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This study addressed the use of Artificial Intelligence (AI) techniques 
to solve the Inverse Kinematics (IK) and analysis issues for robotic 
manipulators, particularly PUMA 260 models with 6-Degrees of 
Freedom (6-DOF). A Robotics Vision Control (RVC) toolbox simulation 
in MATLAB was utilised to evaluate the Denavit Hartenberg (DH) and 
Forward Kinematics (FK) of the robot. Furthermore, the relationship 
between the joint angles of rotation and the end-effector Cartesian 
positions of the robotic manipulator was investigated. In reducing the 
complexity of the IK analysis, an Artificial Neural Network (ANN) was 
applied to estimate the IK of the robot using the Neural Network 
(NNtool) toolbox in MATLAB. This study successfully demonstrated the 
efficiency and applicability of the proposed ANN method for controlling 
robot motion by predicting IK parameters with high precision and 
minimal error. In determining the values of some IK joints, the results 
of the proposed technique significantly decreased to 1.579%. Thus, 
integrating the RVC and NNtool programmes considerably improved 
the accuracy in estimating ANN joint angles as a response to the input 
end effector positions. Consequently, the suggested ANN controller 
design was simpler, inexpensive, and more accurate in estimating the 
joint angles of the robot than standard regulating approaches. This 
study effectively and practically addressed the IK issues in robotic 
manipulators based on the results. 
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1. Introduction 
Inverse Kinematics (IK) represents one of the fundamental challenges for robotic manipulators, where the input 
and output are the position and orientation of the robotic end effector relative to the robot base and the rotation 
values of the joints, respectively. Meanwhile, Forward Kinematics (FK) is concerned with determining the position 
of the end effector and joint orientation of the robot (angle or rotation). When the FK and IK challenges are 
addressed, a robotic manipulator can be efficiently controlled and programmed to accomplish numerous jobs and 
motions [1, 2]. Hence, several FK and IK solutions employing analytical and deep learning models have been 
presented in various research [3-5]. Moreover, many frameworks and their executions for robotic movements are 
controlled to upgrade the performance and activity using Artificial intelligence (AI) techniques [6]. Similarly, a 
system review study has been conducted on cooperate dual robotic arm manipulators and different classifications 
of control strategies have been discussed [7]. 

An Artificial Neural Network (ANN) is typically applied to solve the IK for robot manipulators, which AI 
techniques are ideally suited for. This AI technique can solve complex, challenging, and time-consuming issues for 
IK applications, while every stage of robotic technology enables the extensive use of AI [8]. Chiddarwar et al. in 
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2010 proposed an ANN model to determine the IK of the KUKA 6-Degree of Freedom (6-DOF) serial manipulator 
[9]. Similarly, an ANN model was applied to the FK of the robot, in which the FK equations were demonstrated to 
be effective in obtaining ANN training data. Thus, this outcome suggested that AI-based techniques could solve IK 
using a 6-DOF revolute robotic manipulator [10, 11]. Based on the Jacobian methodology (besides ANN), the study 
insisted on avoiding the singularity phenomenon.Moreover, the hybrid metaheuristic approach was proposed 
with three Elman ANN techniques, in which separate training sets were utilized to obtain higher precision 
solutions [12]. Similarly, deep learning and analytical approaches have been presented to solve inverse kinematics 
solutions with high DOFs. The performance results are compared with computational and analytical methods in 
generating robot trails[13]. A study has been conducted for an autonomous robot as a line follower using the 
proposed direction in [14]. Furthermore, optimization methods have been discussed to provide a kinematics 
solution of a higher degree of robotic movements by calculating the actual and estimated positions of the end 
effector manipulator [15]. A study showcased the applications of AI for robotic manipulation to solve IK using 
ANN, whereas the 5-DOF configuration is considered for industrial-need robots [16]. 

Several studies reported a feed-forward mechanism with multiple layers of perceptron back propagation ANN 
to solve the IK of PUMA560 and delta model robots [17, 18]. A study by Duka [19] summarised an ANN in 
controlling robot motion and trajectory tracking. Alternatively, Akos et al. adopted supervised learning to solve 
the IK concern to avoid constructing ideal robot models for calibration [20]. Another study by Mohan et al. [21] 
employed a kinematic technique for PUMA 560 robots to estimate the position and orientation vectors in 
activating the 6R manipulator. The 2D image was then used to analyze the robotics movement using a 
MATLAB/Simulink robotic toolbox. Therefore, this study introduced the planar two DOF and spatial three DOF 
structures. Consequently, a simple solution for solving the IK of a 6-DOF PUMA 260 manipulator robot was 
obtained. To the authors' knowledge, no previous studies comprised simulations of the building and ANN-
controlling robots. In addition, no studies effectively addressed the PUMA 260 model robot when analyzing its IK. 
The following are the primary contributions of this study as follows:  

• A simple method for solving IK for a 6-DOF PUMA 260 manipulator robot. 
• An AI technique in simplifying the robot's IK equations and control motion analysis. 
• An effective ANN technique in controlling robot motion by precisely estimating IK joint parameters with 

minimum error. 
• Successful comparison of the AI technique to exhibit its simplicity, low cost, and precision with other 

conventional controlling methods. 

2. Kinematic Analysis of PUMA 260 
The robotic manipulator kinematics describes the relationship between the end effector (position and 
orientation) and the robot's joint angles. Each automated analysis requires robot kinematics alongside robot 
trajectory generation and motion control. Therefore, this study investigated the PUMA 260 model robot system 
with 6-DOF and six revolute joints. The initial coordinate was fixed at the robot's base, while the remaining 
coordinates were attached to manipulator links. Meanwhile, Fig.1 portrays the schematic diagram of the PUMA 
260 Robot utilised in this study. The homogeneous matrix of transformation represents the orientation of the end 
effector alongside its position relative to the base coordinate. Thus, the transformation matrix is denoted in Eq. 
(1), in which 𝑖𝑖 represents the robot link number as follows: 

• 𝛼𝛼𝑖𝑖 : twist angle from zi−1 (previous link) to zi (present link) on xi 
• 𝑑𝑑𝑖𝑖 : link offsets from xi−1 (previous)  to xi (present link) on zi−1 
• 𝑎𝑎𝑖𝑖 : length of links from zi−1 (previous) to zi (present link) on xi  
• θi : joint rotation angle from xi−1 (previous) to xi (present link) on zi−1 [22-24]. Each of L and t is 

mentioned in Fig. 1.  
 

The Denavit Hartenberg (D-H) parameters of the PUMA robot are tabulated in Table 1 as follows: 

Table 1 Summary of the D-H parameters for PUMA 260 

i � range/° �/° a/mm d/mm 
1 𝜃𝜃1 90 0 13 
2 𝜃𝜃2 00 8 00 
3 𝜃𝜃3 90 0 L 
4 𝜃𝜃4 90 0 08 
5 𝜃𝜃5 90 0 00 
6 𝜃𝜃6 00 0 t 
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When L and t are defined in Fig. 1, the transformation matrix 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is determined. The multiplication 
result of the following matrices, initiating from base to tool, is as follows: 

 

𝑇𝑇 = �

cos 𝜃𝜃𝜃𝜃 −sin 𝜃𝜃𝜃𝜃 cos𝛼𝛼𝜃𝜃 sin 𝜃𝜃𝜃𝜃 cos𝛼𝛼𝜃𝜃 𝑎𝑎𝜃𝜃 cos 𝜃𝜃𝜃𝜃
sin𝜃𝜃𝜃𝜃 cos 𝜃𝜃𝜃𝜃 cos𝛼𝛼𝜃𝜃 −cos 𝜃𝜃𝜃𝜃  sin𝛼𝛼𝜃𝜃 𝛼𝛼𝜃𝜃 sin𝜃𝜃𝜃𝜃

0 sin𝛼𝛼𝜃𝜃 cos𝛼𝛼𝜃𝜃 𝑑𝑑𝜃𝜃
0 0 0 1

� (1) 

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑇𝑇01𝑇𝑇12𝑇𝑇23𝑇𝑇45𝑇𝑇56 (2) 

Where, 

𝑇𝑇01 = �

𝑐𝑐1 0 −𝑠𝑠1 0
𝑠𝑠1 0 𝑠𝑠 0
0 −1 0 13
0 0 0 1

�, 𝑇𝑇12 = �

𝑐𝑐2 −𝑠𝑠2 0 8𝑐𝑐2
𝑠𝑠2 𝑐𝑐2 0 8𝑠𝑠2
0 0 1 0
0 0 0 1

�, 𝑇𝑇23 = �

𝑐𝑐3 0 𝑠𝑠3 0
𝑠𝑠3 0 −𝑐𝑐3 0
0 1 0 −𝐿𝐿
0 0 0 1

�, 

 

𝑇𝑇34 = �

𝑐𝑐4 0 −𝑠𝑠4 0
𝑠𝑠4 0 𝑐𝑐 0
0 −1 0 8
0 0 0 1

�, 𝑇𝑇45 = �

𝑐𝑐5 0 𝑠𝑠5 0
𝑠𝑠5 0 −𝑐𝑐5 0
0 0 1 0
0 0 0 1

�, and  𝑇𝑇56 = �

𝑐𝑐6 −𝑠𝑠2 0 0
𝑠𝑠6 𝑐𝑐2 0 0
0 0 1 𝑡𝑡
0 1 0 1

� 

 

 
Fig. 1 Schematic diagram of the PUMA 260 Robot [25] 

The tool coordinates concerning the robot base are as follows: 

𝑃𝑃𝑥𝑥 =  𝑐𝑐1(𝑡𝑡(𝑐𝑐23𝑐𝑐4𝑠𝑠5 + 𝑠𝑠23𝑐𝑐5) + 8𝑠𝑠23 + 8𝑐𝑐2) − 𝑡𝑡𝑠𝑠1𝑠𝑠4𝑠𝑠5 (3) 

𝑃𝑃𝑦𝑦 =  𝑠𝑠1(𝑡𝑡(𝑐𝑐23𝑐𝑐4𝑠𝑠5 + 𝑠𝑠23𝑐𝑐5) + 8𝑠𝑠23 + 8𝑐𝑐2) − 𝑡𝑡𝑐𝑐1𝑠𝑠4𝑠𝑠5 (4) 

𝑃𝑃𝑧𝑧 = 𝑡𝑡(𝑐𝑐23𝑐𝑐5 + 𝑠𝑠23𝑐𝑐4𝑐𝑐5) + 8𝑐𝑐23 − 8𝑠𝑠2 (5) 

= 𝑐𝑐1(𝑐𝑐23𝑐𝑐4𝑠𝑠5 + 𝑠𝑠23𝑐𝑐5) − 𝑠𝑠1𝑠𝑠4𝑠𝑠5𝑎𝑎𝑥𝑥  (6) 

= 𝑠𝑠1(𝑐𝑐23𝑐𝑐4𝑠𝑠5 + 𝑠𝑠23𝑐𝑐5) + 𝑐𝑐1𝑠𝑠4𝑠𝑠5𝑎𝑎𝑦𝑦 (7) 

= −𝑠𝑠1𝑐𝑐4𝑠𝑠5 + 𝑐𝑐23𝑐𝑐5𝑎𝑎𝑧𝑧 (8) 
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Graphically, the PUMA 260 model robot is represented by Robotics Vision Control (RVC) toolbox simulation 

in MATLAB [25] (see Fig. 2) as follows: 

 
Fig. 2 The PUMA 260 robot representation in the robot simulation 

 Each joint angle of the robot corresponds to multiple configurations, including elbow down, elbow up, wrist 
down, wrist up, shoulder back, and shoulder forward. The FK determines the following location and orientation 
of the tool as follows: 

 

�𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦 , 𝑝𝑝𝑧𝑧 ,𝜃𝜃𝑥𝑥 ,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧� = 𝐹𝐹𝐹𝐹 [𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6] (9) 

 
Generally, IK is a difficult task for robotic manipulators due to the complexity and nonlinearity of the 

equations. Additionally, the motion of any robotic arm is determined by the IK equations defining the relationship 
between the Cartesian coordinate of the end effector and the robotic joints. Numerous solutions are associated 
with the IK for each joint variable, necessitating an optimal solution based on variables such as robot geometry, 
workspace, design range of motion, and singularity. 

In this study, ANN was utilised to determine the IK of the 6-DOF PUMA robotic arm. The simulation of the RVC 
software yielded the delivered training data for the proposed network. Therefore, this study eliminated the 
requirements for a real robot with specific characteristics or reduced the robot device consumption by hundreds 
of labor-intensive, costly, and time-consuming experiments. In contrast, the ANN predicted the output joints' 
values based on the end effector's input orientation and position. The IK was a key mechanism for controlling the 
motion of robotic manipulators. Resultantly, finding a simple solution for IK was a crucial approach for regulating 
robot motion. 

3. The Proposed ANN 
This study employed ANN to solve the IK of PUMA robots, in which the input layer comprised six variables. These 
variables were the 3D positions of 𝑝𝑝𝑥𝑥 , 𝑝𝑝𝑦𝑦 , 𝑝𝑝𝑧𝑧 and 3D orientations of 𝜃𝜃𝑥𝑥 ,𝜃𝜃𝑦𝑦 ,𝜃𝜃𝑧𝑧 of the end-effector. There were 10 
hidden layers in this ANN with six elements of joint angles(𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6)  representing the ANN output 
layers. The MATLAB neural network toolbox (NNtool) trained, validated, and tested the data. Thus, the flow chart 
and the block diagram illustrating the role of ANN in optimising PUMA robot motion are exhibited in Figs. 3 and 
4, respectively. The inputs were enclosed by a workspace occupying a particular position (see Fig. 5). Therefore, 
the relevant input and output for the ANN data were retrieved from the FK solution, where each robot position 
acquired one joint configuration.  
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Fig. 3 Brief block diagram of the IK prediction of the robot with the ANN technique 

 

Fig. 4 Flow chart in obtaining PUMA IK by using the ANN technique 
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Fig. 5 Workspace of PUMA260 model robot 

A multilayer perceptron neural network was described in this study as the complex nonlinear correlations 
between input and output variables were predicted. Moreover, the MLP neural network implemented the feed-
forward Back Propagation (BP) technique, which depended on supervised learning and modifying the network 
output for the following layer. The adjustment of weight values is dependent on Mean Square Error (MSE), which 
is computed as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1

2𝑛𝑛
 �𝑀𝑀𝑖𝑖2
2

𝑖𝑖

 (10) 

 
Where n represents the number of data that is determined in each batch and 𝑀𝑀𝑖𝑖2 represents the error value of 

input data number i. Furthermore, this neural network acquires six inputs (x, y, z, 𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎𝑧𝑧), where x, y, and 
z are the positions of the end effector in 3D. Subsequently, 𝑎𝑎𝑥𝑥, 𝑎𝑎𝑦𝑦, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎𝑧𝑧 are the orientations of the end effector 
concerning the three essential axes. Alternatively, six outputs (𝑞𝑞1 , 𝑞𝑞2 , 𝑞𝑞3 , 𝑞𝑞4 ,  𝑞𝑞5 ,  and 𝑞𝑞6 ) represent the joints 
variables, while the PUMA joints are angular. Hence, these variables are the joint angles of rotation 𝜃𝜃1…6. 

The sigmoid is a proposed activation function for the 10 hidden network layers, while the hyperbolic 
tansigmoid is the activation function engaged in the hidden network layers. Meanwhile, the Levenberg Marquardt 
(LM) learning approach trains the ANN. Consequently, the LM algorithm provides optimal weights by altering the 
learning rate of the neural network and attaining the smallest error value [20, 21]. In addition, this process causes 
the activation function of the output layer to be linear. Figure 6 depicts the MATLAB NNtool structure of the 
suggested ANN to predict the IK values for the robotic manipulator PUMA 260 [22, 23]. 

The outputs are generated via the supervised batch learning technique. From the investigated configurations 
in the toolbox of the robot, target values are passed to an ANN, which subsequently predicts the output. The 
following mathematical model defines the updating of weights alongside the biases of ANN: 

 

𝑀𝑀 =   �(𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖) + 𝑏𝑏
𝑛𝑛

𝑖𝑖−1

 (10) 

 
where 𝑥𝑥𝑖𝑖  are the six inputs (orientation and position of a tool), 𝑤𝑤𝑖𝑖  is the weight, b is the bias, and n is the 

number of variables. Thus, the network trains until the MSE is as low as possible. 
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Fig. 6 The ANN architecture in determining the IK of PUMA 

4. Results and Discussion 
This section displayed and discussed the results acquired from the ANN technique proposed for solving the IK 
issues of the PUMA 260 robot model. The ANN structure successfully predicted the IK values of the robot as 
depicted in Fig. 4. Alternatively, Fig. 7 elucidates the ANN performance in calculating the MSE of training, in which 
the percentage error reduces until it converges to zero, which indicates that ANN undergoes training epochs until 
the difference between actual and predicted IK values are diminished. It indicates a convergence toward accurate 
predictions. Based on the results, the best validation performance was 9.4441 at epoch 2, indicating a minimal 
error during validation, reinforcing the reliability and accuracy of the proposed AI approach.  

Moreover, the 10 optimal robot configurations (C1–C10) were determined using the RVC toolbox to evaluate 
the ANN performance. These configuration values were then provided to the ANN for training the data likely to 
represent the specific combinations of joint angles for the PUMA 260 robot that are considered optimal for testing 
or validation purposes. Eventually, the trained ANN data successfully predicted the IK (joint angle values) for any 
given robot tool position and orientation. 

Table 2 lists the obtained robotic configurations (C1–C10). The findings revealed that the proposed ANN 
technique accurately forecasted the joint angle values of the PUMA 260 robot model. Hence, the comparison 
between the IK values acquired from the robot simulation programme and the ANN predictions suggested the 
exceptional performance of the AI technique in estimating the joint angles of the robot (average error of only 
1.579%). 

 

 
Fig. 7 The performance of the ANN 
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Table 2 Summary of the studied robotic configurations 

Configuration number 
(C1–C10) 

End effector position End effector orientation 

x y z 𝑎𝑎𝑥𝑥  𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧 

1 -01.321 -5.847 06.265 -0.525 -0.833 -0.174 
2 04.868 -2.536 08.362 0.170 -0.804 -0.570 
3 -05.709 -2.798 26.990 0.293 -0.860 -0.418 
4 06.508 2.000 00.834 0.536 -0.276 0.798 
5 15.004 2.000 09.135 -0.747 -0.440 -0.498 

6 02.162 0.183 05.591 0.261 -0.764 -0.591 

7 -10.536 2.000 06.360 -0.807 -0.451 0.381 
8 00.000 2.000 13.000 0.000 0.000 1.000 
9 00.000 2.000 13.000 0.000 0.000 1.000 

10 14.096 7.769 12.070 0.193 -0.003 0.981 

Figs 8A to 8F reveal the convergence results obtained using the robot simulation and the performance of a 
predicted ANN for each robot joint angle of a 6-DOF PUMA robotic manipulator. The average percentages of error 
between the target (based on training data from robot simulation) and the output (produced by the ANN) for each 
joint ( 𝜃𝜃1to 𝜃𝜃6). These percentage errors are reported as follows: (9.717, 1.697, 5.560, 7.413, 1.579, and 7.971%) 
respectively. From the figures, these values predicted by ANN nearly matched the actual values acquired from the 
robot simulation. In addition, the solid regression value of 0.99981 (see Fig. 9) was a crucial indicator of the 
effectiveness of the proposed neural network (ANN) in estimating the IK of the 6-DOF PUMA robotic manipulator, 
which depicts the convergence trajectories or behaviours of the joint angles during simulation. Moreover, the high 
regression value indicates that the AI model provides a reliable and precise estimation of the IK of robots. 

This observation demonstrated that the trained ANN model with the 10 best configurations could predict the 
IK for every given orientation and position. Therefore, the findings of this study highlighted the efficiency and 
applicability of the suggested AI technique by lowering the IK analysis complexity of the robot and enhancing its 
precision. Compared to conventional controlling approaches, the model possessed the advantages of simplicity, 
low cost, and minimal error in calculating the joint angles of the robot. Thus, this study offered a comprehensive 
analysis of the PUMA 260 model robot, showcasing the viability of ANN approaches for regulating robot motion. 
However, some limitations are observed in solving the Inverse Kinetics equations of the PUMA robot using the 
ANN approach. Training data sometimes gives noisy results, where the end effector's position and orientation 
require sensing and detecting efforts in computations over fittings during the model development. Each robotic 
model may require a special network pattern to deal with its Inverse Kinematics issue. Therefore, to generalise 
this approach and enhance it for unseen data, feedback of the current robotic arm joint angles could be added to 
the input pattern of the neural network besides each of the desired positions and orientations of the end effector, 
ultimately increasing the accuracy and performance. 
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Fig. 8 Graphs indicating (a) THETA 1-waist joint angle; (b) THETA 2-shoulder joint angle; (c) THETA 3-elbow joint 
angle; (d) THETA 4-wrist rotation joint angle; (e) THETA 5-wrist bend joint angle; and (f) THETA 6-flange 

rotation joint angle 

 
Fig. 9 Regression value for the ANN training data 
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5. Conclusion 
This study successfully presented a novel method for solving the IK concerns using the ANN technique for a 6-
DOF PUMA 260 model robot. Hence, the results demonstrated that the proposed AI method in estimating the joint 
angles of the robot was effective and useful. The input parameters of x, y, z, 𝑎𝑎𝑥𝑥, 𝑎𝑎𝑦𝑦  𝑎𝑎𝑛𝑛𝑑𝑑 𝑎𝑎𝑧𝑧 were trained using ANN 
in MATLAB, representing the end-effector position and orientation of the robot. A back-propagation neural 
network was subsequently introduced to utilize the input data, in which the joint angles were measured. The 
estimated ANN outputs were compared with the intended outputs by calculating the MSEs. A comparison was also 
performed between the IK findings from the robot simulation program and the ANN. 

The findings indicated that the provided AI method performed exceptionally well in estimating the joint 
angles of the robot, with a maximum error of 1.579% for some IK joint values. Compared to classical analytic 
methodologies suited to the most difficult kinematic issues of multi-link robotics, the suggested ANN findings 
revealed superior effectiveness in calculating the angles of the robot joints with high precision and little error. 
Moreover, the RVC toolbox integrated with NNtool considerably enhanced the accuracy of estimating the ANN 
joint angles output in response to the input end-effector position. Thus, this study could advance robotics and 
control applications, particularly industrial automation. The potential future aspects of the proposed study could 
include: 

1. Accuracy in robotics advancements: The proposed ANN technique for solving IK problems 
demonstrates the improvement in accuracy and robotics joint precision, which ultimately can be 
implemented in the precise control of advanced robotics systems containing high DOF. 

2. Integration with AI Tools: By integrating the AI methods for robot simulation programs using ANN 
methods, the pre-operational testing and development of robotic systems in a virtual environment 
could be significantly improved prior to practical implementation. Which further reduces the reliance 
on classical analytical techniques because the AI methods provide a potential shift to simulate 
kinematics issues in multi-link robotics. Therefore, future research may explore alternate ANN-
driven methods for solving complex robotics problems, which alleviates the reliance on conventional 
analytical solutions. 

3. General applicability to Other Robotic Systems for Enhanced Accuracy: The proposed AI approach 
may be successfully applied to various robotic systems from a specific robot type. Integrating the RVC 
toolbox with NNtool and its accuracy improvement implies that integrating specialised tools may 
yield better results, performance, and accuracy. Future research may examine the ANN technique's 
suitability for solving IK problems in a wider range of robotic designs and applications. 

4. Continuous Improvements and Optimisation: the research findings indicate a maximum error of 
1.579%, which suggests high accuracy. Meanwhile, future research may focus on enhancing 
performance by improving and optimising the ANN model to reduce errors and achieve high 
precision. 
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