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1. Introduction 

The Internet of Robotic Things (IoRT) connects disparate intelligent devices using a distributed platform design. 

These systems can be deployed in the cloud or on-premises. This approach takes advantage of current IoT technology 

and robotic device convergence to improve robotic capabilities. Simply, it allows robots to be constructed on client-

server architecture using HTTP protocol. These architectures were improved to provide bidirectional communication 

protocol as a distributed architecture. Hence, distributed control of the robot manipulator was implemented over TCP 

protocols which allows the web server to broadcast motion data among environments. For instance, a distributed 

control of a robot manipulator synchronized with 3D visualization. The web server has the ability to communicate 

bidirectionally into multiple robot manipulators and multiple 3D visualization clients. The web server transferred 122 

Bytes of motion data with only 7,86 microseconds per request [1]. The data transferred was calculated using an inverse 

kinematic formula which computes the end-effector coordinate given by joint angles. 

To achieve accurate trajectory planning, inverse kinematics is one of the most popular approaches to solve 

trajectory planning error [2]. A major problem occurs when computing an inverse kinematic solution namely kinematic 

singularity. Kinematic singularities can arise both within the internal singularities and at the external singularities. 

External singularities can be handled by shifting the robot's base, while internal singularities can be avoided by 

leveraging the additional degrees of freedom of the joints. Several manipulability measures, such as the manipulability 

index, the condition number, and the smallest singular value of the manipulator robot, have been proposed to 

characterize the proximity to kinematic singularities. Avoiding the kinematic singularities, which are associated with 
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loss of or limited motion capabilities of the robot end-effector and infeasible joint velocity commands, is a major 

difficulty for robot manipulators. Particular approaches to solve kinematic singularities such as Jacobian matrix using 

filtered inverse [3], trajectory planning [4, 5], genetic algorithm [6], configuring redundancy resolution [7], singularity 

analysis [8], artificial potential fields [9], and so on.  

Therefore, this paper proposed path planning classification using Deep Neural Network (DNN) which classifies 

path planning labels such as singular and non-singular. The model is able to retargeting end-effector coordinates while 

classified to singular label until reaching non-singular minimum end-effector coordinates fit to the set point direction. 

The term of a distributed system, reduces training load of conventional DNN training processes. This paper implements 

web-based 3D visualization which utilizes bidirectional communication protocol namely Socket.IO over TCP protocol 

[10].  

 

2. Methods 

Path planning classification was designed to prevent singularities issue of inverse kinematic solution. Fig. 1 shows 

the process of distributed path planning classification with web-based 3D visualization. 

 

 
 

Fig. 1 - Path planning classification process with 3D model 

 

Based on Fig.1, the 3D model of the robot manipulator was exported as a JSON file which allows the web server to 

render as a 3D mesh object. These exported 3D models contain mesh, materials, and bones. The bones utilized to 

control whole 3D materials move based on given end-effector coordinates which are calculated using inverse kinematic 

parameters. The 3D client (virtual manipulator robot) through Socket.IO emits the end-effector coordinates to the web-

server. Furthermore, the inverse kinematic input parameters are classified using the DNN pre-trained model to 

determine selected paths of singular or non-singular. if the classifier output refers to singularity the model will 

recommend another end-effector coordinate in the same path or another path in the same end-effector. Non-singular 

inverse kinematic output, Socket.IO directly emitting among the environments (in this case virtual manipulator robot 

and manipulator robot). 

 

2.1 System Architecture 

Fig.2 shows the system architecture of distributed path planning classification for web-based 3D visualization 

constructed over ReactJS as back-end framework and AngularJS as front-end framework. Presentation layer 

represented in Fig. 2(a), handles front-end requirements using AngularJS which include WebGL engine. Additionally, 

presentation layer utilized as user control of manipulator robot 3D visualization. Application layer represented in Fig. 

2(b), manages back-end function mainly data transmission over Socket.IO and singularity avoidance using path 

planning classifier. Data layer represented in Fig. 2(c) stores 3D objects such as bones, mesh and materials. 

Furthermore, the data layer stores a DNN pre-trained model which is utilized as a classifier model. 

Based on Fig. 2, Socket.IO has an important role in supporting distributed systems that transmit data among 

environments. The environment consists of a web server (ReactJS), WebGL as a 3D visualization engine, and robot 

manipulator. Fig. 3 shows how Socket.IO manages the data transmitted over its events. 

Socket.IO mainly has two events called „onLinstening’ and „onEmitting’. „onEmitting’ event transmits nonsingular 

inverse kinematic output which is classified by the classifier and distributed through its events. „onListening’ event 

retrieves incoming inverse kinematic parameters. ReactJS web server listens to an event called „end_eff_coor’ which 

retrieves incoming inverse kinematic input parameters such as end-effector coordinates. Vice versa, the clients emitting 

the end-effector coordinates to the web server. ReactJS web server emitting non-singular inverse kinematic output as 

angular values of manipulator robot joints. Vice versa, the clients retrieve and extract the angular values of manipulator 

robot joints as trajectory points. 
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Fig. 2 - System architecture - (a) presentation layer; (b) application layer; (c) data layer 

 

 
 

Fig. 3 - Socket.IO events 

 

2.2 3 DOF Manipulator Robot 

The design of a manipulator robot is a key component of creating equations to help with the robot's feasibility. It is 

defined as connecting the joint spatial geometry idea and end-effector coordinates by altering the geometrical equation. 

Forward kinematics is defined as the process of converting joint space 1 2, ,... n    to joint variable (end-effector 

, ,x y z ). Inverse kinematics converts joint variable ( , ,x y z ) to joint space ( 1 2, ,... n   ). Fig. 4 represents the local 

reference coordinate of 3 DOF manipulator robot [11]. 
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Fig. 4 - Local reference coordinate of 3 DOF manipulator robot 

 

Fig. 4 clearly shows the local reference coordinate of the 3-DOF robot manipulator that can be parameterized using 

Denavit-Hartenberg parameters [12] in Table 1. 

Table 1 - Denavit-Hartenberg parameters 

Link-n 
  

(rad) 

d  

(mm) 

  

(rad) 

l  

(mm) 

1 1  30 90 0 

2 2  0 0 120 

3 3  0 0 180 

 

The join offset measured 1 30d mm , link length of join-2 measured 1 120l mm , link length of join-3 measured 

2 180l mm , and joint angle measured 
1 90o  . 1 , 2 , and 3  denotes as joint space that represents as an angle 

measured among ix and 1ix   in z-axis direction. 

 

2.3 Deep Neural Network 

Deep Neural Network (DNN) approach requires constructing repetitive computation process to propose an inverse 

kinematic solution which determine joint variable ( , ,x y z ) given by joint space ( 1 2, ,... n   ). The path planning dataset 

was collected 25.906 motions and manually labelled such as singular or non-singular. The dataset normalization is 

required to be calculated into the data distribution. Fig. 5 shows the process of path planning classification using the 

DNN approach. 

 

 

Fig. 5 - Path planning classification process using DNN. 

 

Based on Fig. 5, the DNN architecture constructs three neurons in the input layer and two neurons in the output 

layer. The input layer fits to the total joint variable required. The output layer fits to the total classifier labels in this 

case singular label or non-singular label. The singular label totally counted has 495 motions data of 25.906 motions 

data. The path planning dataset is divided into three data distributions which are training, validation, and testing. DNN 

hyperparameter was initialized as particular DNN models analyzed to find an optimum model of the path planning data 
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distribution and avoid the model being overfitted. This paper configures 10 DNN models within the number of hidden 

layers (4, 8, 16, 32, and 64), the number of neurons in the hidden layer or hidden layer weights (8, 16, 32, and 64), the 

number of training iterations (100), LeakyReLu or Sigmoid as model activation function, RMSProp as model 

optimizer, and categorical cross-entropy as model loss function [13–15]. This paper proposed 12 DNN models which 

configures in Table 2. 

Table 2 - DNN models performance 

Model No. 
Hidden 
Layer 

Neuron in 
Hidden Layer 

Activation 
Function 

1 4 8 Sigmoid 

2 4 16 Sigmoid 

3 4 32 Sigmoid 

4 4 64 Sigmoid 

5 8 32 Sigmoid 

6 16 32 Sigmoid 

7 32 32 Sigmoid 

8 64 32 Sigmoid 

9 16 32 LeakyReLu 

10 16 64 LeakyReLu 

11 32 64 LeakyReLu 

12 64 64 LeakyReLu 

 

3. Results and Discussion 

The DNN models were performed using Intel(R) Core i5-6300HQ CPU@2.30GHz, 16GB RAM, and Nvidia 

GeForce GTX 960M 4GB VRAM. Table 3 shows the DNN models performance comparison which captured training 

accuracy, validation accuracy, training accuracy, training loss, validation loss, recall, precision, and execution time. 

Table 3 – DNN models performance 

Model Tr. Acc 
Val. 
Acc 

Ts. Acc Loss Val. Loss Recall Precision F1-Score Exec. Time 

1 0,9617 0,9642 0,9639 0,1498 0,1442 0,9756 0,9719 0.9738 4 min, 4 sec 

2 0,9615 0,9638 0,9641 0,1562 0,1345 0,9689 0,9697 0.9693 10 min, 16 sec 

3 0,9615 0,9605 0,9643 0,1439 0,1359 0,9666 0,9681 0.9674 5 min, 3 sec 

4 0,9617 0,9593 0,9645 0,1360 0,1393 0,9710 0,9712 0.9711 2 min, 35 sec 

5 0,9615 0,9593 0,9638 0,1537 0,1470 0,9712 0,9713 0.9712 3 min, 16 sec 

6 0,9630 0,9613 0,9648 0,1372 0,1462 0,9837 0,9816 0.9827 4 min, 42 sec 

7 0,9617 0,9607 0,9642 0,1627 0,1682 0,9778 0,9709 0.9743 12 min, 57 sec 

8 0,9615 0,9559 0,9636 0,1634 0,1667 0,9764 0,9724 0.9744 11 min, 32 sec 

9 0,9616 0,9606 0,9642 0,1627 0,1682 0,9745 0,9722 0.9733 26 min, 27 sec 

10 0,9616 0,9598 0,9644 0,1624 0,1680 0,9757 0,9711 0.9734 5 min, 23 sec 

11 0,9617 0,9605 0,9639 0,1542 0,1578 0,9767 0,9721 0.9744 6 min, 57 sec 

12 0,9616 0,9621 0,9642 0,1559 0,1582 0,9737 0,9745 0.9739 11 min, 25 sec 

 

Based on Table 2, all models trained in 500 iterations and learning rate equal to 0,001. Model 6 structured 4×32 

neuron weights and RMSProp optimizer. Model 6 configured as a proportional model to identify the singularity of 

robot manipulator path planning. Fig. 6 extend performance metrics shown in Table 2. 
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Fig. 6 - DNN (model 6) performance metrics 

 

The pre-trained model (DNN Model 6) evaluates to classify singularity path planning of the robot manipulator. 

Fig.7 shows the pre-trained model (DNN Model 6) minimizing singularity issue with current path planning in the same 

end-effector direction. 

  
         (a)              (b) 

Fig. 7 - Singularity path planning correction– (a) before; (b) after 
 

Based on Fig.7 (a), path planning of the robot manipulator has a singularity issue which interferes with the 

kinematic computation results. Therefore, the pre-trained model (DNN Model 6) classified the path planning of the 

robot manipulator to detect a singularity as shown in Fig. 7 (b). Additionally, the pre-trained model (DNN Model 6) 

recommends another path planning within the same end-effector direction or fixing the path planning to fit the end-

effector set point. Distributed data transmission represents in Table 3, which emitting and listening joint variable 

( , ,x y z ) and joint space ( 1 2, ,... n   ) among environments.  

 
Fig. 8 - Data transmission 
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Based-on Fig. 3, Socket.IO was captured using Chrome/94.0.4606.61 that summarized in Fig. 8. Data distribution 

was captured over TCP protocols within 19.74 Bytes per milliseconds (for listening end-effector event), 12.87 Bytes 

per milliseconds (for emitting end-effector event), 20.94 Bytes per milliseconds (for listening theta event), and 13.55 

Bytes per milliseconds (for emitting theta event). Moreover, Socket.IO was tested to distribute 2352 motions per 

second.  

 

4. Conclusion 
Distributed Path Planning Classification with Web-based 3D Visualization using DNN for IoRT was implemented 

using ReactJS Framework. Asynchronous data transmission allows the web server to broadcast inverse kinematic 

parameters to the environment. To analyze singularity path planning, the dataset preprocessing supports the DNN 

model to reach the best performance of inverse kinematic path planning solutions. To circumvent singularity 

difficulties, this study offered a deep neural network methodology as a classification-based manipulator robot path 

planning method. In 500 iterations, a deep neural network (DNN) was trained in 12 minutes, 52 seconds. Training 

accuracy was calculated at 96,23 percent, validation accuracy was calculated at 96,13 percent, and testing accuracy was 

calculated at 96,48 percent. Web Graphics Library was also used to create a 3 DOF manipulator robot web-based 3D 

visualization (WebGL). 2352 motions per second were disseminated and classified on the distributed platform. 
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