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1.0 Introduction 

Linear programming (LP) is a one of the tool 

that solves optimization problems. It is a 

specific class of mathematical method, in which 
a linear function is maximized (or minimized) 

subject to some linear constraints. LP and its 

many forms have come into wide use since it 

was first proposed in 1947 by Dantzig [1]. It has 
been used to solve optimization problem in 

various industries such as banking, education, 

forestry, petroleum, and trucking since the 
development of the simplex algorithm. 

LP become popular in academic circle, 

mainly for decision scientists (operations 
researchers and management scientists), as well 

as numerical analysts, mathematicians, and 

economists. Besides that, many industries use 

LP as a standard tool to allocate a finite set of 
resources in an optimal way. LP is also broad 

enough to encompass many interesting and 

important applications such as airline crew 
scheduling, shipping or telecommunication 

networks, oil refining and blending, and stock 

and bond portfolio selection [2]. 

Nowadays LP is used to solve large scale 
complex problem that requires a lot of 

computational effort. In fact, the rapid 

development of computer technology becomes 
the catalyst of the blooming of commercial LP 

solvers [3]. There are many commercial 

software packages to solve LP models such as 
Excel Solver, AMPL, LINGO, TORA, and the 

Optimization Toolbox in MATLAB [4]. 

However, most of the commercial packages are 
designed to solve large scale problems and lack 

of some features for classroom use. 

This paper is aimed to develop a Graphical 

User Interface (GUI) solver for LPs using 
MATLAB namely LpSolver. This solver is 

specific for solving classroom sized problems 

and able to perform computation in symbolic 
form (the other applications can only perform 

calculations in numeric form). Symbolic 

computation includes computing expressions 
with symbolic variables and fractions. Our 

solver is also able to generate 2-D graph that 

allows the user to trace the optimizing process 

that leads to the optimal solution. This is 
particularly useful since certain method such as 

the dual simplex method has different 

converging path from the original simplex 
method. Graphical output helps user to 

understand the concepts behind each LP 

method base on its convergence path. 

LP models itself exists in different classes 
such as LP with different types of constraints 

(equality and inequality) and right-hand side 

values (feasible and infeasible). Each class may 
require a specific solving method and the 
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methods that will be included in this paper are 

the simplex method, the Big-M method, the 
Two-Phase method and the Dual-Simplex 

method. 

In this paper we consider the lack of 

features of the commercial solvers mentioned 
and included those features in our GUI solver. 

Table 1 shows the comparison of the features 

among the solvers and the our LpSolver. It can 
be seen that only the TORA solver and 

LpSolver has graphical output option and able 

to show the result by iteration whereas the other 
solvers do not have this option. 

 

Table 1   Features for each solver. 
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(1) -  - - -  

(2) - - - - -  

(3) -  - - -  

(4) - -    - 

(5)   - - -  

Note: (1) Graphical output, (2) Symbolic 

computation, (3) Result by iteration, (4) Command 

Line interface, (5) Mouse interface 

 
 

2.0  Linear Programming Techniques  

 

Here we show a typical LP that will be later 
used to test our solver. Model 1 is a simple LP 

that commonly used as an example in the first 

course of linear programming where there are 
only two independent variables involved, x1 and 

x2. All constraints are of ‘≤’ type but the LP 

techniques that we are going to discuss in this 

section can also cope with constraints of ‘≥’ or 

‘=’ type. 

 

Model 1: 

Objective function:  

Maximize 𝑧 = 5𝑥1 + 4𝑥2  

Subject to 6𝑥1 + 4𝑥2 ≤ 24 

  𝑥1 + 2𝑥2 ≤ 6  

  −𝑥1 + 𝑥2 ≤ 1  

  𝑥2 ≤ 2 
 

In Model 1, z is the objective function 

where we are interested to know its maximum 
value subject to the constraint stated. In 

Sections 2.1-2.4, we explain the solving 

procedure of LP with the Simplex method, the 
Big-M method, the Two-Phase method, and the 

Dual Simplex method. 

 

2.1 Simplex Method 

 

In mathematical optimization, the simplex 

method is a popular algorithm for LP which was 
developed by George B. Dantzig in 1947 [5]. 

Since many real-life problems are so large that 

makes hand calculation impractical, the need of 
an algorithm that systematically solves the 

problem becomes important. The simplex 

method, which is easily programmable suits 

this need [6]. The method itself is an iterative 
process that begins with an initial feasible 

solution, then repeatedly moves to a better 

solution. Finally, it terminates when an optimal 
solution has been found. 

The simplex algorithm proceeds by 

performing successive Gauss-Jordan row 
operations which each give an improved basic 

feasible solution. A basic feasible solution is 

judged as an improvement if it increases 

(decreases) the value of the objective function 
in a maximizing (minimizing) problem 

compare to the previous objective function 

value. The choice of the pivot element at each 
step is determined by the optimality condition 

(entering variable selection) to improve the 

solution and feasibility condition (leaving 
variable selection) that used to ensure the 

feasible solution do not move out from the 

feasible region [4]. 

Optimality condition is used to obtain the 
entering variable. The entering variable in a 

maximization (minimization) problem is the 

non-basic variable with the most negative 
(positive) coefficient in the objective function. 

Ties are broken arbitrarily. The optimum is 

reached at the iteration where all the objective 

function coefficients are nonnegative 
(nonpositive). 

Feasibility condition is required to find the 

leaving variable. For both the maximization and 
minimization problems, the leaving variable is 

the basic variable associated with the smallest 



Journal of Science and Technology, Vol. 10 No. 4 (2018) p. 28-32 

30 
 

nonnegative ratio which divide the non-basic 

variable with the corresponding right-hand-side 
value with strictly positive denominator. 

Similar to optimality condition, ties are broken 

arbitrarily. 

Gauss-Jordan row operations identifies the 
entering variable column as the pivot column 

and the leaving variable row as the pivot row. 

The intersection of the pivot column and the 
pivot row is called the pivot element. In [4], the 

Gauss-Jordan computations uses two types of 

elementary row operation to compute a new 
basic solution for the; 

1. pivot row: 

a. Replace the leaving variable in the 

basic column with the entering 

variable. 

b. New pivot row = Current pivot row  

Pivot element 

2. all other rows, including the objective 

function 

New row = (Current row) – (Its pivot  

column coefficient)  (New pivot row). 
 

The algorithm of the simplex method is as 
follows: 

 

Step 0: Determine a starting basic feasible 

solution. 
Step 1: Is there is an entering variable that can 

improve the current objective value 

(optimality condition)? Stop if there is 
no entering variable. Else, go to step 2. 

Step 2: Select a leaving variable using the 

feasibility condition. 

Step 3: Apply the Gauss-Jordan computations 
to determine the new basic solution. Go 

to step 1. 

 

2.2  Big-M Method 
 

The simplex algorithm discussed in the 
previous section is restricted to solve LP’s with 

‘≤’ constraints and nonnegative right-hand-

side values only. To include the ‘≥’ and ‘=’ 
constraints, the simplex method can be 

extended to the Big-M method by adding 

artificial variables which play the role of slacks 

at the first iteration and would not take part of 
any optimal solution [4]. The ‘Big-M’ refers to 

a large number associated with the artificial 

variables which represented by the letter M. 

The steps in the algorithm are as follows: 

Step 1: Modify the constraints so that the right-

hand-side of each constraint is positive. 

Step 2: Convert each inequality constraint to 

standard form. (Add slack variable 𝑆𝑖 

for constraint which contain ‘≤’ and 

for constraint that contain ‘≥’, add a 

surplus variable ‘−𝑆𝑖’). 

Step 3: For any ‘≥’ and ‘=’ constraints, 

introduce artificial variables ‘𝑅𝑖’. 

Step 4: Let M be a very large positive number. 

If the LP problem is minimization 
(maximization), for each artificial 

variable add 𝑀𝑅𝑖 (−𝑀𝑅𝑖) to the 

objective function. 

Step 5: To ensure that we are begin with a 

canonical form, all artificial variables 
must be eliminated from the beginning 

objective function row by replacing the 

artificial variable 𝑅𝑖 with 

corresponding 𝑅𝑖-row. 

Step 6: Solve the problem using the usual 

simplex method [7]. 

The value of M must be chosen sufficiently 

large so that the artificial variable would not be 

part of any feasible solution. For a sufficiently 
large M, the optimal solution contains any 

artificial variables in the basis if and only if the 

problem is not feasible. 

 

2.3 Two-Phase Method 
 

The Two-Phase method is an alternative to the 

Big-M method for solving problems with ‘≥’ 

and ‘=’ constraints. It introduces artificial 

variables to the same constraints as in the Big-

M method. The Two-Phase method solve the 
LP problem within Two-Phases. Phase I is 

attempts to find a starting feasible solution and 

Phase II is responsible to solve the original 
problem when there has a starting basic feasible 

solution found in Phase I [7]. 

The Two-Phase simplex method 
proceeds as follows: 
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Step 1: Bring the constraints into equality form 

by adding the necessary slack variables 
and artificial variables to the 

constraints (same as the step 2 and 3 of 

the Big-M method).  

Step 2: Phase I: find a basic feasible solution 

that always minimize the sum of the 
artificial variables, regardless of 

whether the LP is maximization or 

minimization. 

Step 3: If some artificial variable has a positive 
value in the optimal solution, the 

original problem is infeasible; stop. 

Step 4: Phase II: solve the original problem, 

starting from the basic feasible solution 

found in phase I. Apply the ordinary 
simplex method to obtain an optimal 

solution. 

As with the Big-M method, the column for 

any artificial variable may be dropped from 
future tableaus as soon as the artificial variable 

leaves the basis. The Big-M method and Phase 

I of the Two-Phase method make the same 

sequence of pivots.  

2.4 Dual-Simplex Method 
 

For the primal simplex algorithm, we always 

concerned the starting basis are primal feasible 
(right-hand side are all nonnegative) from the 

beginning until the final iteration but dual 

infeasible (non-optimal of objective function), 

which means we aim to achieve dual feasible 
solution. In other words, we maintain primal 

feasibility and drive toward dual feasibility 

throughout the process. Meanwhile, dual 
simplex algorithm works in just opposite 

fashion. The starting basis are now dual feasible 

from the beginning until the final iteration but 

primal infeasible, and we aim to achieve primal 
feasible solution. Throughout the process we 

maintain dual feasibility and drive toward 

primal feasibility [8]. 
Dual feasibility condition is used to obtain 

the leaving variable. The leaving variable is the 

basic variable with the most negative right-
hand-side value. Ties are broken arbitrarily. 

The optimum is reached at the iteration where 

all the basic variables are nonnegative. 

Dual optimality condition is required to 
find the entering variable. The row with the 

leaving variable will be the pivot row. The 

entering variable is the smallest nonnegative 

ratio of coefficient of 𝑥𝑗  in z-row divided with 

coefficient 𝑥𝑗  in pivot row. Similar to feasibility 

condition, ties are broken arbitrarily. If all the 
ratios are negative, the problem has no feasible 

solution. 

The two requirements need to considered 
before starting are the optimality and 

infeasibility of the LP. The objective function 

must satisfy the optimality condition of the 
regular simplex method and all the constraints 

only can be contain ‘≤’. Inequalities of the type 

‘≥’ are converted to ‘≤’ by multiplying both 

sides of the inequality by −1. If the equation 

contains ‘=’ constraint, it can be replaced by 

two inequalities which are basic variables ≤ 

right-hand side and basic variables ≥ right-

hand side. The starting solution must be 
infeasible if at least one of the right-hand-side 

value of inequalities is negative [4]. 

 

3.0 Results and Discussions  
 
In this paper, a solver, namely LpSolver that 

solves the LP models in MATLAB has been 

created. The paper will only focus on the 
problem which the decision variables are 

nonnegative. Fig. 1 shows the sample output of 

the Model 1.  

 

 

Fig. 1   All Iteration result for simplex method. 

Fig. 2 shows that when the user choose Final 
Solution as the output option, the table displays 

the final results only, i.e. the optimal solution 

(optimal z and decision variables 𝑥1and 𝑥2) 

along with the number of iterations. All 
intermediate iterative results are excluded. 
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Fig. 2   Final Solution output for simplex 
method. 

 

If Graphical Solution is selected, a Start 
button will appear under the pop-up menu. 

Clicking the Start button activates the graphical 

output as in Fig. 3. The Graphical Solution 

shows how the objective function line gradually 
moves toward the optimal solution by seeking 

the intersection between the constraints that has 

the optimal objective value. However, this 
option is restricted to LP with two decision 

variables only. 

 

Fig. 3   Graphical output for Model 1. 

 

4.0  Conclusions 
 

Linear programming (LP) is a branch of 

optimization methods that finds the best 

outcome of a certain objective function based 
on linear constraints. The Simplex algorithm is 

one of the widely-used LP technique that 

iteratively improves the objective value by 
moving around the adjacent points on the 

boundary of the feasible region. We developed 

a MATLAB GUI solver for LPs, namely 

LpSolver that enables user to solve LP 
problems with a single click and avoids 

jumbling with convoluted programming codes. 

Four methods are considered in our solver: 
Simplex method, Big-M method, Two-Phase 

method and Dual-Simplex method. 
To make our solver handier, we allow it to 

compute in symbolic form (fractions included) 

and generates graphical output for 2-D models. 
LpSolver smartly chooses the suitable solving 

method if the user picks an unsuitable one. 

Users are even allowed to create a data file of 
their own and use the load button to load it into 

LpSolver rather than input the data sequentially 

which can be a hassle if the data size is large. 

However, LpSolver is not recommended to 
solve large scale problems (> 50 constraints, > 

100 variables) since computing in symbolic 

form can be quite time consuming and the 
Simplex method itself may converges slowly. 

To improve the convergence speed, advanced 

method such as interior point method can be 
considered to be coded in LpSolver for future 

work.  

Those who are interested to try our solver 

can send an email to us. We do not charge for 
the solver but as a token of appreciation we 

hoped that users can give feedbacks to us to 

improve our work. 
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