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In the control system regulatory concept, placing closed loop poles too 
far from the origin in the stability region produces fast regulation time 
but requires huge forcing energy as a trade-off. As such, stabilizing an 
unstable system with minimum energy is needed, though this presents a 
challenge to the designer. At the design phase, the designer may ponder 
the optimized energy while compromising the possibility of 
catastrophic stabilization phenomena due to minimal forcing thrust 
towards the poles. In this manuscript, a simple Linear Quadratic 
Regulator (LQR) is proposed as an alternative to full state feedback 
(FSF) with judicious pole placement. The efficacy of both approaches 
was observed by exploiting a Rotary Inverted Pendulum (RIP) as a 
testbed. Beforehand, the RIP system dynamics were developed in the 
time domain. RIP is an under-actuated mechanical system that is 
inherently nonlinear and unstable. The main control objectives of RIP 
are swing-up control, stabilization control, switching control, and 
trajectory control. The methodology involved the appearance of 
weighted matrices that were necessary for the minimum cost function. 
The Riccati and Lyapunov criteria are also exploited to facilitate design. 
The result shows the comparative transient performances of the two 
approaches, where the LQR outperforms the FSF in many aspects. 
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1. Introduction 
It is effortless to stabilize unstable systems by forcing their poles to the left-hand side of the S-plane so that the 
closed-loop system is stable. Theoretically, placing the closed-loop poles approaching -∞ may result in a fast 
regulation rate but require high energy as a trade-off. For instance, consider a linear system ẋ=Ax+Bu where x is 
the state, A denotes a  system matrix, B is the input matrix and u be the control input. By the pole placement 
approach, state x can be regulated to equilibrium x=0 by a simple state feedback control law u=-Kx. Without 
considering the magnitude and amount of energy in the control signal u, the designer will ponder the 
satisfactory value for the feedback gain K such that the closed loop system ẋ=(A-BK)x stable. For this motive, the 
designer may simply choose any K so that the eigenvalues of a new system matrix (A-BK) positioned at the left-
hand side of the S-plane. However, formulating the gain K by placing a pole via trial-and-error results in a few 
shortcomings. Often, the stabilization rates are the performance to be improved without considering the energy 
to be used by the control effort while forcing the poles to a desired location. Surprisingly, pole placement via 
trial-and-error has been widely used to date [1,2]. In [1], a DC motor system is stabilized by a feedback gain 
obtained via trial pole location. The author in [2] obtained the feedback gain via simple MATLAB coding that is 
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developed to stabilize a 3rd-order linear-time-invariant (LTI) system. A more advanced pole placement 
approach is reported in [3] where the direct adaptive learning-based tuning strategy was exploited for a 
reasonable pole location. In a state-observer-based control [4], the error feedback to a regulator is measured 
based on the observer output rather than the actual states. The estimated states that are fed back to the 
regulator are stabilized in the same manner as in the actual state such that the previously mentioned closed loop 
matrix (A-BK) becomes positive definite. In the above-mentioned literature [1,2,3,4] and all literature therein, 
the control effort is neither presented nor recorded. As such, it is difficult to monitor the amount of energy being 
injected into the system when the stabilization takes place. 

To achieve the boundedness of control energy, a few advanced and complicated techniques are proposed. To 
name a few, a well-established classical approach to avoiding excessive control signals is the anti-windup 
scheme [5,6,7]. Principally, the anti-windup compensator is augmented with the nominal controller to avoid an 
integral term from windup during control input saturation. An obvious shortcoming of this approach is that the 
analysis of a standard anti-windup design reveals a strongly limited region of attraction because the amount of 
the required control signal has been cut off before it enters the system under control. The technique also 
requires advanced mathematics and is not optimal. Achieving the same result via non-trivial cum no-complex 
design gives advantages to the designer. In this manuscript, an optimal design based on the minimum 
performance index is the suggested technique to be pondered. Among many available state feedback optimal 
techniques ranging from a minimum time problem [8], minimum energy problem [9, 10] and a state regulation 
problem [11], a linear quadratic regulation problem [12, 13] has been chosen because it combines state 
regulation with a minimum energy optimization. As such, regulation takes place through two positive-definite 
weighted matrices. 

To observe the effectiveness and efficacy of the technique, a Rotary Inverted Pendulum (RIP) is used as a 
testbed. RIP is an under-actuated mechanical system that is inherently non-linear and unstable. For decades, it 
has been used as a testbed to observe the controller's performance and efficacy. Numerous control studies on 
RIP were presented in [14-22]. The modeling and dynamics of RIP were presented in [16-20]. These studies 
focus on swing-up control [15,21], stabilization control [15,19,20], switching control [23] and trajectory tracking 
control [24,25]. The RIP is unstable when the position of pendulum in vertical upright, and in a stable condition 
when the pendulum is in vertically down position [21]. 

To optimize the stabilization energy, this manuscript proposes a Linear Quadratic regulator (LQR) to tune 
the feedback gain K in the stabilization law u=-Kx. This approach has been widely used in conventional inverted 
pendulum [20], load frequency control for power system [26], suspension system [27], wind turbine system [28] 
and in other fields of studies. The rest of the manuscript discusses the dynamic of a rotary inverted pendulum, 
regulator design methodology that consists of judicious pole placement in full-state-feedback (FSF) and an LQR. 
Lastly, the comparative performances between FSF and LQR are discussed before the concluding remark. 

2. Rotary Inverted Pendulum 
RIP embodies a rigid shaft called a pendulum that rotates freely in a vertical plane with the purpose of swinging 
up and balancing the pendulum in the inverted position. Then, the pendulum is bound to a pivot arm that is 
installed on the shaft of the servomotor. Therefore, the pivot arm can be rotated in the horizontal plane by the 
servomotor while the pendulum is hanging downward. On the contrary, the optical encoders are installed on the 
pivot arm and pendulum arm to identify the displacement of the RIP system. Fig.1 shows the structure of the RIP 
system. 
 

 
Fig. 1 Simplified rotary inverted pendulum schematic [22] 
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The numerical values of the mechanical and electrical system parameters for the RIP system are provided in 
Table 1. Whereas Table 2 tabulates the numerical nomenclature of the RIP system. 

Table 1 RIP system variables and parameters 

Parameters Description 

m1 Mass of arm 
m2 Mass of pendulum 
l1 Length of arm 
l2 Length of pendulum 
c1 Distance to the center of mass of arm 
c2 Distance to the center of mass of pendulum 
J1 Inertia of arm 
J2 Inertia of pendulum 
θ1 Angular displacement of arm 

1 Angular velocity of arm 
θ2 Angular displacement of pendulum 

2 Angular velocity of pendulum 

1 Applied torque 
g Gravitational acceleration 

Table 2 The numerical values of the mechanical and electrical system parameters 

Physical Quantity Symbol Numerical Value 
Mass of Arm m1 0.056 kg 

Length of Arm l1 0.16 m 
Distance to Arm Center of Mass c1 0.08 m 

Inertia of Arm J1 0.00215058kg-m2 
Mass of Pendulum m2 0.022 kg 

Length of Pendulum l2 0.16 m 
Distance To Pendulum Center of Mass c2 0.08 m 

Inertia of Pendulum J2 0.00018773 kg-m2 
Armature Resistance Rm 2.5604 Ω 

Back-emf Constant Kb 0.01826 V-s/rad 
Torque Constant Kt 0.01826 N-m/A 

 
Modeling the RIP is an established method, with various analytical approaches appearing in the previous 

research [29, 30]. To develop a mathematical model of RIP system, let define the angular displacement of the 
arm and the angular displacement of the pendulum as q=[θ1 θ2]T. The lumped dynamic (1), (2) and (3) renders 
the equation of motion of the RIP in Equation (4). 
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The voltage signal to the servomotor is controlled by a PWM driver. The duty cycle is decided by a control 
law generated on the control side. As such, there exists a linear relationship between the control torque and the 
control voltage e as in Equation (5) 

  

𝜏𝜏1 =
𝐾𝐾𝑏𝑏
𝑅𝑅𝑚𝑚

𝑒𝑒 −
𝐾𝐾𝑏𝑏2

𝑅𝑅𝑚𝑚
𝜃̇𝜃1  

(5) 

  
By defining a state variables [X1 X2  X3  X4]T = [θ1 θ2 θ1 θ2], the derivative of states are 

 
Note that 

and newly define parameters, Pn as: 

Equation (6) – (9) can be linearized by considering the equilibrium state of the system, or by Jacobian [29]. 
Assume that the angular velocity of the pendulum is too small, that is; θ2 ≈ 0. As such, when the inverted 
pendulum is near the equilibrium point, sinθ2 ≈ θ2 and cos θ2 ≈ 1, rendering (θ2’)θ2 ≈ 0. That is, linearizable 
condition yields the RIP dynamics in Equations (12), (13), (14), (15). 

 
Plugging in the numerical nomenclature from Table 2 renders a numerical RIP dynamic as in Equations 

(16)-(17). States x1 denotes the arm angle, x2 defines the pendulum angle, and x3 defines the pendulum angle. 
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3. Formulation of The Regulator 
The controllability of RIP must be observed to confirm the necessity of the feedback law for stabilization. RIP in 
a standard state space ẋ=Ax+Bu with the output equation y=Cx. The controllability of the RIP is substantial in 
order to assure the possibility of driving the state of the system everywhere in the stability region. The 
controllability of the RIP can be tested via the controllability matrix Ⅽm=[B  AB  … … An-1B]  such that Ⅽm has the 
rank with the same size of system A. With a numerical formulation, the controllability matrix can be computed as 
in Equation (18). That is, Ⅽm has rank 4 confirming that the RIP is completely controllable.  

For the RIP system, there exists a feedback control law u(t)=-Kx(t) with a feedback gain K. The design 
problem is to formulate a gain K such that the closed-loop poles (or eigenvalues) are located on the left-hand 
side of the S-plane, and hence the closed-loop system ACL = A - BK is known to be stable. Therefore, a judicious 
choice of the gain K is crucial, such that the control energy u(t) has enough energy to force the system’s poles to 
the stability region. In a full-state-feedback (FSF) approach, the desired closed-loop eigenvalues are pre-defined 
by the designer using pole placement. The design scheme is conducted by examining the characteristic equation 
of the closed-loop system |sI-ACL| = 0 where the closed-loop dynamic is expressed as ACL =A – Bu(t). For the 
system at hand, the desired closed-loop pole locations are selected at P = [ -2+j -2-j  -5+j3  -5-j3]. As a result, the 
feedback gain K is computed as in Equation (19). 

With FSF-pole placement, the trajectory of arm angle and pendulum angle upon initial condition X= [1 1  0  
0]T is depicted in Fig. 2. The trajectory shows that the RIP can be stabilized within 3 seconds after the 
perturbation occurs. 

 

  
Fig. 2 Arm and pendulum angle trajectory with FSF facility 

�

 𝑥̇𝑥1
 𝑥̇𝑥2
 𝑥̇𝑥3
 𝑥̇𝑥4

� =  �

0               0               1               0  
0                0                0             1
0    − 5.9796    − 0.0527     0
0         57.6254      0.0451      0

� �

𝑋𝑋1
𝑋𝑋2 
 𝑋𝑋3
𝑋𝑋4

� + �

0
0

2.8844
−2.4724

� 𝑢𝑢 

 

(16) 

  

𝑦𝑦 = [0        1        0      0] �

𝑋𝑋1
𝑋𝑋2 
 𝑋𝑋3
𝑋𝑋4

� 

 

(17) 

  



















−−
−−
−−

−

=

1714.84777.1421302.04724.2
5577.17917.141519.08844.2
4777.1421302.04724.20

7917.141519.08844.20

mC  (18) 
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It is proven that the RIP system is stabilizable by a simple FSF with judicious selection of the desired closed-
loop poles location. However, it is interesting to further design the feedback gains at minimum cost that is; 
achieving stabilization and state regulation with a minimum control energy. To this end, LQR is proposed as a 
computationally efficient state regulation that produces a minimum control energy. LQR, as an optimal energy-
like regulator, provides robust stability with a minimized energy-like performance index. In the LQR 
methodology, the symmetric and positive definite matrices Q and R are chosen to suit the Lyapunov and Riccati 
equations. The objective of the LQR is to compute the feedback gain matrix KLQR that minimizes the quadratic 
cost function JLQR given in (20) to keep the pendulum stable. 

Matrices Q and R affect the overall performance of the system. In this study, three different values of Q are 
tested to determine the most optimal stabilization. With R=1, the three Q-value are depicted in Equation (21). 

Respectively, the optimized gain KLQR that has been produced by positive definite matrices Q1, Q2, and Q3 are 
expressed in Equation (22), (23) and (24). 

4. Result and Discussion 
To observe the effectiveness of LQR on the RIP system, the procedure was implemented in SIMULINK through 
the MATLAB platform. Fig. 3 shows the trajectory of arm angle and pendulum angle with different Q-values. 
Table 3 tabulates the transient behavior of the RIP during stabilization. The selected transient performances 
such as settling time, rise time, and peak values are recorded therein. While the overshooting amount can be 
observed in Fig. 3. 
 

 
(a) Q1 value (b) Q2 value (c) Q3 value 

Fig. 3 Trajectory of arm angle and pendulum angle 

With Q3, the regulation time for the pendulum angle is 22.14% faster than the system with Q2, and 39.10% 
faster than the system with Q1. The arm angle can be stabilized faster with Q3. That is, 16.20% and 56.04% faster 
than Q2 and Q1 respectively. Hence, it can be deduced that a larger Q renders fast stabilization speed. Hence, the 
pendulum requires a shorter time to be balanced. However, a greater weighting matrix Q makes the pendulum 
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K1 = [-0.9906-70.2929-1.5998   -9.4630] (22) 

  
K2 = [-3.8333 -87.4062-3.0187   -11.8154] (23) 

  
K3 = [-9.8672-137.6378-6.8427    -18.7247] (24) 
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and the arm overshoot post-stability. This phenomenon can be observed in Table 3 where the pendulum angle 
and the arm angle peaked at 0.0799 rad and 0.6595 rad, respectively. 

 The matrix Q in the cost function in Equation (20) appears in the state regulation problem. The matrix Q 
must be symmetric and positive-definite. That is, it must have an identical transpose matrix element. As such, 
the larger Q results in a large outcome when multiplied with the states of the RIP, resulting in fast regulation due 
to the large stabilizing energy. Whereas matrix R appears in the minimum energy problem, which compromises 
with the amount of energy required to stabilize the RIP. Fig. 4 indicates the transient history of the pendulum 
and the arm angle after FSF and LQR. The quantitative performances of both approaches are tabulated in Table 
4. Visual observation shows that LQR stabilizes the pendulum cum arm faster as compared to FSF. 
Quantitatively, data from Table 4 portrays that LQR is able to produce almost 33.87% faster regulation time than 
FSF. Whereas the arm angle for the RIP system using LQR is stabilized at 28.31% faster than FSF. 

Table 3 Pendulum and arm angle with respect to weighing matrix 
Weighing Matrix Q1 Q2 Q3 

Controlled 
parameter 

Pendulum 
Angle (rad) 

Arm Angle 
(rad) 

Pendulum 
Angle (rad) 

Arm Angle 
(rad) 

Pendulum 
Angle (rad) 

Arm Angle 
(rad) 

Rise Time (s) 0.0751 0.7509 0.0313 0.4525 0.2230 0.3507 
Setling Time (s) 4.7510 8.3510 3.2630 3.2630 2.0800 2.3530 

Peak value 0.0208 1.1490 0.0161 0.8448 0.0799 0.6595 
 

  
(a) Pendulum Angle (b) Arm Angle 

Fig. 4 Trajectory of arm angle and pendulum angle after FSF and LQR 

Table 4 Comparisons of controllers based on simulation result 
Tuning method FSF LQR 

Controlled 
parameter 

Pendulum Angle 
(rad) 

Arm Angle (rad) Pendulum Angle 
(rad) 

Arm Angle (rad) 

Rise Time (s) 0.0971 0.6637 0.2230 0.3507 
Settling Time (s) 4.2110 4.2110 2.0800 2.3530 

Peak Value 0.0264 1.1860 0.0799 0.6595 

5. Conclusion 
From the observation, it can be concluded that LQR exhibits a faster stabilization speed than FSF. However, LQR 
shows unappealing pendulum angle overshoot post-stability, where the pendulum angle peaked at 0.0799 
radian, which is higher than the FSF (0.0264 radian). Arm angle shows appealing performance as it peaked at 
0.6595 radian, which is lower as compared to FSF (1.1860 radian). The necessary and sufficient condition for 
arbitrary and judicious pole placement in FSF is that the system be completely state-controllable. As such, the 
energy required to push the poles to a new location is proportional to the feedback gain parameter, and in some 
cases, the energy may peak at a non-practical value. In the LQR, energy is optimized by the cost function, while at 
the same time, stability is preserved. The use of RIP as a testbed is a challenging task as it is one of the most 
known unstable and under actuated models available to test the efficacy and effectiveness of the control 
techniques. For further research, one would suggest the augmentation of artificial intelligence tuning or 
heuristic techniques for better performance results. 
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