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Abstract 
The experiment that was conducted to examine the advanced oxidation of the black 
liquor effluent obtained from the pulp and paper industry using the dark Fenton 
reaction in a lab-scale experiment based on Central Composite Design. The three 
factors along with their range values in that experiment were temperature (298; 333, 
K), H2O2 concentration (29.4; 58.8, mM), and Fe(II) concentration (0.36; 8.95, mM). 
The range of the factors were examine at fixed phase pH=3. Three response variables 
studied in the experiment, namely, COD removal after 90 min(%), UV254 removal 
after 90 min(aromatic content,%), and UV280 removal after 90 min (lignin content, 
%). The most widespread application of the RSM is in the situation where input 
variables potentially influence some quality characteristics of a process. Due to the 
fact that the experiment has several response variables, we employed a desirability 
function approach to optimize the responses simultaneously at one best setting of 
available factors. The resulted simultaneous optimization of an experiment is, in fact, 
the real situation where the experimenter should deal with since in an experiment, 
there is certainly a single input setting. After analyzing the data, both separated for 
each response variable and simultaneous for all response variables provided the same 
terms (factors) which are significantly contribute to the quadratic model (H2O2 and 
Fe(II) concentration). Nevertheles, they produced different factor settings. Through 
desirability function approach, we found that the best settings are 46.84 mM and 
6.771 mM of H2O2 and Fe(II) concentration, respectively. Those setting can be 
obtained at desirability function’s value of 0.782.  
 
Keywords: response surface methodology; central composite design; desirability 
function 
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1. INTRODUCTION 
 

Response Surface Methodology (RSM) is a collection of statistical and 
mathematicaltechniques useful for developing, improving, and optimizing processes 
([1].The most widespread application of the RSM is in situation where input 
variables potentially influence some quality characteristics of a process. 
 

Its origin was the work of Box and Wilson, [2].  It is used in many practical 
applications in which the goal is to identify the level of p design variables or factors 

 pxxxx ,,, 21  , that optimize a response,  xf , over an experimental region. 

Additionally, RSM is used to analyze and control the processes to obtain optimal 
condition and parameters [3]. The main objective of response surface method is to 
optimize the response in a process.  
 

Most industrial processes and products have more than one response or 
quality characteristic which are called multiple-response surface (MRS).  This 
factoften leads to involvedisproportionate and conflicting qualitycharacteristics 
(responses).Those responses must, in some sense, be optimized simultaneously to 
obtain the best levels of factors during process design.  Optimal factor setting for one 
response may be far from optimal for another response. Multiple response 
optimizations allows for compromise among the various responses. 
 

In an effort of obtaining simultaneous optimization steps, we will employ a 
black liquor dataset, which appeared in [4].  It is an investigation of the advanced 
oxidation of the black liquor effluent from the pulp and paper industry using the dark 
Fenton reaction in a lab-scale experiment.  They used central composite (CCD) in the 
process.But, in this article, we focus the analysis on the procedures of doing 
simultaneous optimization since in [4], their focused is on individual response 
optimization. 

 
 

2. REVIEWS OF MULTI-RESPONSE DEVELOPMENT IN RSM 
 

Before 1959, optimization of multiple response variables by using RSM was not well 
thought-out. A work by Hoerl[5] initiated a new era of developing multi-responses 
optimization.  He offered two approaches to optimize multiple response 
optimization, those are by combining the different response functions into a single 
function using a weightedaverage of the response functions, and by considering one 
of the response variables as primary and then to optimize it subject to the limits 
placed on the remaining response variables. In the second approach, each response 
functionis optimized individually and the contour plots are superimposed on each 
otherto find the region where the solution lies. Then the optimal location is 
identifiedvisually. Unfortunately, this approach can be used for small number of 
responses and design variables. 
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Harrington, [6], presented an optimization schemeutilizing what he termed 
the desirability function. Meanwhile, [7] and [8] describedoptimization schemes 
based upon the linearprogramming model. However, a major disadvantageof these 
schemes is the philosophy upon whichthey are based. These methods involve 
optimizationof one response variable subject to constraints on the remaining 
response variables. [9] then gave a slight modificationof Harrington’s function.The 
dual response approach for two responses was given by Myers and Carter, [10].The 
responses were categorized as primary and secondary responses. In this approach, we 
need to identify the levels of the design variables that optimize a primary response 
which is depended on a secondary response that has been set to a particular value. 
The tworesponse functions are then combined into a single response function which 
is then optimized. 
 

Thus far, the most commonly used approaches are desirability functions, [11], 
the generalized distance measure method by Khuri and Conlon, [12], and the 
weighted squared error loss methodby Vining, [13]. The desirability function method 
is one of the most popular for multiple response problems. In desirability function 
method, the response variable is transformed to give a desirability value which is 
proportional to the priority given to the response variable. In other words, this 
approach incorporates the priorities on the response function as a part of optimization 
by Osborne and Armocost, [14]. In this approach, multiple response functions are 
estimated as polynomial functionsof the factors or design variables.  
 
2.1 Optimization in RSM 
 
Let say we have a set of data containing observations on a response variable y and k 
controllable factors.  The true value of the response variable can be expressed as: 

   kxxxfy ,,, 21  , 

where  is noise or error which is usually assumed to be distributed with mean zero 
and constant variance 2

 . The function f is a response surface model, usually 

unknown. One goal in experimental design is to fit a mathematical model as the 
function f.  Knowledge of the form of the function, f, often found by fitting models to 
data obtained from designed experiments in order to provide a summary 
representation of the behavior of the response, as the predictor variables are changed. 
This might be done in order to optimize the response or to find what regions of the x-
space lead to a desirable product, [15]. 
 

In a multiple responses experiment, suppose that each response variable can 
be expressed as: 

   m,iy n
i ,,21: RRx , 

where Rx , real sets. 
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2.2 Desirability Function for Multi-Response Optimization 
 
One useful approach to optimization of multiple responses is to utilize the 
simultaneousoptimization technique popularized by [11]. It is one of the most widely 
used methods in industry which is based on the idea that the "quality" of a product or 
process that has multiple quality characteristics, with one of them outside of some 
"desired" limits, is completely unacceptable. Their proceduremakes use of 
desirability functions. The common approach is to first transform each response iy  

into an individual desirability function  ii yd that varies over the range   10  ii yd , 
where it takes a range of between 0 and 1, and increases as the 
correspondingresponse value becomes more desirable [16].  
 

Depending on whether a particular response iy is to be maximized, 

minimized, or assigned to a target value, different desirability functions  ii yd can be 

used.  The individual desirability  ii yd  will be as follows: 

Target is the best (TB), the objective is   2;ˆˆmin ii
x

Tθy x ,  
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Larger better LB), the objective is  x
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where x is the factors, θ̂  is parameter estimates of polynomial regression coefficients 
obtained by least square method.  The iL  and iU are lower and upper acceptable 
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values of iy , while iT  is target values desired for ith response, where iii UTL  , 

[17]. At this point, r is the parameters that determine the shape of  ii yd ˆ . A value of  
1r means that the desirability function is linear, 1r means that the desirability 

function is convex, more importance should be attached to close with the target 
value, and when the shape of the  ii yd ˆ  is concave when the value is 10  r  which 
means less importance tobe attached. The individual desirabilities are then combined 
using the geometric mean, which gives the overall desirability D: 

       m
mm ydydydD 1

2211 ˆˆˆ   , 

Where m denotes the number of responses. 
 

In fact, RSM normally starts with a series of steepest ascent/descent method 
based on a first-order model until a practicable higher-order model is suitable. For its 
simplicity, let assume here that y has been determined to be of second-order after 
steepest ascent method.  

 
 

3. THE BLACK LIQUOR DATA 
 

In this case-study, the main focus will be the real-life experiment that was conducted 
by [4]. They examine the advanced oxidation of the black liquor effluent obtained 
from the pulp and paper industry using the dark Fenton reaction in a lab-scale 
experiment based on CCD. The three factors along with their range values in that 
experiment were temperature (298; 333, K), H2O2 concentration (29.4; 58.8, mM), 
and Fe(II) concentration (0.36; 8.95, mM). The range of the factors were examine at 
fixed phase pH=3. According to CCD design of experiment, those factors would 
result in 17 experimental runs; consist of 8 factorial points, 3 centre points and 6 
axial. Three response variables studied in the experiment, namely, COD removal 
after 90 min (%), UV254 removal after 90 min(aromatic content,%), and UV280 
removal after 90 min (lignin content, %). Table 1 shows the levels of each factors 
and response variables in the experimental design. 
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Table 1: Central composite design for Black Liquor data with the actual and coded 
values 

Temp, K 
(A) 

H2O2, mM 
(B) 

Fe(II), mM 
(C) 

% Removal 
COD UV254 UV280 

298.0 (-1) 29.4 (-1) 0.36 (-1) 16.5 10.6 15.6 
333.0 (+1) 29.4 (-1) 0.36 (-1) 17.2 11.2 16.2 
298.0 (-1) 58.8 (+1) 0.36 (-1) 24.1 14.1 19.1 
333.0 (+1) 58.8 (+1) 0.36 (-1) 24.3 14.7 19.4 
298.0 (-1) 29.4 (-1) 8.95 (+1) 73.4 53.4 59.6 
333.0 (+1) 29.4 (+1) 8.95 (+1) 73.5 54.1 60.1 
298.0 (-1) 58.8 (+1) 8.95 (+1) 80.2 61.9 65.4 
333.0 (+1) 58.8 (+1) 8.95 (+1) 80.1 61.3 66.7 

286.0 (-
1.68) 

44.1 (0) 4.65 (0) 91.2 74.3 80.1 

345.0 
(+1.68) 

44.1 (0) 4.65 (0) 80.2 60.6 66.1 

315.5 (0) 19.4 (-1.68) 4.65 (0) 40.2 30.3 34.6 
315.5 (0) 68.8 (+1.68) 4.65 (0) 70.4 55.6 60.3 
315.5 (0) 44.1 (0) -2.57 (-1.68) 4.3 5.2 6.1 
315.5 (0) 44.1 (0) 11.88 

(+1.68) 
60.4 46.1 49.3 

315.5 (0) 44.1 (0) 4.65 (0) 94.2 78.4 83.1 
315.5 (0) 44.1 (0) 4.65 (0) 93.1 77.6 82.3 
315.5 (0) 44.1 (0) 4.65 (0) 93.8 76.9 84.6 

Source :[4] 
 
 
4. RESULTS AND DISCUSSION 

 
4.1 Model Fitting for Individual Response Variable 
 
Finding a correct model for each response variable is displayed in Table 2. We tried 
to fit with four possible models from the first order model (linear) to the third order 
model (cubic). Data analysis with first oder model indicates that except for COD 
Removal, all variables do not fit with linear model.  For the COD Removal response 
variable, even linear model is significant at 5% level of significant, but it produces 
reasonably small value of adjusted R2 (38.65%). 
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Table 2: Sequential model sum of squares and coefficient of determination of COD 
Removal, UV254 Removal, and UV280 Removal after 90 minutes (%) 

Response 
Variable 

Source DF 
Sum of 
Squares 

Mean 
Square 

F p R2Adj 

COD 
Removal 

Linear 3 7950.64 2650.21 4.36 0.0248 0.3865 
2FI 3 0.37 0.12 1.58E-04 1 0.2025 
Quadratic 3 7175.48 2391.83 23.05 0.0005 0.8953 
Cubic 4 572.05 143.01 2.78 0.2135 0.9481 
Residual 3 154.23 51.41    
Total 17 76705.27     

UV254 
Removal 

Linear 3 4882.093 1627.364 3.408879 0.0501 0.311136
2FI 3 9.82375 3.274583 0.005285 0.9994 0.105894
Quadratic 3 5491.727 1830.576 18.18835 0.0011 0.85477 
Cubic 4 487.5367 121.8842 1.685175 0.3483 0.895633
Residual 3 216.9819 72.32731    
Total 17 47456.85     

UV280 
Removal 

Linear 3 5046.004 1682.001 3.296517 0.0547 0.300991
2FI 3 4.19375 1.397917 0.002109 0.9999 0.091863
Quadratic 3 5985.804 1995.268 21.71911 0.0006 0.874145
Cubic 4 479.8064 119.9516 2.204154 0.2711 0.925445
Residual 3 163.2621 54.4207    
Total 17 56059.42     

 
Then we tried to fit the data with higher order model since, in general, first 

order model is not suitable, and we found that quadratic polynomial fits to all 
response variables with quite high value of adjusted R2. 
 

Next step is then to find out terms in the suitable model for each response 
variable.A full quadratic response surface model with design variable inputs, 1x , 2x  

and 3x with corresponding jth response variable jy is formulated as follows: 

  32163253152143322110 xxxxxxxxxxxxy j ,      (4) 

where i ’s are polynomial regression coefficients of the input variables that were 
estimated by least squares fitting of the model to the experimental results obtained at 
the design points, and   is random errors. But since we found that the temperature 
(A, 1x ) in all terms were not significant in the quadratic model, then we remove all 

1x related term from the Eq. (4).Curvature contribution was determined through 
central composite design to obtain final reduced second-order model in the terms of 

1x = temperature evel , 2x = concentration of H2O2 and 3x = concentration of Fe(II),  

fitted model for COD, UV254 and UV280 response variable  as follows: 
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2
3

2
232 19.106.052.1605.657.104ˆ xxxxyCOD    9188.02 R  

2
3

2
232254 01.106.063.1343.531.97ˆ xxxxyUV    87.02 R  

2
3

2
232280 07.106.028.1452.563.94ˆ xxxxyUV    8777.02 R  

 
Table 3: Analysis of variance for response variables with full quadratic polynomial 

model 

Source DF 
COD Removal UV254 Removal UV280 Removal 

Sum of 
Squares 

p 
Sum of 
Squares 

p 
Sum of 
Squares 

p 

Model 9 15126.5 0.0007 10383.64 0.002 11036 0.0013
A 1 22.68 0.6543 34.60914 0.576 31.81686 0.5747
B 1 455.72 0.0743 311.7467 0.1218 284.4023 0.1219
C 1 7472.25 < 0.0001 4535.737 0.0003 4729.784 0.0002
A2 1 215.25 0.193 332.0617 0.1122 304.0773 0.1117
B2 1 2576.46 0.0016 2237.877 0.0022 2293.127 0.0016
C2 1 6084.39 0.0001 4602.648 0.0003 5088.195 0.0001
AB 1 0.061 0.9813 0.21125 0.9647 0.03125 0.9858
AC 1 0.1 0.976 0.15125 0.9702 0.10125 0.9744
BC 1 0.21 0.9653 9.46125 0.7681 4.06125 0.8395
Residual 7 726.28 

 
704.5186

 
643.0685 

 Cor Total 16 15852.78 11088.16 11679.07 
 
4.2 Individual and Composite Desirability 
 
Optimal factor setting can be obtained for each response variable.  But, when we 
have more than one response variable, we need to obtain factor setting which suitable 
to optimize all response variables according to a criteria. Because, certain factor 
settings may yield a high desirability for one response, but desirability for other 
responses. The criteria to find the best overall factor setting are a desirability 
function. The overall desirability, D, is a measure of how well a researcher has 
satisfied the combined goals for all responses.  The ‘optimal’ factor settings are a 
setting that maximizes overall desirability. 
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Figure 1: Individual and Comppsitedesirabilities for COD removal, UV254 removal, 

and UV280 removal. 
 

In this study, there are three response variables on which the responses are 
competing with one another to determine the H2O2 and Fe(II) factor settings.  The 
predicted maximum values of the responses are COD removal = 95.3854%, UV254 
removal = 76.1706%, and UV280 removal = 81.9689% along with individual 
desirabilities of 1.0, 0.6856, and 0.6968, respectively (Figure 1).  At the individual 
desirabilities, it has its own factor setting for each response variable which most 
probably have different factor setting.  In fact, in a single experiment, it will have a 
single factor setting which is required to optimize all response variables.  
 

The problem is solved through composite desirability.  We obtained a value 
of composite desirability of 78178.0D  to get a factors setting which optimize all 
response variables.  The factors setting are 46.84 mMconcentration of H2O2and 6.771 
mMconcentration of Fe(II). 

 
 

5. CONCLUSIONS 
 

The statistical analysis (ANOVA) indicated that the effect of the H2O2and Fe(II) 
concentration are the significantfactor on the process responses.The reduced second-
polynomial regression fit to the experimental data. The fitted model is then used to 
obtain optimum response variables. The optimum range of input variables that 
produced desired process output was estimated through the use of composite 
desirability function. Using the function, we are able to obtain a one factor setting 
which maximize all response variables of COD, UV254, and UV280 removal. 
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