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1. Introduction

The environment does not have a constant 

stable condition, it always changes and these 

changes can lead to various effects in the 

morphological and physiological 

characteristics of a leaf including its shape, 

curling degree, and its surface characteristics. 

One of the most important environmental 

factors affecting plants is light [1]. Plants can 

adapt to different light intensity depending on 

their environment or depending on the amount 

of shading they receive. This adaptation would 

be possible if plants change the distribution of 

its biomass and its morphology, in order to be 

able to utilize the amount light they receive, so 

as to survive [2, 3]. 

Various studies have indicated the 

significant effect of light intensity on the 

production of secondary metabolites like 

flavonoid glycosides and terpene lactone [4]. 

Shading was reported to affect flavones (a type 

of flavonoid) concentration in leaves of 

Litocarpus litseifolius [5]. Moderate shading 

favors the accumulation of flavonoids in L. 

litseifolius and therefore as the light intensity 

increases or decreases, the flavone 

accumulation would be affected. This 

secondary metabolites function in protecting 

the plants against harmful ultraviolet (UV) 

radiations. When the light intensity increases, 

the harmful UV radiation increases, and 

therefore the plant produce more flavonoids to 

protect itself from the radiation [6]. In some 

plants like Ginkgo biloba [4], and Erigeron 

breviscapus [6], flavonoid accumulation 

reduces when there is shading and increase 

when the light intensity increases. Other plants 

like L. litseifolius [5] do not fall under this 

category because the flavonoid accumulation 

do not have a linear relationship with light 

intensity and it produce more flavonoids at 

about 40% shading and fewer flavonoids at 

80% shading. This indicate that L. litseifolius 

requires an optimum light intensity for the 

accumulation of flavonoids. 

The variation in flavonoids accumulation 

among plant species may be due to the complex 

metabolism of flavonoids. Also when the 

photosynthesis is higher, the flavonoid 

accumulation increases in the leaves. This is 

true for Fagopyrum esculentum [7] which 

produce flavonoids depending on the L-

phenylalanine ammonia lyase (PAL) activity. 

In heliophytes, the activity of antioxidant 

enzymes decreases under lower light intensity. 
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This increase reactive oxygen species (ROS). 

Due to an increase in ROS, more flavonoids 

would be synthesized in order to scavenge the 

ROS, and protect the plant. This is true for L. 

litseifolius [5]. When L. litseifolius is growing 

under shading for 60 days, it reduces the 

production of flavonoids. This may be due to 

senescence of the cells. 

Under 50% irradiance, Piper aduncum was 

reported to accumulate more flavonoids than 

under 100% irradiance [8]. Epimedium 

pseudowushanene has medicinal effects due to 

its flavonoid contents. L3 (54.6±2.5µmolm-2s-1) 

and L4 (90.9±2.5µmolm-2s-1) light treatments 

were the optimum light intensity for the 

production of flavonoids in E. 

pseudowushanene. Epimedin A and B contents 

increased as light intensity increases from Li to 

L4 but decreased when the light intensity is 

very high (L5). This shows that different 

flavonoids production are affected by different 

light intensities [9]. The optimum light intensity 

for flavonoid accumulation in Epimedium 

sagittatum ranges from 40 to 60 µmolm-2s-1 

while in E. pseudowushanene, it ranges from 

54.6 to 90.9µmolm-2s-1 [9]. 

The objective of this paper is to review the 

effect of varying light intensity on the 

accumulation of flavonoid in plants. 

 

2.    Flavonoids 

 

Flavonoids are a group of aromatic compounds 

derived from Phe and malonyl coenzyme A. 

They include flavones, flavonols, tannins, 

chalcones, anthocyanins, and flavandiols which 

can be found in higher plants [10]. These 

secondary metabolites are produced by plants 

for protection against harsh conditions like 

cold, drought heat, salinity, UV radiation, 

pathogens, they also serve as detoxifying 

agents, allelopathic compounds, and signal 

molecules [11]. Due to this reason, flavonoids 

are not constantly produce by the plant, but 

rather, they are produced as response to a harsh 

condition. Example of such flavonoids (Table 

1) includes flavonol, flavones, and anthocyanin 

[12]. 

 

2.1 Flavonoids biosynthesis 

 

The flavonoid biosynthetic pathway is 

represented in Fig. 1. Variations in flavonoids 

accumulation may be due to the biosynthesis 

pathway (Shikimic acid pathway) where 

phenolic compounds are produced first in the 

pathway followed by phenolic acids, hydroxyl 

cinnamic acids, lignas and then flavonoids 

respectively [13]. Due to this, [14] 

hypothesized that lower level of flavonoids at 

higher light intensity was due to the production 

of other phenolic compounds more than 

flavonoids in the Shikimic acid pathway while 

higher level of flavonoid at lower light intensity 

is due to the production of more flavonoids than 

other phenolic compounds in the pathway.  

Therefore, a higher quantity of phenolic 

compounds inhibits flavonoids biosynthesis by 

inhibiting the activity of phenylalanine 

ammonia lyase (PAL) enzyme [15]. The 

enzyme responsible for flavonoids biosynthesis 

is located in the cell cytosol [16]. Increase in 

light intensity leads to an increase in flavonoids 

of medicinal plants [14, 17]. Light affects the 

activity of PAL, the enzyme that regulates 

flavonoid biosynthesis [18, 19]. The activity of 

flavonoid enzyme (PAL) increases at 50% and 

70% irradiance as well as under blue net for P. 

aduncum while in Labisa pumila Benth leaves, 

PAL has its highest activity at 630µmolm-2s-1 

[17]. 

When a plant receives enough nutrients, it 

concentrate more on using phenylalanine for 

protein synthesis instead of flavonoid 

accumulation [20]; i.e. there is a decrease in 

secondary metabolite accumulation when 

primary metabolites production increases [21].  

Lower light intensity favors the biosynthesis of 

monohydroxy B ring flavonoids while high 

light intensity influence the biosynthesis of 

dihydroxy B ring substituted flavonoids [22, 

23]. This, therefore, indicates that luteolin and 

quercetin will be higher at higher light intensity 

while kaempferol and apigenin will be higher at 

the lower light intensity. Therefore, luteolin and 

quercetin play a vital role in protecting plants 

against UV radiation [24]. 

Flavonoids can be found in plant leaf 

palisade and spongy mesophyll cells in 

accordance with the light intensity [25]. 

Flavonoids can also be found in plant 

chloroplast, nucleus, and vacuoles [24]. In 

leaves that are adapted to high irradiance, 

flavonoids especially dihydroxy B substituted 

flavonoids accumulate in the whole leaf depth 

[26]. In monocots, flavonoids are situated at the 

epidermis and mesophyll [27] while in dicots, it 

is restricted to the epidermis only. 

Phototropin photoreceptors (PHOT 1 and 

PHOT 2) are responsible for sensing UV-A, 



Journal of Science and Technology, Vol. 10 No. 3 (2018) p. 32-45 

 

34 
 

while UV-RESISTENCE LOCUS 8 (UVR8) 

sense UV-B light [28].  

 

 

 

Table 1   Different types of flavonoid

Class  Group  Description  Examples  

Anthoxanthin Flavone 2-phenylchromen-4-

one 

Luteolin, apigenin, tangeretin 

 

Flavonol 3-hydroxyphenyl-2-

chromen-4-one 

Quercetin, kaempferol, 

myricitin, fisetin, galangin, 

isorhamnetin,  

Flavanones  Flavanones 2,3-dihydro-2-

phenylchromen-4-

one 

Hesperetin, Naringenin, 

Eriodictyol, Homoeriodictyol 

 

Flavanonols Flavanonol 3-hydroxy-2,3-

dihydro-2-

phenylchromen-4-

one 

Taxifolin (or Dihydroquercetin), 

Dihydrokaempferol 

 

Flavans Flavanols 

 

2-phenyl-3,4-

dihydro-2H-

chromen-3-ol 

Catechin, Gallocatechin, 

Catechin 3-gallate, 

Gallocatechin 3-

gallate,Epicatechins,  

Theaflavin 

 

3,4,5-Trihydroxy-

1,8-bis[(2R,3R)-

3,5,7-trihydroxy-2-

chromanyl]-6-

benzo[7]annulenone 

Theaflavin-3-gallate, 

Theaflavin-3'-gallate, 

Theaflavin-3,3'-digallate 

Anthocyanidins 

Anthocyanin flavylium (2-

phenylchromenyliu

m) 

Cyanidin, Delphinidin, 

Malvidin, Pelargonidin, 

Peonidin, Petunidin 

These photoreceptors absorb light and 

activate the transduction signal. Grape berries 

are non-climacteric fruits that adapt to high 

light intensity by increasing the expression of 

flavonoid biosynthesis genes to accumulate 

more anthocyanins, proanthocyanins and 

flavonols [23, 29, 30, 31, 32, 33, 34]. 

When a shaded apple was exposed to light, 

a sudden up-regulation of flavonoid 

biosynthetic gene (MdFLS) and other 

anthocyanin and leucoantocyanidin genes were 

observed [35], [36]. This leads to increase in 

accumulation of flavonols and anthocyanins. 

Mutation leads to situations where-by light do 

not stimulate the accumulation of anthocyanins, 

as reported in grape berries [37], bilberry [38], 

Chinese bayberry [39], and strawberry [40]. 

This process is regulated by R2R3MYB 

transcription factors [41].  

The genetic constituents of a plant 

determine its flavonoid content, but the quality 

and quantity is influenced by environmental 

factors. These transcription factors were 

reported to be present in plants about 500 

million years ago [42]. Veraison (removal of 

the leaf before ripening) leads to up-regulation 

of MYB transcription factors, thereby 

increasing the accumulation of flavonoid in 

berries [33]. 

 

2.2 Functions of flavonoids 

 

Flavonoids have a variety of function in a plant. 

They can act as UV protectors [43], 

phytoalexins, signal molecules, growth 

regulators, allelochemicals and detoxifying 

agents [44], stimulate spore and seed 

germination, as well as act as pollinator 

attractants [45]. Lipid peroxidation occurs due 

to oxidative stress. Flavonoids like quercetin 

and rutin can protect plant membranes from 

oxidative damage.  In humans, they have 

antioxidant [46], hepatoprotective [47], 

antibacterial [48], anti-inflammatory [49], 

anticancer and antiviral effects [50]. 
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3. Factors affecting flavonoids accumulation 

 

Flavonoids production is affected by the light 

intensity and density [51]. The quality and 

quantity of irradiance are important for 

accumulation of flavonoids [52]. Flavonoid 

accumulation is also affected by geographical 

factors like latitude and altitude [53], 

temperature, PAR [45], and photoperiod [54]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1   The flavonoid biosynthetic pathway

 

3.1 Effect of light intensity on flavonoid 

accumulation 

 

UV radiation of 320-400nm (UV-A) reach the 

earth together with some (~0.5%) of 280-

320nm (UV-B) [55]. The latter is very little but 

it has harmful effect on both plant and animals, 

leading to activation of ROS which depending 

on the dose damage proteins, DNAs, and 

photosynthetic pigments in plants [56]. 

Flavonols are excellent ROS scavengers and 

due to this, the plant produces more flavonol for 

better protection [57]. 

The wavelength of 300-320nm was 

reported as the spectra for flavonoid production 

[58]. Kaempferol and quercetin accumulate in 

higher quantity in grape berries cultivated in 

New Zealand (at high level of UV radiation) 

[59]. Quercetin-3-O-galactoside and quercetin-

3-O-glucoside levels increased when harvested 

grape berry was treated with UV-C radiation 

[60]. 

Blue and red nets; and different irradiance 

were used to study the effect of light on Piper 

aduncum. Red net and 100% irradiance yield 

the lowest flavonoid content while the highest 

accumulation of flavonoid was observed under 

blue net [52]. This is also true for Prutea 

cynaroides  [61] but not true for Zingiber 

officinale [14]. The quality and quantity of 

irradiance is important for accumulation of 

flavonoid [52]. To study the effect of light on 

flavonoids synthesis in Ginger varieties, 4 

different light intensities (310, 460, 630, and 

790 µmolm-2s-1) were employed. Alpinia 

purpurata produced the highest amount of 

flavonoids in the leaves at 310 µmolm-2s-1 [14]. 

This shows that varying light intensities have an 

3-Malonyl-CoA + 4-Coumaroyl-CoA   Tetrahydroxychalcone 

 

Trihydroxychalcone     Naringenin   Flavones 

 

Liquiritigenin      3-OH-flavanones 

 

Isoflavone   Flavan-3, 4-diol      Flavonols 

 

2-hydroxy isoflavanone  3-OH-Anthocyanidins 

 

Isoflavonoids   Anthocyanin     Flavonol glycoside 
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Enzymes: CHR, chalcone reductase; DMID, 7,2′-dihydroxy, 4′-methoxyisoflavanol dehydratase; 

F3H, flavanone 3-hydroxylase; F3′H, flavonoid 3′ hydroxylase; F3′5′H, flavonoid 3′5′ hydroxylase; 

IFR, isoflavone reductase; IFS, isoflavone synthase; IOMT, isoflavone O-methyltransferase; LDOX, 

leucoanthocyanidin dioxygenase; OMT, O-methyltransferase; PAL, phenylalanine ammonia-lyase; 

RT, rhamnosyl transferase; UFGT, UDP flavonoid glucosyl transferase; VR, vestitone reductase 
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impact on the medicinal content of the studied 

plant. Light is an important environmental 

factor that regulates plant growth, development 

and biosynthesis of secondary and primary 

metabolites [59, 62]. Flavonoids production 

depends on the light intensity and density [51]. 

Due to the facts that medicinal plants exert their 

effect depending on the flavonoids and phenolic 

they contain, growing the plant at an optimum 

light intensity will help in increasing the 

medicinal effect of the plant. It is important to 

keep in mind that different plants have a 

different response to varying light intensity in 

terms of flavonoids production [63, – 65]. 

Shade plants have the advantage of lower 

temperature which influences flavonoid 

production especially anthocyanin [66 – 68]. 

Strawberries and Tanacetum parthenium were 

reported to have an increasing accumulation of 

flavonoids with decreasing light intensity [69], 

[70]. Various medicinal plants produce 

flavonoids at low light intensity [14, 63, 71, 72]. 

Isoflavones and other flavonoids accumulate in 

higher concentration if the plant is either 

infected [72, 73] or when the plant is under low 

nutrient/low light intensity [74, 75]. In an 

approach to studying the effect of light intensity 

and quality on the photosynthesis and flavonol 

accumulation in Ginkgo biloba, [4] find out that 

the studied plant accumulate flavonoids at a low 

level of UV radiation. [6] recorded that 

Erigeron breviscarpus grown under 100% and 

80% light intensity accumulate more flavonoid 

than those grown under 50% light intensity. The 

optimum light intensity for the accumulation of 

the major flavonoid of Epimedium 

pseudowushanense (epimedin c) was 

54.6±2.5µmolm-2s-1 [9]. 

High light intensity favors auxin 

production; which controls the glycosylation 

patterns of flavonoids according to the intensity 

of light [76]. The flavonoid that responds to 

light has catechol group in the B ring of their 

skeletal structure [22]. They are found in Nano 

and micro concentrations in mesophyll cells 

particularly in the vacuoles and chloroplast and 

they can reduce ROS. 

Blue light leads to the accumulation of 

more flavonoid in Saussurea medusa [77]. As 

the intensity of white light increases, the 

concentration of flavonoid also increases. The 

highest white and black light radiation that can 

lead to the maximum accumulation of flavonoid 

in S. medusa is 16-hour white light and 8-hour 

black light or vice versa [77]. UV-B was 

reported to increase the level of anthocyanin 

and other flavonol in grape berries. The 

flavonol content increased proportionally to the 

UV radiation [43]. 

Cluster shading of Vitis vinifera leads to a 

decrease in the accumulation of skin 

proanthocyanidins and flavonols but rarely 

affect the accumulation of anthocyanin [78]. 

Anthocyanin, flavonol and hydroxycinnamic 

acids accumulate in higher concentration in the 

leaves of Vaccinium myrtillus which was 

previously exposed to direct sunlight; while 

polymeric procyanidins were higher in shady 

plants [79]. Light and temperature affect the 

accumulation of flavonoid in Ginkgo biloba 

[15]. UV-C increase the level of flavonoid in 

Vaccinium corymbosum L. (blueberries). The 

effect of UV-C is dose and time related as it 

diminishes with time [80]. 

Light intensity has effects on the 

accumulation of flavonoid in cranberry [81], 

raspberry [82], Bayberry [39], Tomato [83], 

and in Bilberry [54]. It also regulate the 

accumulation of flavonoid in plants belonging 

to the Rosaceae family especially Apples [84], 

Strawberries [85, 86], Pears [87, 88],and Peach 

[89, 90]. Light treatment on harvested apples 

leads to accumulation of flavonols and 

anthocyanins which leads to the desired red 

coloration [91]. Therefore, light affects the 

accumulation of flavonoids even after harvest. 

Zhang et al. [92] reported that Pears accumulate 

less anthocyanin if the light intensity is high. 

This was also true for Mangosteen fruit [93]. 

Flavonoid accumulation was higher in sunny 

Phillyrea lattifolius than in shady plants. 

Altitude influence the quality of sun radiation 

i.e. (UV-B) is higher at higher habitats than 

lower ones [94]. In apples, when the UV 

radiation was blocked completely, the flower 

fails to produce anthocyanin, because the gene 

responsible for anthocyanin accumulation was 

not activated [95]. 

When a fluorescent lamp of 312 nm UV 

radiation was used on sweet cherry, 

anthocyanin accumulates in higher 

concentration than when white fluorescent 

lamp was used. The accumulation of the 

flavonoid was dose and time-dependent [96]. 

After 72-96 hours of exposing Lysimanchia 

callus cultures to UV-B radiation, the 

maximum level of flavonoid accumulates [27]. 

At higher UV-B radiation dose, flavonoid 

content of Acorus calamus L increases [18]. 

When UV-B applied to Brassica napus which 
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was pre-treated with UV-A, the accumulation 

of flavonoid was impeded [97]. 

The levels of saponarin and lutonarin 

flavonoids increase in the mesophyll and lower 

epidermis of Barley leaf. UV-A lead to an 

increase in the accumulation of flavonoids in 

the study [98]. The level of flavonoid in baby 

spinach sown in August was not affected by 

shading, while that sown in April was affected 

by shading; with an increase in flavonoid 

accumulation in un-shaded leaves [71]. This 

might be due to the fact that increasing levels of 

UV-B radiation leads to accumulation of 

flavonoids. Another reason might be due to 

PAR, which can also increase flavonoid 

synthesis [99]. 

Jeong et al. [32] reported that the 

accumulation of anthocyanin in grape berry 

skin was affected by shading. Quercetin-3-O-

glycoside had absorbance maxima at 355±2nm 

while luteolin absorb at 348±2nm. Their 

monohydoxy B ring counterparts absorbs 

maximally at 351±2nm for kaempferol and 

337±2nm for apigenin. The monohydroxy B 

ring absorbs UV wavelength more than 

dihydroxy B ring but the latter had greater 

antioxidant activity and responds to light [100]. 

Torreya grandis seedling at 75% shading 

produces lower levels of flavonoid, but at 100% 

and 50% irradiance, the plant produces more 

flavonoid [101]. Table 2 shows the light 

requirement for the accumulation of flavonoid 

in various plants. 

 

3.2 Effect of photosynthetic active radiation 

(PAR) and photoperiod on flavonoid 

accumulation 

 

In an approach to studying the relationship of 

high photosynthetic active radiation (PAR) and 

ambient UV-B intensity on the accumulation of 

secondary metabolites, [45] find out that 

anthocyanin and saponin level increase in 

Centella asiatica leaf under high PAR while 

under ambient UV-B radiation, sapogenin and 

saponin did not increase. The study reveals that 

sapogenin predominates older leaves, while 

saponin predominates younger leaves. The 

combination of high PAR and ambient UV-B 

has an effect on flavonol and anthocyanin 

production in C. Asiatica. This might be due to 

the reason that UVR8 (UV-B photoreceptor) 

pathway have a relationship with the visible 

light photoreceptor pathway [102, 103, 104]. 

Moreover, thicker leaves provide more 

protection to plant against UV radiation than 

thinner leafs [105]. 

 

 

Table 2   Effect of light quality, intensity, PAR and photoperiod on the accumulation of flavonoids in 

selected plants 

 

  

 

 

Plant  Light requirement for 

maximum flavonoid 

accumulation 

Type of flavonoid Reference  

Erigerium breviscarpus High light intensity Total flavonoid content [6] 

Ginkgo biloba High  UV light intensity Flavonol [4] 

Alpinia purpurata Low light intensity Total flavonoid content [14] 

Labisa pumila High light intensity Total flavonoid content [107] 

Lithocarpus litseifolius Moderate shading Flavone  [5] 

Hyptis marrubiodes White LED Rutin  [108] 

Anacardium othonianum Blue LED Flavone  [109] 

Berberis microphylla Moderate shading  Quercetin and cathecin [110] 

Berberis microphylla High light intensity Rutin and anthocyanin [110] 

Cyclocarya paliurus Blue LED Quercetin  [111] 

Elephantopus scaber Moderate shading Total flavonoid content [112] 

Lactuca sativa High light intensity Total flavonoid content [113] 

Aronia sp. Blue LED Total flavonoid content [114] 

Pyrus pyrifolia Blue LED Anthocyanin  [115] 

Tanacetum parthenium Night time Total flavonoid content [116] 

Brassica oleracea 12 hour day length Flavone  [117] 

Perilla frutescens Longer photoperiod Anthocyanin  [118] 

Ipomoea batatas Long photoperiod Flavonols  [106] 

Centella asiatica High PAR Anthocyanin  [119] 
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Photoperiod also influences the accumulation 

of flavonoid in response to UV irradiation. In 

Bilberry, higher levels of anthocyanins were 

recorded when the day length was 24 hour 

compared to when it was 12 hour [54]. This is 

also true for Vaccinium berries [53]. Longer 

days have a longer period of sunlight. Due to 

this, higher flavonoid content was recorded for 

Pomoea batatas L (sweet potato) leaves while 

lower flavonoid content was recorded for short 

photoperiods [106]. 

4. Conclusion 

 

In conclusion, flavonoid accumulation is 

strongly affected by the environmental light 

conditions. In general, higher sun radiation 

tends to increase flavonoid accumulation in 

plants especially fruits, but decrease flavonoid 

accumulation in heliophytes and some 

medicinal plants. This shows that variation in 

response to light can be high within and 

between species. Understanding the flavonoid 

biosynthetic pathway, its regulation and light 

signaling machinery in plants will help in 

selecting plant enriched with the desired health 

and dietary requirements. Knowledge of the 

optimal growth condition of a plant will help in 

cropping strategy of plants especially the 

endangered species. 
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