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1. Introduction

It is known that DNA damage formation induces the damage repair pathways, and signaling that lead to cell-cycle

arrest and apoptosis [1]. Exposure of human cells on irradiation may usually create DSBs in the arm of chromosomes. 

In general, a defect on a chromosome may cause chromosomal rearrangements that can lead to cancer [2]. Several 

mechanistic models attempted to study the cell's response of irradiation [3, 4]. The term “mechanistic” means these are 

models based on physical and chemical laws, which include parameters with physical, chemical, and biological 

meaning. The first model developed after the target model used the theory of dual radiation action [5]. The theory 

assumes that the number of irradiation-induced sublesions (DSBs) in eukaryotes is proportional to the dose of radiation. 

Two DSBs in a sensitive site will then interact and produce a lesion which can be thought of as a lethal chromosome 

aberration. The theory of dual radiation action is based on concepts of microdosimetry for energy deposition by 

irradiation.  

Many factors can cause damage to the DNA, for instance by direct and indirect irradiation [6]. In direct irradiation, 

charged-particles radiation such as alpha- and beta-particles have sufficient energy to disrupt directly the atomic 

structure and produce chemical and biological changes. Whereas, indirect action occurs due to the formation of highly 

reactive free radicals. The interaction of DNA and free radicals create oxidative damage in DNA which causes 

Abstract: “A double-edged sword-like of ionizing radiation”, a common phrase used to describe the effect of 

irradiation to human cells. Our aim in this article is to study the dynamics of double-strand breaks (DSBs) damage 

on deoxyribonucleic acids (DNA) following irradiation. In particular, we derived a structured cell population 

model of DNA with respect to DSBs count and mis-repair DSBs, specifically in the present of two simultaneously 

DSBs repair. We also derived the characteristic of exact solution, which follows a Homologous-Cauchy condition 

of initial value problem. These results may give insights on modelling strategies of DNA response to irradiation. 
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structural DNA alterations. Thus, in this work, we are concern about the development of DNA DSBs damage model, 

which accounts for the survival of mammalian cells after irradiation exposure. 

We first recall the model developed by Siam [7] on the evolution of cells after the DNA damage effect. Siam et al. 

[7] initiated the model by assuming the cells grouped according to their number of DSBs. On the onset of repair 

mechanism, cell “jumps” to another group based on their DSBs count and mis-repair DSBs. Few assumptions are made 

to tackle some complexity in the model formulation. The model considers a type of damage on DNA that is DSBs, not 

only one but many DSBs can be formed. The model does not incorporate any of the cell cycle phase progress and the 

repopulation of the cells is not considered. The model also did not allow the cell arrest phase, where under certain 

biological conditions, the cell can enter the quiescent state. 

According to [7], the survival cells can be measured by the initial distribution of the DSBs count produced 

immediately after irradiation. Just before the time t = 0, irradiation of dose (D) is given. At time t = 0, the irradiation 

process is completed and all the initial number of DBSs are produced in each cell. The irradiation dose (D) is 

incorporated into the model through the initial distribution of an initial number of DSBs in each cell. A variable Nk,m is 

used to represent a cohort of affected cells that have k number of DSBs and m number of mis-repair DSBs, with a 

pairing condition of k + m ≤ kmax and kmax is the maximum number DSBs exist in a population of cells. Once the DSBs 

are mis-repaired, they cannot be repaired again. The quantity of Nk,m is evolving as follows: 
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where d(k, m) is a function of the death rate of cells with k DSBs and m mis-repair DSBs and r(k, m, l) is a function of 

repair rate of cells with k DSBs and m mis-repair DSBs to simultaneously repair l DSBs at a time. Parameter p(k + i + j, 

m – j, i, j) is the probability of repair i DSBs correctly and j DSBs incorrectly in group of cells having k + i + j DSBs 

and m – j DSBs with a summation condition of 0 < i + j ≤ kmax – k and i + j = l. The unit for parameter d and r is time–1. 

An example of the formulation of Model (1) is given in Appendix A.  

Up to date, previous studies only consider the derivation of the model with l = 1, for instances [8, 9, 10, 11, 12, 13, 

14]. In this paper, we aimed to fill in the gap by initiating a derivation of the model with the condition of l = 2. Before 

proceed, we first review the derivation of l = 1 in the following section. Please be noted that the initial condition and 

the respective functions will be discussed in Section 4.  

 

2. Derivation of a model with 1 DSB repair at a time 

In the biological repair mechanism of DSBs, DSBs can be repaired more than one at a time but Siam [7] limits the 

case where only 1 DSB repairs occur at a time. From here, the model has l = 1 and i + j = 1. Therefore, i + j = 1 means 

the model (1) attempts to repair 1 DSB only and has two situations, either  

(i) successful repair of 1 DSB (i = 1, j = 0), or  

(ii) unsuccessful repair of 1 DSB (i = 0, j = 1).  

Hence, 
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    (2) 

where p(k + 1, m, 1, 0) is the probability of a group of cells with k + 1 DSBs and m mis-repair DSBs to successfully 

repair 1 DSB, while p(k + 1, m – 1, 0, 1) is the probability of a group of cells with k + 1 DSBs and m – 1 mis-repair 

DSBs to unsuccessfully repair 1 DSB. Regardless of the DSBs count and mis-repair DSBs, each group of cells assumed 

to have the same probability of successfully repair 1 DSB and it expressed as ρ. The unsuccessful repair of 1 DSB is 

denoted as 1 – ρ for all groups. The repair mechanism is assumed to repair DSBs damage only, then the repair rate 

function depends on the DSBs count, therefore r(k, m, 1) is denoted as r(k). Hence, 
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By using the definition of first-order derivative such that: 
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The form of a linear structured ordinary differential equation (ODE) is written as: 
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where k = 0, 1, 2, …, kmax, m = 0, 1, 2, …, kmax with k + m ≤ kmax. The derivation concluded here. Next, by allowing less 

restrictive repair mechanisms such that 2 DSBs can be repaired in parallel will be discussed in the following section.  

 

3. Derivation of a model with 2 DSB repair simultaneously 

As to continue the derivation work by [7], we consider a condition of model (1) such that l = 1 and l = 2. From 

here, the model (1) attempts to repair 1 DSB as well as 2 DSBs at a time. Therefore, there will be five conditions of i 

and j, which is two conditions from i + j = 1 and three condition from i + j = 2. The conditions are:  

(i) successfully repair 1 DSB (i = 1, j = 0),  

(ii) unsuccessfully repair 1 DSB (i = 0, j = 1),  

(iii) successfully repair 2 DSBs (i = 2, j = 0),  

(iv) successfully repair 1 DSB and unsuccessfully repair 1 DSB (i = 1, j = 1),  

(v) unsuccessfully repair 2 DSBs (i = 0, j = 2).  

Hence, 
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where p(k + 1, m, 1, 0) is the probability of successfully repair 1 DSB, p(k + 1, m – 1, 0, 1) is the probability of 

unsuccessfully repair 1 DSB, p(k + 2, m, 2, 0) is the probability of successfully repair 2 DSBs, p(k + 2, m – 1, 1, 1) is 

the probability of successfully repair 1 DSB and unsuccessfully repair 1 DSB, and p(k + 2, m – 2, 0, 2) is the 

probability of unsuccessfully 2 DSBs. Regardless the number of k and m in a group of cells, each of the probability is 

assumed the same, and p(k + 1, m, 1, 0), p(k + 1, m – 1, 0, 1), p(k + 2, m, 2, 0), p(k + 2, m – 1, 1, 1) and p(k + 2, m – 2, 

0, 2) will be denoted as ρ1, (1 – ρ1), ρ2, ρ3 and (1 – ρ2), respectively. Next, since the repair function depends on DSBs 

count, the notation for r(k, m, 1) and r(k, m, 2) is denoted as r1(k) and r2(k), respectively. Hence, 
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By taking limit Δt → 0, the form of linear ODE is written as follows: 
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where k = 0, 1, 2, …, kmax, m = 0, 1, 2, …, kmax with k + m ≤ kmax. In the next section, some parameters that appear in 

model equation (5) and (8) will be discussed. 

 

4. Settings for parameter function and initial condition 

The function of cells death is with respect to DSBs count and mis-repair DSBs, d(k, m). When the number of DSBs 

is high, there is more chance of mis-repair the DSBs and lethal chromosomal aberrations. The death rate is expressed as 

follows: 
2( , ) ,d k m m k         (9) 

where α is the cell death factor due to mis-repair DSBs count and β is the cell death factor due to DSBs count. For the 

repair rate, the parameter in r is treated according to the model. In model Equation (5), the repair rate is expressed as: 
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where σ is the maximum rate DSBs repair and η is the steepness of the curve. Meanwhile, in model Equation (8), the 

repair function is treated in the same way but with a different parameter such that: 
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where σ1 is the maximum repair rate attempts for 1 DSB, σ2 is the maximum repair rate attempts for 2 DSBs, and η1 and 

η2 are the steepness of repair rate curve.  
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Special emphasis is given to the initial condition as it indicates the size of a group of cells and kmax value. The 

number of DSBs is generated by the Poisson distribution function. The mean of the Poisson distribution is expressed by 

the average number of DSBs that possibly form after traversed by irradiation: 

D,         (12) 

where δ is the radio-sensitivity of the cells, given in unit DSBs Gy–1. By analyzing the pattern of the models, the 

general form of the system with any maximum number of kmax can be written into a matrix form: 

0, (0) ,
d

dt
 

N
AN N N       (13) 

with the initial condition N0. According to [15, 16], the exact solution for the above initial value problem is: 

0( ) exp{ } .t tN A N       (14) 

N(t) can be measured at any time t. However, N(t) is not the final solution sought. The total survival cells at time t are 

computed as follows: 

max max

,

0 0
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k k k

k m

k m

N t



 

        (15) 

For the reader enlightenment, an example on Equation (15) towards Model (8) is given in Appendix B. 

 

5. Concluding remarks 

To understand irradiation damage to mammalian cells, we have derived the cells' dynamical process involved in 

radiation response. In particular, a derivation on a simultaneously repair of two DSBs is presented. Previous studies 

have shown that the model derivation of 1 DSBs repair is consistent with the experimental measurement [8, 13]. Hence, 

it would be interesting to construct and study the qualitative and quantitative behaviour of the corresponding model of 2 

simultaneously DSBs repair. 
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Appendix A: An Example of formulation Equation (1) 

Suppose kmax = 4, the evolution of cells group N2,1 is: 
2
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Appendix B: An Example on formulation matrix N and A in Equation (13) using model 

Equation (8) 

To obtain the pattern of the model, Equation (8) is simplified as follows: 

 

,
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where Gk,m = – d(k,m) – r1(k) – r2(k), Bk+1 = ρ1r1(k + 1), Ck+1 = (1 – ρ1)r1(k + 1), Dk+2 = ρ2r2(k + 2), Ek+2 = ρ3r2(k + 2) and 

Fk+2 = (1 – ρ2)r2(k + 2).  
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(i) Suppose a cell population containing a maximum number of DSBs, kmax = 1. Hence, the population can be 

structured into 3 groups of cells, which are N0,0, N1,0, and N0,1. The system is given as follows: 
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Then, in matrix notation: 
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(ii) Suppose a cell population containing a maximum number of DSBs, kmax = 2. Hence, the population can be 

structured into 6 groups of cells, which are N0,0, N1,0, N2,0, N0,1, N1,1, and N0,2. The system is given as follows: 
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Then, in matrix notation such that 
d

dt


N
AN  where: 
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A N  

The matrix N and the size of matrix A are derived based on the value of kmax. Therefore, the size of matrix N is M × 1, 

and the size of matrix A is M × M such that: 

max max( 1)( 2)
.

2

k k
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