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1. Introduction 

In modern engineering, shaft is generally used to 

transfer mechanical power from one component to 

another. During in-service task, the shaft is exposed to the 

environmental harshness such as corrosion and material 

defects such as voids and pores. These defects will grow 

if no appropriate action is taken. According to Lin & 

Smith [1], any arbitrary shapes of cracks take semi-

elliptical shape during growing processes. Then, linear 

elastic fracture mechanics approach is used to analyze the 

crack driving force for example stress intensity factor 

(SIF) [2-4]. Other solutions of other types of crack can be 

found in [5-6]. However, if the plasticity is sufficient, the 

use of SIF is not recommended [7-9]. Then, J-integral is 

appropriately implemented [10-12]. 

The solutions of SIFs for a wide range of geometries 

have been reported widely [11, 13]. However, it is not for 

the case of J-integral [14-15]. The solutions of J-integral 

is paramount important since mechanical components can 

be broke down due to excessive plastic deformation [7]. 

However, it is limited for the surface crack embedded in 

plates [16-19] and tubes [15, 20]. 

In this present study, surface crack in round bar 

subjected to combined loading is analyzed and discussed. 

Firstly, the present model is validated with the previous 

model using SIFs approach since limited solutions of J-

integral are available. After, J-integral is calculated along 

the crack front for various types of crack geometries. 

Considering the first part of this paper, the analytical 

model is developed and the predicted values of J-integral 

are then compared. 

Recently, an elastic-plastic analysis of surface crack 

become an important work especially when the cracked 

components are subjected to combine loading [2, 3]. 

 

2. Numerical Modelling 

The geometry of the crack shown in Fig. 1 can be 

described by the dimensionless a/D and a/b, the so-called 

relative crack depth and crack aspect ratios, where D, a 

and b are the diameter of the bar, the crack depth and the 

major diameter of the ellipse, respectively. Any arbitrary 

points on the crack front can also be normalized as x/h, 

where h is the crack width, and x is the arbitrary distance 

of P from the symmetry axis.  The outer diameter of the 

cylinder is 50 mm and the total length is 200 mm.  Due to 

the symmetrical analysis involved, a quarter finite 

element model is constructed, in which the surface crack 

was situated at the center of the cylinder.   

A finite element model is developed with special 

attention given to the crack tip by employing 20-node iso-

parametric quadratic brick elements. The square-root 

singularities of stresses and strains are modelled by 

shifting the mid-point nodes to the quarter-point locations 

around the crack-tip region. The detail of the finite 

element model is shown in Fig. 2 with the associated 

singular finite elements around the crack tip. In order to 

remotely apply loadings to the structural component, a 

rigid element or multi-point constraint (MPC) elements 

was used to connect the nodes at a circumferential line at 

the end of the component, to an independent node.  Fig. 3 

shows a technique for constructing the independent node 

connected to the model using rigid beam elements. 

The bending moment, My is directly applied to this 

node, whereas the axial force is directly applied in the 

direction-x on the cross-sectional area of the bar. At the 

other end, the component is constrained appropriately. In 

order to obtain a suitable finite element model, it is 

necessary to compare the proposed model with other 

published models [11, 16, 17]. In this work SIFs results 

are used for the validation purposes. Since, it is hard to 

find the result of J-integral results for these particular 

Abstract: This paper numerically discusses the role of J-integral along the surface crack front in cylindrical bar 

under combined mode I loading. It is also verified the analytical model derived from the first part of this paper by 

comparing the results obtained numerically using ANSYS finite element program. It is found that the proposed 

model capable to predict the J-integral successfully along the crack front but not for the area away from the deepest 

crack depth. This is probably due to the fact that the problem of singularity. 

Keywords: FEA, J-integral, combined limit load, surface crack, stress intensity factors. 



A.E Ismail et al., Int. J. of Integrated Engineering Vol. 9 No. 2 (2017) p. 1-8 

 

 

 2 

crack geometries.  Fig. 4 shows a comparison of the 

dimensionless SIFs under bending moment, FI,b and axial 

force, FI,a. The findings of this study are in good 

agreement with those of previous models. 

For modelling plastic behavior of the component, 

multilinear isotropic hardening (MISO) is used. MISO 

used von Mises criterion associated with isotropic 

hardening with a flow rule. The material stress-strain 

followed the Ramberg-Osgood relation as the following 

expression: 

 
n

o o o

  


  

 
   

 
 (1) 

 

where o = Eo is a 0.2% of proof stress,  is a material 

constant and n is a strain hardening exponent. Two values 

of n are used, 5 and 10 represent the higher and lower 

strain hardening material models, respectively. All the 

model construction, linear and non-linear analyses are 

programmed into ANSYS APDL (Ansys Parametric 

Design Language). 

 

Fig. 1 Nomenclature of a semi-elliptical surface crack. 

 
Fig. 2 Quarter finite element model with associated 

singular element at the crack tip. 

 

Fig. 3 Remotely applied moments using an MPC184 

element. 

 

 
(a) 

 
(b) 

Fig. 4 Validation of finite element model, (a) bending and 

(c) tension loadings. 

 

3. Results and Discussion 

SIFs under bending and tension loadings involved 

only mode I failure mechanisms. Therefore, a 

superposition method can be explicitly used to combine 

SIFs as the following expression [2]: 

 
*

, ,I I a I bK K K 
         

(2) 
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Substituting the SIFs stated in the first part of this to yield 

the following expression: 

 
*

, ,I I a a I b bK F a F a    
         

(3) 

 

Given that: 

 

b a           (4) 

 

where  is the ratio between bending and tension stresses. 

Substituting Eq. (4) into Eq. (3) produces the following 

expression: 

 

 *
, ,I a I a I bK a F F   

            
(5) 

 

Rearrange Eq. (5) as the expression below: 

 
*

*
, ,

I
I I a I b

a

K
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a
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 
  

         

(6) 

 

Eq. (6) can be divided into two different expressions: 

 
* *

, , ,I I a I b I EQF F F F  
                 

(7) 
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 (8) 

 

where a is a tension stress. Eq. (7) is used explicitly to 

combine the SIF from bending and tension loadings and it 

is called as F*
I,EQ. Then, Eq. (8) is used to determine 

combined SIF directly from FEA and it is called F*
I,FE.  

In ANSYS, it is hard to have combined SIFs directly 

because the SIFs are given in terms of KI, KII and KIII. 

Therefore, an elastic J-integral was used by assuming that 

a single value of J-integral under the combined loading 

represented an unified SIFs consisting of KI, KII and KIII. 

This is because in ANSYS, if J-integral is used in the 

elastic or plastic regions, it calculates only a single value 

of J-integral even under combined loadings. The elastic J-

integral, Je. Rearrange it into the term of SIF, K for plain 

strain condition yields the following expression: 

 

*

21
FE e

E
K J



 
  

 
              (9) 

 

Eq. (9) is used to convert the J-integral into combined 

SIF, K*
FE, under combined loadings using FEA, and it 

was then substituted into Eq. (8).   

 

4. Results and Discussion 

Combination of FI,b and FI,a is conducted using Eq. 

(7) where it is formulated analytically using a 

superposition method proposed by Newmann and Raju 

[13]. The dimensionless SIFs, FI,b and FI,a can also be 

obtained in Ismail et al. [28], respectively. Results of 

combined SIFs calculated using Eq. (8) are presented in 

Fig. 8 for different loading ratio,  at the deepest crack 

depth, x/h = 0.0.  

 

 
(a) 

 
(b) 

Fig. 5 Behaviour of F*
I,FE against a/D, (a)  = 0.5 and (b) 

 = 1.0. 

 

Fig. 5(a) shows that for the SIFs dominated by the 

bending moment, all the SIFs seem to converge at a/D = 

0.1. However, when the tension stress plays an important 

role the dispersion of the curves increased as shown in 

Fig. 5(b). This is indicated that  is an important factor in 

determining the evolution of crack propagation processes. 

The comparisons between the SIFs combined explicitly 

and from FEA are showed in Fig. 6. Both results produce 

an excellent agreement to each other and the developed 

SIFs methodology can be successfully used to combine 

SIF for a similar type of failure mode. 

Fig. 7 shows a linear relationship between Jp-FE and 

Jp-normal obtained from six points along the crack front 

under combined loadings. Relative crack depth, a/D = 0.2 

is considered in this work because the pattern of the 

curves are almost identical to each other for different a/D 

except different in magnitudes. For combined loadings 

dominated by tension force ( = 0.5) as shown in Fig. 

8(a), h*
I function is lower than if  = 2.0 is used as 

compared with the Fig. 8(c). It is also showed that the h*
I 

is almost flattened along the crack front until x/h < 0.6 
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before h*
I has turned down when it is reached x/h  0.7. 

The decrement of h*
I in that region become significant if 

 > 2.0 is used as revealed in Fig. 8(b). 

 

 
(a) 

 
(b) 

Fig. 6 Comparison of F*
I, (a) a/b

 
= 0.2 and (b) a/b = 0.6. 

 

 
Fig. 7 Relationship between Jp-FE and Jp-normal for a/b = 0.6 

and a/D = 0.2 subjected to combined loadings. 

 

This is related to the reduction of crack width with the 

increment of a/D. It meant that the deeper the cracks with 

shorter crack width are capable to reduce the propagating 

rate of the crack. When n = 10 is used instead of 5, the 

curve pattern of h*
I is almost similar to each other as 

shown in Fig. 9. However, h*
I obtained using n = 10 is 

lower than when n = 5 is used. This is due to the fact that 

n = 5 is a material assumed to behave lower strain 

behaviour. Up to this date, no such works available on 

this similar analysis to compare with. Therefore, no 

comparison is conducted to validate the present results. 

 

 
(a) 

 
(b) 

Fig. 8 Effect of h*
I against x/h for a/D = 0.2 and n = 5 

with varied a/b subjected to different loading ratio, (a)  
= 0.5 and (b)  = 1.0. 

 

The characteristics of limit load, a-b under combined 

loadings are presented in Figs. 10 and 11 for n = 5 and 

10, respectively. In general, the limit load reduced as the 

a/D is increased. This is due to the fact that when a/D 

increased, the cross-sectional area of the bar is decreased. 

Consequently, it is affected the resistant capability of the 

bar therefore reduced the limit load. Normalised load, 

eqv/0 is also played an important role in determining the 

limit load where it is reduced asymptotically as the 

normalised load increased.  

The curve patterns of the limit loads are typically 

observed for all crack geometries that have considered. 

Therefore for this reason, the crack with a/b = 0.6 is 

considered to be discussed in this work. It is found that 

the limit load distributions can be divided into two 

distinct regions, eqv/0 < 1.0 (low load level) and eqv/0 

> 1.0 (high load level). For the case eqv/0 < 1.0, the 

limit load distributions are relatively high which is 
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indicated that the elastic J-integral is not suitable to be 

used in calculating the limit load.  

 
(a) 

 
(b) 

Fig. 9 Effect of h*
I against x/h for a/D = 0.2 and n = 10 

with varied a/b subjected to different loading ratio, (a)   
= 0.5 and (b)   = 1.0. 

 

The effect of Je is still existed even it is omitted from 

the calculation. In order to eliminate the effect of Je, it 

should be minimised as possible. Compared with the 

region of eqv/0 > 1.0, the plastic J-integral has 

dominated around the crack tip. This condition produced 

insignificant limit load fluctuations. This is also indicated 

that, plastic J-integral alone must be used in order to have 

accurate limit load of any cracked structures. When a/D is 

increased causing the limit load reduction. This is true for 

the fact that when a/D increased, it will reduce the crack 

ligament area. Consequently, increasing the plastic J-

integral along the crack fronts. The effect of loading ratio, 

 shown in Fig. 12 on the combined limit load is 

significant and found that by increasing the loading ratio 

has dispersed the limit load distribution.  

The behaviour of combined limit load can be described 

by observing the J/Je pattern along the crack front. This 

expression is derived as functions bar geometry, loading 

and material properties as follows: 

 

 
(a) 

 
(b) 

Fig. 10 Effect of eqv/o on the a-b for a/b = 0.6 and n = 5 

when a/D are varied (a) a/D = 0.1 and (b) a/D = 0.2. 
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(10) 

 

where: 

 

 J = Je + Jp, 

 

 
2

2 3
1

4
cos

2 4 3

 
           

 

F*
I = FI,a + FI,b.  

 

In Eq. (10), parameter x/h is assumed to be varied and 

others parameters are kept constant throughout the 

analysis. Therefore, J/Je is determined by  
2

* *

1I Ih F for 

variety crack geometries under considerations. The 

behaviour of  
2

* *

1I Ih F  against x/h for n = 5 and 10 are 

shown in Figs. 13 and 14, respectively using different 

loading ratios. Fig. 13(a) shows the   
2

* *

1I Ih F for a/D 
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= 0.1 with a/b are varied. It is found that the flattened 

curves of  
2

* *

1I Ih F occurred in the region x/h < 0.4. 

This is indicated that a single value of limit load capable 

to predict J-integral. However, the predictions are limited 

within the specified region. The effects of  on the curves 

are minimal. By increasing a/D produced the region of 

constancy shorter compared with lower value of a/D.  

 

 
(a) 

 
(b) 

Fig. 11 Effect of eqv/o on the a-b for a/b = 0.6 and n = 

10 when a/D are varied (a) a/D = 0.1 and (b) a/D = 0.2.  

 

The distribution of  
2

* *

1I Ih F is observed to diverge 

significantly if  = 2.0 is used showing the tensile stress 

dominated the stress condition in the bar. Therefore, it is 

induced lower plasticity effect and consequently, it is 

reduced the capability of the combined limit load to 

predict J-integral efficiently as shown in Figs. 13(b). 

However, the influence of  become significant with the 

increment of a/D more than 0.2 especially for  = 0.5. 

Fig. 14 shows the behaviour of  
2

* *

1I Ih F which is 

plotted against x/h using n = 10. It is found that the 

magnitude of  
2

* *

1I Ih F is higher than if n = 5 is used. 

However, it is obviously revealed that the patterns of 

curves are almost the same as in the Fig. 13.  

 

 
(a) 

 
(b) 

Fig. 12 Effect of eqv/o on the a-b for a/b = 0.6 and n = 5 

using different loading ratios, (a)  = 0.5, (b)  = 1.0 dan 

 = 2.0 for n = 5. 

 

It is also found that the constancy of  
2

* *

1I Ih F can 

be observed clearly mainly for     1.0. In the same 

time, the constancy for a/D = 0.3 is limited within the 

region of x/h < 0.3 compared with the x/h < 0.6 for a/D  

0.2. These characteristics are paramount important in 

order to predict J-integral using the proposed limit load. 

In general, for the combined bending and tension 

loadings, different limit load must be used to predict the 

J-integral for different points on the crack front. This is 

due to the fact that the constancy of the  
2

* *

1I Ih F
 
is 

difficult to occur and it is limited to the certain region of 

the x/h on the crack front. 

 

5. Summary 

Linear and non-linear finite element analyses (FEA) 

have been performed to investigate the fracture response 

of the surface cracks in round bars under combined 

tension and bending loadings. Two fracture parameters 

are used namely stress intensity factors (SIF) and J-

integral. Combined SIFs from FEA are compared with 

the explicitly combined SIFs through the use of a 

superposition method. The results show an excellent 
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agreement to each other. For elastic-plastic analysis, J-

integral is used as the fracture driving force and the 

solutions are calculated along the crack front for various 

crack geometries. Plastic influence function, h*I under 

combined loadings are determined according to the EPRI 

formulation using different loading ratio, . It is showed 

that h*I is strongly related to the x/h, a/b, a/D, n and . 

Since no available solutions of h*I under combined 

loadings are available in the literature.  

 

 
(a) 

 
(b) 

Fig. 13 Behaviour  
2

* *

1I Ih F  against x/h for, (a) a/D = 

0.1 and (b) a/D = 0.2 for n = 5 using three different 

loading ratios. 

 

Therefore, it is assumed that the model have produced 

acceptable results. The limit load in this work is based on 

the reference stress method. Then, the relation between J-

integral and limit is established to investigate the J-

integral prediction along the crack fronts. It is found that, 

the present limit load is not fully satisfied to predict the J-

integral for all crack geometries considered in this work. 

Different limit loads should be used for different points 

along the crack front to predict J-integral. However, the 

prediction of J-integral can be performed for limited 

points on the crack fronts and it is strongly affected by 

a/D and .    

 

 
(a) 

 
(b) 

Fig. 14 Behaviour  
2

* *

1I Ih F  against x/h for, (a) a/D = 

0.1 and (b) a/D = 0.2 for n = 10 using three different 

loading ratios. 
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