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1. Introduction 

In industrial pipeline, tomography is a 

measurement technology for internal flow 

imaging. The use of sensors of any kind of 

penetrating wave in an industrial pipeline is 

termed as a tomograph, while the image 

produced based on the mathematical procedure 

called computed tomography (CT) 

reconstruction is a tomogram [1]. 

Fundamentally, a tomographic system deals 

with forward problems to model and estimate 

the theoretical sensor data readings of a 

tomograph, then the inverse problem is used to 

reconstruct a tomogram from its projections’ 

sensor readings. 

Generally, static sensitivity maps were 

plotted in previous tomography researches [2-6] 

as a working procedure of solving forward 

problems. Static sensitivity maps request the 

pre-load of sensitivity values before running the 

tomogram application. Static sensitivity maps 

for all the projection paths are computationally 

very expensive since they require the inversion 

of a large array, and normally the sensitivity 

maps are drawn and pre-calculated in a separate 

software. The major disadvantage of static 

sensitivity maps is less flexibility in software 

application, where changing the image 

resolution will request a new generated map to 

be installed in the software. If there are any 

changes in sensor quantity or sensor projection 

angle, a new sensitivity map software or 

program need be regenerated. In this paper, the 

forward problem is structured based on the fan-

beam ultrasonic tomography (UT) system, and 

inverse problem is discussed based on back 

projection image algorithms. We introduce and 

discuss the dynamic sensitivity check procedure 

and then provide the event-driven software 
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application based on modelling principles. 

Finally, we present the analysis of the computed 

images. 

 

2. Modelling Principles 

In a transmission mode UT system, as of 

any other hard-field sensor concepts, it can be 

assumed that the wave propagation is in a 

straight-line form [7]. Fan beam projection 

geometry in the UT is the typical setup for 

bubble columns because of the sensor behavior 

[8]. In this study, the arrangement of sensor 

projection geometry consists of 16 sensors, 

equally arranged at the circumference around 

the bubble column.  The sensor type chosen was 

the transceiver in which each sensor could be 

operated either as transmitter or receiver.  The 

receivers were modelled as a circular arc, which 

receive a uniform ultrasonic energy in the 

liquid-gas flow column. In a 16 transceiver UT 

system, a complete scanning of the UT system 

takes a total of 16 projection cycles.  In each 

scan, sensor S1 started the first cycle (S1 as 

transmitter, S2 to S16 as receivers), followed by 

sensor S2 (S2 as transmitter, S1, S3 to S16 as 

receivers), and until all sensors completed the 

projections before the next ultrasonic scan.  

Figure 1 shows a single projection of a fan-

beam system while Figure 2 shows a complete 

scan in the fan-beam transmission mode UT 

system.  This sensor geometry built the 

fundamentals of forward and inverse problem 

solvers for the image reconstruction algorithm 

of the developed UT system that will be 

explained in following section. 

 

 
Fig. 1 A Single Projection of a Fan-Beam 

System. 

 
Fig. 2 A Complete Scan in a Fan-Beam System. 

 

2.1 Forward Modelling 

Forward problem was begun by modelling 

the deterministic aspects of the imaging system, 

the investigated cross-sectional area was 

superimposed as a square grid image plane and 

this discretization grid of image plane was set 

up by the ultrasonic transmission paths. The 

image plane was divided into small rectangles, 

which pixel was the smallest element in 

rectangle. The gridline mapping resolution was 

the software image resolution, (r x r pixels), as 

defined in the software drawing map as shown 

in Figure 3. 

 

 
Fig. 3 Examples of Sensitivity Pixels on a 

Transmission Path. 

 

Every transmission path had different 

sensitivity based on the gridline’s mapping 

resolution.  There was a number of pixels 

occupied in a transmission path, and each 

projection cycle consisted of a total of fifteen 

transmission paths based on the investigated 

fan-beam projection geometry.  This resulted in 
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a series of sensitivity matrices depending on the 

image plane mathematical modelling in which 

sensitivity elements’ value represents the 

number of pixels laid on the transmission path 

for corresponding elements. A higher the 

resolution (r) value formed a finer sensitivity 

matrices, and thus a better quality an image can 

be reconstructed [9]. An analytical solution 

using graphical programming technique was 

created for calculating the sensitivity matrices.  

The sensitivity matrices were generated to be a 

sensitivity map.  The sensitivity map was 

formed by rectangular arrays, l x l pixels, in the 

mapping gridline.  Value (l) represents the 

width of the transmission path in pixels count 

which can be defined using Equation 1. 

Figure 3 shows a sample of a transmission 

path, from a specified transmitter, Si, to a 

specified receiver, Ri, was penciled in yellow 

(m pixels in the l x l rectangular array).  The 

sensitivity value, S, for each the rectangular 

array (x, y) was obtained using Equation 2. 
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Equations 3 to 8 show the mathematical 

modelling procedures to generate the sensitivity 

lines of the dynamic sensitivity check; where dj 

is the degree of the sensitivity line, SensorCnt is 

the number of sensor for the location (xj, yj), and 

i is the total number of sensors in the system. 

The value in degree was converted to radian, 

radj. Figure 4 shows the examples of 

constructed sensitivity linear lines during first 

projection cycle of sensor S1. Linear line 

equations which were formed from Equations 3 

to 8 were then structured in inverse modelling 

application to perform sensitivity checks. In the 

sensitivity checking procedure, every pixel in 

the image plane is coordinated by its own x and 

y value, and the ‘view’ intercepting the pixel 

each the projection was determined.  A masking 

matrix, was defined in the dynamic software 

array to store the “view” results of each of the 

sensitivity checks. 
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Fig. 4 Transmission Paths of First Circle from a 

Sensor. 

 

With the sensitivity information, forward 

problems could then be solved to obtain the 

theoretical sensor outputs using Equation 9, 

where Vg is the theoretical sensor loss voltage 

value, S is the sensitivity vector relating to the 

distributed image in the gridline, and G is the 

obstacles’ image distribution vector in pixel 

value [10]. The forward problem determines the 
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theoretical output of each of the sensors when 

the ultrasonic transmission energy is attenuated 

by the gas bubbles in the sensing area [11 -12]. 

 

       GSVg                                (9) 

 

 

2.1.1 Event-Driven Application 

In programming structure, forward 

modelling application was designed as an event 

driven application, and the software responded 

dependent on the interfaces controlled by user.  

Referring to Figure 5, there were two types of 

controls: the clickable button and display 

control. 

 

Fig. 5 Forward Modelling Application. 

 

Through the radio buttons in the 

configuration box, the setting of the flow model 

and scanning circle could be selected by the 

user’s preference.  There was a total of nine 

predefined flow models (denoted as A1, A2, 

B1, B2, C1 and C2 phantoms). The flow 

models’ radio buttons defined which of the 

phantoms were to be simulated into the 

tomogram.  Meanwhile, the “Circle” radio 

buttons were used to define which projection 

scan was to be highlighted “yellow” on the 

simulated image.  The forward modelling 

application operated after the user had clicked 

the “START” button.  The forward modelling 

results were obtained in four ways: tomogram, 

numerical data, text file, and image file.  The 

tomogram was displayed in the form of a two-

dimensional plane on a running application. The 

concentration profile of the simulated phantom 

was displayed in the form of numerical data in 

percentage value and sensitivity line equations 

for every transmission cycles were displayed in 

the form of numerical data in the “Sensitivity 

Line Equations” text box.  After running the 

forward modelling software, the calculated 

sensitivity line equations were saved to a text 

file while the displayed image was saved as an 

image file.  The image files were then processed 

to predict the theoretical sensor readings for 

each flow model. Figure 6 illustrates the overall 

flow chart for the software procedures in the 

forward modelling application. 

 
Fig. 6 Forward Modelling Flow Chart. 

 

 

2.2 Inverse Modelling 

There are numerous analytic solutions to 

solve the inverse problem to reconstruct an 

image from sensor readings. Back projection 

algorithm is popular among most of the 

researchers and thus it has many variations, 

basic practices are Linear Back Projection 

(LBP) and Filtered Back Projection (FBP).  Ref. 

[13] and [14] discussed in detail the 

fundamental, mathematical modelling and 

procedures for back projection algorithms. LBP 
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algorithm has the advantage of low computation 

cost, and it does produce useful (albeit only 

'qualitative') images [15].  The major limitation 

of the LBP algorithm is the blurry or ambiguous 

images due to the nonlinear sensing mechanism. 

In the LBP algorithm, the procedure is to 

multiply each sensor voltage reading, VSn by its 

sensitivity value, Sn, to produce the 

concentration profile in the matrices of m x [n x 

n], where m is the number of the obtained 

projection data while n is the reconstructed 

image resolution of the used sensitivity matrix 

[15]. A technique commonly used to improve 

LBP images is to use a filter, resulting in FBP.  

In FBP, a filter is introduced to overcome 

nonlinear or non-uniform sensor distribution.  

To offer a uniform concentration profile, this 

filter has the same dimensions as the sensitivity 

matrices to provide weighting to individual 

pixels.  The filter is in the matrix format 

calculated by the ratio of maximum value 

measured in concentration sensitivity matrix, to 

each element in the overall full flow 

concentration sensitivity matrix. Hence, the 

computation of FBP concentration profile, 

Vij_FBP, can be expressed mathematically as the 

filter matrix, multiplied by the LBP 

concentration detectable voltage, as shown in 

Equation 10 [4]. 
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As in forward modelling, dynamic 

sensitivity check through software 

programming was introduced in the inverse 

modelling. Approaching the standard FBP 

algorithm, Dynamic Filter Back Projection 

(D_FBP), Dynamic Hybrid Filter Back 

Projection (D_Hybrid_FBP) and Dynamic 

Hybrid Interpolation Filter Back Projection 

(D_Hybrid_IFBP) were derived based on the 

masking matrix, the programming array that 

stored the sensitivity value of each matric, MSn. 

Concentration profile of the D_FBP, Vij_D_FBP, 

can be computed by multiplying the masking 

matrix with the corresponding filtered sensor 

reading as Equation 11. 
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Hybrid reconstruction technique enables a 

priori knowledge assuming binary value from 

the sensor, either zero for no material or one for 

the presence of material [15] to improve the 

accuracy of the image reconstruction by 

removing the noise pixels.  Threshold ratio, η 

with respect to the maximum pixel value is used 

to define the presence of material as depicted in 

Equation 12. 
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Interpolation, also known as neighborhood 

averaging is a straightforward spatial-domain 

technique primarily for diminishing spurious 

effects in an image because of a poor 

transmission channel [16]. The integration 

technique to generate a smoothed image G(x, y), 

where values at every point (x, y) are obtained 

by averaging the pixel values of a predefined 

neighborhood, G’(x, y),  of V(x, y).  Equation 13 

and 14 shows the steps mathematically in the 

interpolation procedure. Both the Hybrid and 

interpolation techniques were integrated into the 

derived D_FBP image algorithm, resulting in 

D_Hybrid_FBP and D_Hybrid_IFBP. 
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2.2.1 Event-Driven Application 

In programming structure, Inverse 

modelling application was developed as event-

driven application. In the inverse modelling 

application as shown in Figure 7, there were 

two data sources: online data (real-time sensor 

readings obtained from connected ultrasonic 
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hardware) and offline data (data that was saved 

from the real-time sensor system or forward 

modelling application). User could trigger the 

application software through user interfaces 

such as buttons, radio buttons and options in 

menu.  The user interfaces were created for the 

purposes of starting the application, changing 

the programming running mode (offline or 

online), calibration configuration, tomogram 

algorithm, data loading, and data saving.  After 

pressing the “START” button, the application 

software would be compiled according to the 

configurations. Any changes of the 

configurations (file menu, color bar menu, 

image resolution, image algorithm, 

programming mode, and calibration routine) 

would have to be interacted before pressing the 

“START” button.  Once software in running 

mode, changes on configurations could only be 

made after a complete scanning compilation.  

Figure 8 illustrates the inverse modelling 

application with a complete data frame 

displayed as tomogram. Results of inverse 

modelling application were shown in numeric 

data and reconstructed image. The bubble 

concentration percentage and the system timing 

were both displayed in the numerical data form, 

text boxes of “Bubbly” and “Time” 

respectively. Figure 8 shows the overall 

programming flow chart for the inverse 

modelling application. 

 

 
Fig. 7: Inverse Modelling Application. 

 

 
Fig. 8: Inverse Modelling Flow Chart. 

 

3. Results and Discussions 

The forward modelling application is used 

to simulate objects based on different flow 

models and then predict the theoretical sensor 

readings. Then, the theoretical sensor readings 

can be fed to the inverse modelling software to 

reconstruct data into images through the coded 

image reconstruction algorithms.  The purpose 

of doing so is to perform the image quality 

assessment between the simulated object and 

reconstructed object. From the results of image 

comparison, the ability and suitability of the 

event-driven programming application for the 

investigated tomography system can be verified. 

Table 1 tabulates the theoretical and 

reconstructed images from the forward and 

inverse modelling applications.  

The reconstructed samples can be divided 

into three groups, namely single particle group 

A, double particle group B, and sparse particle 
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group C. From visual checking on the images 

reconstructed in Table 1, D_FBP resulted in 

smearing background noises, yet the locations 

of the particle/s could be identified. As shown 

in the results tabulated in Table 1, the Hybrid 

reconstruction technique was integrated into the 

back projection algorithm to improve the image 

accuracy by neglecting the blurry image, 

specifically the background noise, while the 

interpolation technique was integrated to 

acquire a neighborhood pixel smoothing effect 

with improved imaging spatial resolution. 

 

Table 1 Tomograms with Various Image 

Algorithms. 
Forward Model 

(theoretical) 

D_FBP 

Tomogram 

D_Hybrid 

_FBP 

Tomogram 

D_Hybrid 

_IFBP 

Tomogram 
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B2 

 

 

 

 

 

 

 

 

C1 

 

 

 

 

 

 

 

 

C2 

 

 

 

 

 

 

 

Image quality assessment provides 

quantitative measurements of an image; it is a 

method to compare the reconstructed (distorted) 

image to an original (distortion-free) image. 

Mean Structural Similarity Index, MSSIM, is a 

recent objective image quality assessment 

paradigm [17] to overcome the limitations of 

error sensitivity based image quality assessment 

techniques, which are Mean squared error, 

MSE, and peak signal-to-noise ratio, PSNR.  

Refer to numerous tests provided by previous 

researchers; MSSIM does a much better job at 

quantifying image quality than MSE or PSNR 

[18-20]. Higher MSSM index indicates better 

image quality.  Governing equations of MSSIM 

can be found in [18]. Table 2 tabulated the 

MSSIM results for the reconstructed images. 

From the quantitative data, it was found that 

D_FBP resulted in poor MSSIM among the 

three image reconstruction techniques, with the 

worst images happening to group C, in which 

C1 and C2 scored only 43.18 % and 44.92% 

respectively. Quality of image improved 

significantly after implementing the Hybrid 

technique towards FBP algorithm, as the 

MSSIM for C1 and C2 increased to 95.26% and 

94.73%, respectively. Tomograms reconstructed 

using Hybrid with or without interpolation 

techniques could meet the quality expectation as 

the MSSIM scored higher than 94% overall. 

 

Table 2 MSSIM Results. 

MSSIM 
Flow Model 

A1 A2 B1 B2 C1 C2 

D_FBP, 

% 
72.86 64.17 61.43 51.36 43.18 44.92 

D_Hybrid

_FBP, % 
98.92 98.32 97.77 97.03 95.26 94.73 

D_Hybrid

_IFBP, % 

98.91 

 

98.29 

 

97.64 

 

96.67 

 

94.79 

 

93.91 
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4. Conclusion 

Design principles on modelling the solution 

for the forward and inverse problems were 

discussed and structured based on a typical fan-

beam transmission mode UT system.  

Mathematical procedures for dynamic 

sensitivity check instead of mass load static 

sensitivity maps were interpreted and samples 

of transmission paths were discussed. In this 

paper, the event-driven applications were 

elaborated with supporting programming flow 

charts. In the results analysis, images 

reconstructed in forward and inverse modelling 

were tabulated and assessed with MSSIM image 

quality quantitative technique. These first 

attempts of event-driven modelling applications 

in UT system are satisfactory with the image 

reconstruction algorithms of D_Hybrid_FBP 

and D_Hybrid_IFBP, with high MSSIM results 

(>90%) of the inverse modelling application. 

Future work will focus on adding analytical 

solutions with real hardware performance 

analysis using these high-quality image 

algorithms. 
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