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Abstract 

Several models have been developed for the modeling of Rotating Disc Contactor 
(RDC) columns.  The modeling shows that the drop size distribution and the mass 
transfer processes are important factors for the column performances. Since the 
behavior of the drop breakage and the mass transfer process involve complex 
interactions between relevant parameters, the need to get as close as possible to the 
reality of the processes is evident. Several researchers have been working in this 
area. Most of these models have been studied based on the assumption of spherical 
droplets. The problem of spherical drop or bubble is known as the simplest and ideal 
case in which the problem can be considered in spherical coordinate system.  
However there are many physical situations the shape of the drops contained in 
liquid is not perfectly spherical, and may be classified as prolate or oblate spheroids.  
For most industrial applications particles encountered are irregular or non-spherical.  
In this research, the diffusion equation given in the  prolate spheroidal coordinate 
system is used for a two-dimensional case.  An analytical solution of the unsteady 
diffusion equation describing mass transfer for prolate spheroidal drops, considering 
a constant diffusion coefficient is presented.  The resulting equations are analytically 
solved by using the Laplace transform method.  
 
Keywords: mass transfer; RDC column; prolate spheroidal coordinates; laplace 
transform method 
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1. INTRODUCTION 
 

Several models have been developed for the modeling of RDC columns.  The 
modeling shows that the drop size distribution and the mass transfer processes are 
important factors for the column performances. Several researchers namely 
Korchinsky and Azimzadeh [8], Talib [14], Ghalehchian [6], Maan [10] and 
Bahmanyar [1] had been working in this area. Most of these models have been 
studied based on the assumption of spherical drops. The problem of mass transfer of 
spherical drop is known as the simplest and ideal case in which the problem can be 
considered in spherical coordinates system.  However there are many physical 
situations the shape of the drops contained in liquid is not perfectly spherical, and 
may be classified as prolate or oblate spheroids [3].  For most industrial applications 
particles encountered are irregular or non-spherical [11]. Furthermore According to 
[8] the drops or particles have the shapes that are closer to the spheroidal than to the 
spherical. In this paper, the model will be approximated by prolate spheroidal 
coordinates. The resulting of equations are analytically solved by using the Laplace 
Transform method.   
 
 
2. PROLATE SPHEROIDAL COORDINATES 

 
A prolate spheroid is generated by rotating an ellipse about its major axis contrasted 
with oblate spheroid. The prolate spheroidal coordinate related to the Cartesian 
coordinate was presented by [5], [12] and [15] through the transformation equations          

 cossinsinhLx                  (1a) 

  sinsinsinhLy                  (1b) 

  coscoshLz                              (1c)  

where 
2

1
2

2 LLL 
 is the focal distance of the prolate spheroidal drop measured 

from the coordinate origin, and 1L  and 2L  are the major and minor axes, 
respectively.  
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An ellipsoid of revolution scheme is shown in figure 1.  
 

 
 

Figure 1: Characteristics of a prolate spheroidal drop 
 

Acording to Elkamel [4] there are other equivalent transformations obtained 

from (1) by defining   cosh   and  cos                                      

 cos)1)(1( 22  Lx                 (2a)

  sin)1)(1( 22  Ly                (2b) 

 Lz                    (2c) 

Where ,1  ,11    ,20    ,  are called the radial and angular 

variables, respectively. The Laplacian operator 
2  in the prolate spheroidal 

coordinate can be written as 
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Eq. (3) will be used later to derive the diffusion equation in prolate spheroidal 
coordinates.  
 
 
3. GOVERNING EQUATIONS AND SOLUTION MODEL 

 
The governing equation for the diffusion process based on Fick’s second law of 
diffusion can be written in simplified notation as: 
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where 
2  is known as the standard Laplacian operator which is the second order 

partial derivative. Eq. (4) is an appropriate equation to predict mass diffusion in 
bodies with a rectangular shape  [2] and [9]. To predict the phenomenon in 
ellipsoidal drops, it is necessary to transform this equation into an appropriate 
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coordinate system, in this case , the prolate spheroid coordinate system. By using (3) 
and considering the constant diffusion coefficient, (8) can be written in prolate 
spheroidal coordinates as follows: 
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(5) 
The model to predict mass transfer in prolate spheroidal coordinates, for a situation 
with symmetry around the z axes is given by  
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Eq. (6) With Initial condition 

 11,1,0)0,,(  u             (7) 
and boundary condition 

 11,,0,),,( 000   tutu             (8) 
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               (9) 
Where u  is the concentration, t  is the time, D is the coefficient of diffusion and   
 ,  are the radial and angular coordinates in prolate spheroidal coordinates. This 

model is solved by using the method of Laplace Transform [13]. Taking the Laplace 
transform of the concentration with respect to time, we can obtain 
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Where ),,(),,( tupU t    and  
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(13) 
Where 
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Figure 2 shows profile of the concentration (u) of the drop as a function of the 
Fourier number (T) for different values of the shape. For a prolate spheroidal drop, as 
the shape decreases the concentration of the drop increases.  
  

 
 

Figure 2: Profile the concentration as a function of Fourier number for several 
different of shapes 
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Figure 3: Profile the concentration as a function of time for several different of 
diffusivities 

 
On the other hand in Figure 3  shows profile of the concentration (u) of the drop as a 
function time (t) for different values of the diffusivity. These results agreed to the 
previous results presented in [2] and [14]. 
 
 
4. CONCLUSIONS   

 
It has been presented the analytical solution for two dimensional diffusion equations 
in prolate spheroidal coordinates by using the Laplace transform method. This model 
presents a good agreement to the previous results and can be used to describe mass 
transfer for prolate spheroidal drops in RDC column. 
 
 
REFERENCES 
   
[1] Bahmanyar, H., (2009), Prediction of Efficiency and Solute Concentration 

along RDC Column with Applying New Effective Diffusivity Correlation, 
Aus tralian Journal of Basic and Applied Sciences, 3(4): 3109-3115 

 
[2] Crank, J. (1975).  The mathematics of diffusion. Second Edition. London: 

Oxford University Press. 
 
[3] Delgado, J.M.P.Q. (2007). Mass transfer around a spheroid buried in granular 

beds of small particles and exposed to fluid flow. Chem. Eng.Technol. 50(6): 
797-801 

5 10 15 20 25 30
t

0.1

0.2

0.3

0.4

0.5

0.6

u

K�3 10^  9

K�2 10^  9

K�1 10^  9



Journal of Science and Technology 
 

79 

[4] Elkamel, A.; Bellamine, F.H. & Subramanian, V.R.. (2008), Computer 
facilitated generaliced coordinate transformations of partial differential 
equations with engineering application. Wiley Periodal Inc. 

 
[5] Favelukis, M. & Ly, C.H. (2005). Unsteady mass transfer around spheroidal 

drops in potential flow. Chemical. Engineering science. 60: 7011-7021. 
 
[6] Ghalehchian, J. S. (1996). Evaluation of Liquid-Liquid Extraction Column 

Performance for Two Chemical System, Ph.D. Thesis. Bradford University, 
Bradford, U.K. 

 
[7] Juncu, G., (2010). Unsteady heat transfer from an oblate/prolate spheroid.  

International Journal of heat and mass transfer.  53: 483–3494 
 
[8] Korchinsky, W.J. & Azimzadeh (1976). An Improved Stagewise Model of 

quid-liquid Contactor. Chemical Engineering Science, 31(10): 871-875.Lima, 
D.R.; Farias, S.N.; and Lima, A.G.B. (2004). Mass transport in spheroids 
using Galerkin  method. Brazilian  journal of chemical engineering,21(04): 
667-680. 

 
[9] Maan, N., (2005).  Mathematical modeling of mass transfer in multi-stage 

Rotaing Disc Contractor column.  Ph.D. Thesis. Universiti Teknologi 
Malaysia. Skudai, Malaysia. 

 
[10] Mando, M., Yin, C., Sorensen H. and Rosendahl, L., (2007), On the 

modelling of motion of non-spherical particles in two-phase flow, 6th 
International Conference on Multiphase Flow, ICMF 2007, Leipzig, 
Germany, July 9 – 13 

 
[11] Mou, Y. & Howe, J.M.  (1997). Diffusion field associated with prolate 

spheroids in size and shape coarsening.  Acta mater.  45(2): 823-835. 
 
[12] Norminton, E.J. & Blackwell, J.H. (1964). Transient heat flow from constant 

temperature spheroids and thin circular disk.  Quart. Journ. Mech. and 
Applied Math., Vol. XVH  

 
[13] Talib, J.(1994).  Mathematical Model of Rotating Disc Contactor Column. 

Ph.D. Thesis. Bradford University, Bradford, U.K. 
 
[14] Zhao, H.; Wang, B.;Sin, J.K.O.; and  Poon, V.M.C. (1996). Analytical 

modeling of thermal effects on prolate ellipsoid field emission micromitter: 
Proceeding of the 9th International vacuum microelectronics conference. St. 
Petersburg. 117 120. 

 



Journal of Science and Technology 
 

80 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 


	jstv4n1p1.pdf

