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Abstract 
The Kruskal-Wallis test is a non-parametric test for the equality of K population 
medians. The test statistic involved is a measure of the overall closeness of the K 
average ranks in the individual samples to the average rank in the combined sample. 
The resulting acceptance region of the test however may not be the smallest region 
with the required acceptance probability under the null hypothesis. Presently an 
alternative acceptance region is constructed such that it has the smallest size, apart 
from having the required acceptance probability. Compared to the Kruskal-Wallis 
test, the alternative test is found to have larger average power computed from the 
powers along the evenly chosen directions of deviation of the medians. 
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1. INTRODUCTION 
 
Let 

111 1 1,..., ,..., ,...,
Kn K n KX X X X  be K independent random samples from continuous 

distributions with cumulative distribution functions    1 ,..., ,KF x F x    

respectively where j  denotes a location parameter for the j-th population, frequently 

interpreted as the median or the treatment effect. We consider here the problem of 
testing the null hypothesis 0 1: ... KH    ; that is, the hypothesis that there are no 

differences among the K population medians. The alternative hypothesis is 

kjH  :1  for at least one kj  . 

 

 Let 
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j
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N n


  be the total number of observations in the combined sample. 

We first rank all N observations jointly, form least to greatest. Let ijr  denote the rank 

of ijX  that is  Rankij ijr X  in the combined sample. For Kj ...,,2,1 ,  we set 
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where jR  is the sum of the ranks for the j-th treatment, jR  the average rank for the  

j-th treatment, and ..R  the average rank in the joint ranking. A way to measure the 

overall closeness of the jR  to ..R is a weighted sum of the squared 

differences
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 for example, the Kruskal-Wallis statistic: 
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 Since T is zero when the jR  are all equal and is large when there are 

substantial differences among the jR , the hypothesis is rejected for large values of T 
. For K = 2, the Kruskal-Wallis test reduces to the two-sided Wilcoxon test [1]. By 

squaring out 
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and replacing jR  by jR . The statistic T can be rewritten 

as: 
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The null distribution of T can be obtained by using the fact that under H0, all 

1

!/ !
K

j
j

N n

  assignments of 1n  ranks to the treatment 1 observations, 2n ranks to the 

treatment 2 observations, …, Kn  ranks to the treatment K observations, are equally 

likely. However, this method is computational difficult even K is small [2] provided 
the upper 10% point of the exact probability distribution of the Kruskal-Wallis test 
statistic for K = 3 samples with max  1 2 3, , 6n n n  , also 1 2 3 7n n n    and 8; K = 4 

samples with  1 2 3 4, , , 4n n n n  ; and K = 5 samples with  1 2 3 4 5, , , , 3n n n n n  .  

 
 Many approximate distributions of the statistic T under the null hypothesis 
were proposed because of the computational difficulty for computing the exact null 
distribution of the T statistic. Kruskal [3] showed that under the null hypothesis, the 
statistic T has a limiting chi-square distribution with K – 1 degrees of freedom if 
minimum   ,,...,1 Knn  with ,10,/  jjj Nn   for Kj ...,,2,1 For finite 

samples, the approximation based on this asymptotic result is in general 
conservative; that is, it indicates upper-tail probabilities which are larger than the true 
ones. An alternative simple approximation is given by Wallace [4] ; the B2-III 
approximation. This approximation is generally closer than the preceding one, but it 
tends to be anticonservative unless the sample sizes are quite disparate, in which case 
it becomes conservative also.  There are several other approximations [5,6]. 
 
 The acceptance region of the Kruskal Wallis test may not be the smallest 
region with the probability 1 under oH .  Thus if we can find an alternative test of 

which the acceptance region is smallest and yet having the required probability 1 
under oH , then it is likely that the alternative test may be able to achieve larger 

power under the alternative hypothesis.   
  
 In Section 2, we find an approximate multivariate quadratic-normal 
distribution for  KRRR ...,,, 21R and use the underlying random variables which 
have independent standard normal distributions to form the smallest acceptance 
region with the required acceptance probability. 
  
 In Section 3, we compare the powers of the Kruskal Wallis test and the 
alternative test under different types of distribution of the ijX . It is found that the 

alternative test has larger average power computed from the powers along the evenly 
chosen directions of deviation of the medians. 
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2. AN ALTERNATIVE TEST FOR THE EQUALITY OF POPULATION 
MEDIANS 

 
We note the Kruskal-Wallis test statistic T  is a function of the random variables, 

KRRR ...,,, 21  which are correlated and non-normally distributed. Therefore the 

acceptance region given by the values of )...,,,( 21 KRRR  of which T  is not larger 

than a constant T  may not be the smallest region with the required acceptance 

probability. 
  
 Presently we find an approximate multivariate non-normal distribution for R  
in terms of a set of uncorrelated random variables 121 ...,,, Kzzz  having the standard 
normal distributions, and propose an alternative test of which the acceptance region 
is given by  

2
1

2
2

2
1 ... Kzzz  2

,1 K where 2
,1 K  is the )%1(100   point of 

the chi-square distribution with K1 degrees of freedom. The bell shape of the 
normal distributions implies that the acceptance region will be the smallest region 
with the required probability 1 . 
  
 We may use the following procedure to find an approximate multivariate 
non-normal distribution for R : 

i. Generate M  values of R  using a chosen common continuous distribution for 
the ijX . As the null distribution of R  does not depend on the common 

distribution of the ijX , we may choose the common continuous distribution 

to be the standard      normal distribution. 
ii. Compute the sample moments  





M

m

k
mk

k
mj

kk
jk RR

M
M

1

))(( 2121
1

        20,0,0;,,2,1, 2121  kkkkKkj   

where ),,,( 21 mKmm RRR   is the m-th generated value of R , jmjmj RRR 
 

and 



M

m
mjj R

M
R

1

1
 . 

iii. Use the results obtained in Step (ii) to compute the sample variance-
covariance matrix of R . 

iv. Find the K eigenvectors of the sample variance-covariance matrix obtained in 
Step (iii), and use the K-1 eigenvectors with non-negligible eigenvalues to 
form the matrix B . 

v. Compute T
mKmm

TT
Kmmm RRRSSS ),,,(),,,( 21)1(21  B . 
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    (2) 
The random variable j  

in Step (vii) is said to have a quadratic-normal 

distribution with parameters 0 and )( jλ   [7] while the vector )R,...,R,R( K21R  is 
said to have a (K-1)-dimensional multivariate quadratic-normal distribution with 
estimated parameters )R,...,R,R( K21 , B , and )i(λ , i = 1, 2, …, K-1 [8]. 

 
 

3. POWERS OF THE ALTERNATIVE TEST 
  
In this section, we use simulation to estimate the powers of the alternative test under 
the following three possible distributions of the ijX  

i. )1,(~ jij NX   

ii. ~ijX Uniform distribution over ]1,[ jj   

iii. )2()1(
jjjij XXX    

where  ~)1(
jX  Uniform distribution over [-0.5, 0.5] and )1,0(~)2( NX j  

 
 For a given value of ),,,( 21 K   we may estimate the powers under a 

given type of distribution of the ijX  by first generating *M values of 

X (
111 1 1,..., ,..., ,...,

Kn K n KX X X X  ). For a generated value of X , we find the 

corresponding values of R , TTT RBS   and (j)λ , j = 1, 2, …, K1. 
  
 By solving Equations (2) with j  replaced by the computed jS , we get the 

value of jz , j = 1, 2, …, K-1. If  2
,1

1

1

2
 





 K

K

j
jz , then we get a rejection result. The 

proportion of the *M generated values of X  which lead to rejection results is then an 
estimate of the power of the test evaluated at ),,,( 21 K   . 
 
 To compare the power functions of the tests, we choose a number of values of 
the radial distance  in the K dimensional polar coordinates system, and for each 
chosen value of the radial distance, we choose evenly Mβ values of the vector 

),,,( 121 K  of the polar angles. From the value of ),,,,( 121 K  , we 

determine the value of ),,,( 21 K  and estimate the corresponding powers of the 

tests. For each value of , we then find the average of the powers over the Mβ evenly 
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chosen values of the vector of the polar angles. Some results for average powers for 
the case when K=3 are shown in Tables 3.1 and 3.2. 
 

Table 3.1: Average Powers of the Tests (K=3, n1=n2=n3=3,α=0.05, M=50,000, 
M*=10,000 , Mβ =81) 

P 
Kruskal-Wallis Tests Alternative Test 

Normal Uniform Mixed Normal Uniform Mixed 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 
 

0.050285 

0.072399 

0.143315 

0.254288 

0.373773 

0.477936 

0.559098 

0.620504 

0.667812 

0.705969 

0.736262 

0.0498�7 

0.281719 

0.60751 

0.739375 

0.81271 

0.858073 

0.886293 

0.904128 

0.915767 

0.926141 

0.934433 
 

0.049995 

0.070769 

0.136123 

0.239963 

0.354752 

0.459284 

0.542122 

0.604965 

0.654838 

0.692505 

0.725464 

0.050119 

0.073219 

0.145281 

0.25541 

0.375146 

0.482183 

0.566735 

0.632441 

0.68412 

0.726409 

0.76017 

0.049857 

0.284216 

0.61794 

0.766064 

0.844965 

0.89261 

0.918815 

0.933756 

0.942733 

0.949969 

0.955236 
 

0.049998 

0.07126 

0.138358 

0.241651 

0.356468 

0.46207 

0.54781 

0.615675 

0.669419 

0.711978 

0.747995 
 

 
Table 3.2: Average Powers of the Tests (K=3, n1=2,n2=5,n3=8, α=0.05, M=50,000, 

M*=10,000 , Mβ =81) 

P 
Kruskal-Wallis Tests Alternative Test 

Normal Uniform Mixed Normal Uniform Mixed 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 
 

0.048917 

0.090201 

0.224562 

0.399486 

0.534953 

0.615925 

0.666621 

0.704638 

0.736279 

0.76293 

0.786169 
 

0.049041 

0.453569 

0.69524 

0.791251 

0.847688 

0.882475 

0.905001 

0.921752 

0.933859 

0.943414 

0.951927 
 

0.048989 

0.08736 

0.210353 

0.380105 

0.518285 

0.603649 

0.656399 

0.695489 

0.726521 

0.754138 

0.777465 

0.048607 

0.088452 

0.222264 

0.406342 

0.559169 

0.652763 

0.711836 

0.75374 

0.788341 

0.816983 

0.841758 

0.048479 

0.469756 

0.746101 

0.848244 

0.904767 

0.937301 

0.95556 

0.965957 

0.971599 

0.976267 

0.980242 

0.048575 

0.085716 

0.207654 

0.385317 

0.539495 

0.639084 

0.699816 

0.743068 

0.778041 

0.806938 

0.832007 
 

 
 Tables 3.1 and 3.2 show that for sufficiently large value of , the average 
power of the alternative test is always larger than that of the Kruskal-Wallis test, and 
as the sample sizes become disparate and the distributions of the ijX  deviate from 

normality, the difference between the average powers of the two tests becomes more 
obvious. 
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4. CONCLUSION 
 
For the values of K and the  jn  chosen so far, it is possible to approximate the null 

distribution of the vector formed by the sums of the ranks within sample. When the 
values of K and the jn  are such that the multivariate quadratic-normal distribution is 

not suitable, we may use other multivariate non-normal distributions formed by 
replacing the quadratic functions in Equation (2) by other nonlinear functions and 
apply the method given  in Section 2. It is likely that for other values of K, the 
situation with disparate sample sizes and non-normal distributions of the ijX  will 

continue to be one in which the alternative test will perform better.  
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