1] for the initial values 
of weights and biases in the network greatly speeded the training process.

	 In practical situations data is generally inherently noisy. A 
network trained with the adaptive gain algorithm in sequential as 
well as batch modes of training was also successful in learning the 
target function when there was noise present in the data. The results 
strengthen our belief in the better working of the adaptive gain algorithm.

ACKNOWLEDGMENT

The authors would like to thank Universiti Tun Hussein Onn Malaysia for 
supporting this research under the Short Term Research Grant.

REFERENCES

[1]	 Perantonis S. J. and Karras D. A., An Efficient Constrained Learning 	
	 Algorithm with Momentum Acceleration. Neural Networks, 		
	 1995(8(2)): p. 237-249.

[2]	 Kamarthi S. V. and Pitner S., Accelerating Neural Network Training 	
	 using Weight Extrapolations. Neural Networks, 1999. 12: p. 1285-	
	 1299.

[3]	 Moller M. F., A Scaled Conjugate Gradient Algorithm for fast 		
	 Supervised Learning. Neural Networks, 1993. 6(4): p. 525-533.

[4]	 Lera G. and Pinzolas M., Neighborhood based Levenberg- 		
	 Marquardt Algorithm for Neural Network Training. IEEE 		
	 Transaction on Neural Networks, September 2002. 13(5): p. 1200-	
	 1203.

[5]	 Holger R. M. and Graeme C. D., The Effect of  Internal Parameters 	
	 and Geometry on the Performance of Back-Propagation Neural 		
	 Networks. Environmental Modeling and Software, 1998. 13(1): p. 	
	 193-209.



102

Journal of Science and Technology

[6]	 Hollis P. W., Harper J. S., and Paulos J. J., The Effects of Precision 	
	 Constraints in a Backpropagation Learning Network. Neural 		
	 Computation, 1990. 2(3): p. 363-373.

[7]	 Thimm G., Moerland F., and Fiesler E., The Interchangeability 		
	 of Learning Rate an Gain in Back propagation Neural Networks. 		
	 Neural Computation, 1996. 8(2): p. 451-460.

[8]	 Looney C. G., Stabilization and Speedup of Convergence in Training 	
	 Feed Forward Neural Networks. Neurocomputing, 1996. 10(1): p. 	
	 7-31.

[9]	 Eom K., Jung K., and Sirisena H., Performance Improvement of Back 	
	 propagation algorithm by automatic activation function gain tuning 	
	 using fuzzy logic. Neurocomputing, 2003. 50: p. 439-460.

[10]	 Bishop C. M., Neural Networks for Pattern Recognition. 1995: 		
	 Oxford University Press.

[11]	 Kruschke J. K. and Movellan J. R., Benefits of Gain: Speeded 		
	 learning and minimal hidden layers in back propagation networks. 	
	 IEEE Transactions on systems, Man, and Cybernetics, 1991. 21(1): p. 	
	 273-280.


	JST22 rev2.pdf

