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1. Introduction

Quantum interference in double-slit experiment 
best represents the bizarre behaviour of 

particles in the quantum world for its simplicity 

and low-tech nature. The universality of this 

puzzling quantum phenomena was consistently 
demonstrated by particles of light, photons [1] 

and had been explained in well-established 

quantum predictions such as superposition 
principle [2] and wave function collapse [3]. 

However, these predictions seem incomplete as 

it relies heavily on the probabilistic nature of 
quantum system as the main foundation. 

Alternatively, a more deterministic view 

such as in Bohmian mechanics interpretation 

[4,5] is an attempt to gain much of the intuition 
of classical mechanics in explaining quantum 

interference by stressing the main idea of a 

quantum particle with well-defined trajectory 
[6]. An ingenious derivation made by Bohm has 

led to two primary equations, the continuity 

equation and the quantum Hamilton-Jacobi 

equation, have been the fundamental pillars of 
constructing the trajectories. Consequently, the 

so-called quantum potential appeared in the 

formulation that is responsible for non-local 
action in Bohmian mechanics. The first 

numerically constructed Bohmian trajectories 

based on quantum potential was by [7] which 
followed by others for example from [8]. 

Although the Bohmian particle trajectories 

depend on the quantum potential which itself is 

the manifestation of wavefunction [4,5], they 
still follow the law of conservation of 

momentum. This notable law states that the 

total momentum of an isolated system is always 

constant, and it applies to both classical and 
non-classical system [9]. Thus, a propagating 

photon will remain on its initial speed and 

direction until acted upon by an external force. 
For that reason, the bending nature of Bohmian 

trajectories which appeared in numerous 

numerical analysis [7,8,10,11] and later 
appeared in experiments using photons [12,13] 

for the double-slit set up must be clearly 

explained. This seems a contradiction in 

Bohmian trajectories for double-slit set up is 
demonstrated through an illustration in Fig. 1. 

Hence in this paper, the concept of quantum 

potential is shown as a perfect and satisfying 
explanation on the invariance in total transverse 

momentum by a system of ensembled photons 

based on Bohmian mechanics. The concept 

hold for cases such as, (i) the symmetrical 
spatial structure of photon pair trajectories 

because of same intensity from both slits [14] 

or (ii) the different in intensities between slits 
causing asymmetrical spatial structure of 

photon pair trajectories [15,16], and produce 

the invariance in the total transverse 
momentum. However, the first condition is 
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presented in this paper for best visualisation of 

the invariance. We reported that conservation 
of momentum seems to be violated for the 

single Bohmian trajectory of a photon only due 

to the ignorance of the total transverse 

momentum contribution because of the non-
local action of the other photons of the 

ensemble in the double-slit set up. 

 
 

 
Fig. 1 Illustration on Bohmian trajectories in 

double-slit experiment showing bending 

trajectories without any appearance external 

forces shown by red arrows. 
 

We first revisited the mathematical 

derivation of quantum potential from the 
original work of [4,5] that was later extended by 

[17]. We then further extended it in this study 

to show the relation between quantum potential 
and momentum hence its significance. The 

work of [14] was selected in this study for 

convenience stated before. Lastly, a thorough 

analysis on the transverse momentum of the 
single photon, pair of photons and ensemble of 

photons was clarified by means of symmetrical 

spatial structure of photon pair trajectories to 
display the manifestation of invariance in total 

transverse momentum in Bohmian trajectories 

hence obeying the law of conservation of 
momentum. 

 

 

2. Theory 
 

The so-called quantum potential is the 

aftermath of the development of Bohmian 
mechanics. It emerges from the derivation of 

the time dependent wavefunction ψ in its polar 

form (1), 

 

ψ(r,t)=√ρ(r,t)eiS/ℏ                  (1) 

 

with ρ(r,t)=ψψ* the probability density, and 𝑆 
the quantum phase given by (2), 

S= 
ℏ

2i
ln(

ψ

ψ*
)                       (2) 

 
Substituting the wavefunction in (1) into 

the usual Schrodinger equation (3) reduces into 

two separate equations known as the continuity 
equation (4) and the quantum Hamilton-Jacobi 

equation (5). 

 

iℏ
dψ

dt
= −

ℏ2

2m
∇2ψ+Vψ                (3) 

 
dρ

dt
+∇∙(ρ

∇S

m
)=0                     (4) 

 
dS

dt
+

|∇S|
2

2m
+V+Q=0                   (5) 

 

The Q in equation (5) is the quantum potential 
which can be shown by the derived expression 

of (6) [17], 

 

Q= −
ℏ2

2m
{Re (

∇2ψ

ψ
) + [Im (

|∇ψ|

ψ
)]

2

}     (6) 

 

To get the relation between momentum p 

and quantum potential Q which bridge classical 

dynamics to quantum dynamics based on (6), 

the momentum p is firstly defined in one 

dimension, the x-axis (the generalisation in 3-

dimensional space is straightforward) as 

p
x
=mvx. From the equation of motion (7) [17], 

the transverse component of the gradient of S, 

∇Sx is made the subject becoming the equation 

(8) and (9), 
 

vx=
∇Sx

m
=

1

m
Re {

p̂ψx

ψx

}                 (7) 

 

∇Sx=Re {
p ̂ψx

ψx

}                     (8) 

 

∇Sx=mvx=px                     (9) 

 

with p̂= − iℏ∇ being the momentum operator. 

The equation of motion (7) shows the direct 

relation between momentum p
x
 and ∇Sx 

through (9). Next, after rearranging the p̂ in (8) 

thus, 

 
∇Sx

−iℏ
=Re {

∇ψx

ψx

}                    (10) 

 

Operating ∇ on both side of equation (10), 
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−
1

iℏ
∇2Sx=Re {

∇2ψx

ψx

}               (11) 

 
Equation (11) is then substituted into the 

time-dependent quantum potential (due to the 

presence of time-dependent wavefunction) (6) 
resulting in (12), 

 

Q
x
=

ℏ

2im
∇2Sx −

ℏ2

2m
[Im (

|∇ψx
|

ψx

)]
2

    (12) 

 
Disregarding the second part of equation 

(12) shows the proportional relation between 

quantum potential and quantum phase as in 
(13), 

 

Q
x
∝∇2Sx                      (13) 

 

The relation (13) defines that the non-local 
effect of the quantum potential towards photons 

is related proportionally to the Laplacian of the 

quantum phase of the system. Further from (9), 

thus relation (13) could also be deduced to (14), 
 

Q
x
∝∇∙p

x
                      (14) 

 

or what we call the divergence in momentum 

fields, ∇∙p
x
. The momentum can be represented 

as an analogy of a vector momentum field and 

the action of quantum potential on particle’s 

momentum is dependence on the particle’s 
position at a time. This is very true by the 

definition of divergence by which the vector 

field flow behaves like a source at a given point. 

Hence, each point in the momentum field 
assigns the magnitude of the momentum of a 

particle at that specific point. It is thus a first-

order approximation on the relation between the 

classical quantity momentum, p with the 

quantum quantity quantum potential, Q. 

 

 

3. Method 

 

We performed an analysis on the numerically 
constructed Bohmian trajectories of photons in 

double-slit experiment [14] in term of 

transverse momentum evolution. As stated by 
[14], the photon trajectories were numerically 

computed by considering the wavefunction 

described by a coherent superposition of two 

Gaussian wave packets (15), 
 

ψ(x,t)∝e
-
(x−xo)2

4σoσt + e
-

(x+xo)2

4σoσt             (15) 
 

with x the position, xo the initial position, σo the 

initial width of the wave packets and σt the 

width at a time t given by σt=σo[1+i
ℏt

2mσo
] [14]. 

The expression (15) was inserted into the 

equation of motion in Bohmian mechanics (16) 

(substitution of (2) into (7)) with v the velocity 

of the particle.  

 

v=
ℏ2

2im
∇ln(

ψ

ψ*
)                   (16) 

 
Equation (16) thus was the basis of constructing 

Bohmian trajectories by [14]. The distribution 

of the magnitude of the probability density in 

the double-slit set up will not be stressed in our 
study. 

The Bohmian trajectories were analysed 

and extracted for its trajectories only by using 
the eraser tools in Adobe Illustrator CS6. The 

background colour was left behind. From all 

trajectories, three pairs of trajectories were 
selected where the pairs originate from both 

upper and lower slits. The eraser tools in Adobe 

Photoshop CS6 was then used to produce three 

graphs with three selected pairs labelled Pair 1, 
Pair 2 and Pair 3 respectively (Fig. 2 (b)(i), 

(c)(i) and (d)(i)). Fig. 2 (a)(i) shows the single 

trajectory from the lower slit of Pair 1. 
To extract data points along the 

trajectories, Webplot Digitizer 3.8 was used. 

Each trajectory has respectively 176 data points 

extracted. The data was then imported to Origin 
Pro 2016 to calculate the tangent value for each 

data points. The tangent values of two 

immediate points were then plotted in the 

graphs of tangent, 
dx

dt
 against time, t for all set of 

selected trajectories (Fig. 2 (a)(ii), (b)(ii), (c)(ii) 
and (d)(ii)). As from the general equation of 

momentum, p
x
=m

dx

dt
 where m is assumed to be 

photon’s effective mass, given by m =
𝐸

𝑐2 

where 𝐸 is photon’s energy and 𝑐 is the speed 

of light, thus, it can be interpreted that the 

graphs produced were representation of the 

evolution of transverse momentum p
x
 of 

photons against time, t. 
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Fig. 2   The selected Bohmian trajectories from 

[14] (a)(i) single trajectory from lower slit and 

three pairs of trajectories from lower and upper 
slits-(b)(i), (c)(i) and (d)(i) labelled Pair 1, Pair 

2 and Pair 3 respectively. (a)(ii), (b)(ii), (c)(ii) 

and (d)(ii) showing the graph of tangent of the 
curve (orange colour from the lower slit, blue 

colour form the upper slit) in (a)(i), (b)(i), (c)(i) 

and (d)(i) respectively which are equivalent to 
transverse momentum of photons with respect 

to time. 

 

 

4. Discussion 

 

Pair 1 (Fig. 2 (b)) was the central most 
trajectory pair with respect to the centre in the 

double-slit. Pair 2 (Fig. 2 (c)) and pair 3 (Fig. 2 

(d)) was the middle and outermost trajectory 
pair in the double-slit, respectively. The 

appearance of tangent peaks was due to changes 

in momentum direction from pointing outward 

and then pointing back to the propagation 
direction of photons, which was related to the 

evolution of transverse momentum with time. 

The momentum change can be slow and can be 
quite sudden as shown by the broadness of the 

peak. It showed that the location and the 

distance between broad peaks and sharp peaks 

varies for each pair. Another notable feature in 
the momentum evolution was that after a 

specific time the momentum remained constant 

until the photon reached the detection plane in 
double-slit experiment. 

The momentum evolution of the photon 

trajectories then was analysed at the single 

photon, the pair and the ensemble of photons. A 
single trajectory of photon in the double-slit set 

up (Fig. 2 (a)(ii)) seemed do not obey the law 

of conservation of momentum where the net 

transverse momentum is non-zero, p
x
≠0 at 

every instance of time during evolution 

fluctuation. This was due to the bending nature 
of the photon trajectory which undergoes 

continuous changes in its transverse momentum 

without any counter-reaction to conserve it. 
However, if we paired the photon in Fig. 2 

(a)(ii) with its equivalent pair from upper slit, 

(Fig. 2 (b)(ii)), also apply for the other pairs 
(Fig. 2 (c)(ii) and (d)(ii)), each complementary 

trajectory would add up their total transverse 

momentum contribution to zero, p
x
=0 at any 

time. This conservation of momentum between 

two separate trajectories is due to non-local 

action that arises from quantum potential, Q
x
 as 

in equation (14) that act on the photon 

transverse momentum, p
x
. The appearance of 

non-local action is the manifestation of 
entanglement in quantum mechanics. Thus, it 

shows that the entanglement between the two 

photons in the two trajectories has assisted the 

conservation of momentum. In other words, the 
momentum is invariance at every single time. 

This leads us to a concept called envariance 

(environment assisted invariance) a discovered 
symmetry in the non-local quantum state [18] 

which later known as entanglement assisted 

invariance [19]. 
Hence, when all pair of trajectories as an 

ensemble of photons in the double-slit 

experiment was considered, it will result in 

conservation of the total transverse momentum, 

Σp
x
=0. The law of conservation of momentum 

holds in Bohmian trajectories given that the 
non-local action must be considered. Hence, the 

new definition of the law of conservation of 

momentum in quantum mechanics should 

consider the non-local action which leads to, 
 

“Invariance of the total transverse momentum 

in an ensemble of photons is due to the action 
of non-local quantum potential” 

 

This analysis also profoundly agreed with 

the gold standard in quantum mechanics which 
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the physical quantity of momentum is 

conserved in a quantum system, given by the 
mathematical premise that says any observable 

commute with the Hamiltonian operator, H, its 

value is conserved [𝑝̂,H]=0 [9]. 

 

5. Conclusion 

 

We have shown that the conservation of 
momentum seems to be violated for the single 

Bohmian trajectory of photon only due to the 

ignorance of the total transverse momentum 

contribution of the ensemble, hence their non-
local action. However, total transverse 

momentum is invariance in the system of 

Bohmian mechanics. Moreover, we also 
provide first-order mathematical relation 

between momentum and quantum potential. 

This research will have application in future 
quantum communication and quantum 

computing. 
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