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Cloud is an aerosol consisting of visible mass of miniature liquid 
droplets, frozen crystal, or other particles suspended in the 
atmosphere. The study of atmospheric clouds is crucial for us to better 
understand and predict the behaviors of clouds, which has implications 
for climate, weather, aviation safety, agriculture, and energy 
production. Convolutional neural network (CNN) method is applied to 
train an atmospheric cloud image detection model to identify the 
presence of cloud and classify them. Supervised learning method is 
applied to train the model such that the machine is given labeled cloud 
image dataset to learn how to classify and predict the presence of cloud. 
U-Net architecture is used to train the atmospheric cloud image 
detection model because the architecture has the highest performance 
in image segmentation especially object detection in satellite images. 
The 38-Cloud Dataset which is used to train the model, is obtained from 
Landsat 8 Earth observation satellite. The dataset is randomly divided 
into training set (75% of the total images) and validation set (25% of 
the total images). Following this, the dataset is preprocessed and 
transformed into tensors to train the model. The training has been 
carried out for 50 epochs. Apart from the U-Net architecture proposed, 
the architecture is further modified with ResNet34 and VGG16 and the 
performance of each model is studied. The recognition accuracy 
obtained for atmospheric cloud image detection trained with the 
dataset achieved 97%. With this accuracy, U-Net architecture can be 
justified as a powerful and suitable convolutional neural network in 
performing atmospheric cloud image detection. 
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1. Introduction 
Clouds have an intriguing and crucial function in meteorology and Earth’s atmospheric sciences. Atmospheric 
clouds are observable collections of water or ice crystals suspended in the atmosphere that produce a constantly 
shifting skycape. These dynamic structures have an essential role in predicting weather patterns and atmospheric 
conditions, in addition to enhancing beauty and intrigue in our daily lives. The complex relationship between 
temperature, humidity, and air velocity in the atmosphere leads to clouds. Warm air rises, expands, and cools, 
causing water vapor to condense into microscopic droplets or ice crystals. Then, these tiny particles assemble and 
combine to create clear cloud patterns. The water cycle and precipitation patterns are also impacted by clouds. 
They act as the growth areas for the ice crystals or water droplets that eventually turn into rain, snow or other 
types of precipitation. In addition, clouds may store atmospheric moisture, dispersing it over the globe and 
assisting in controlling the water cycle.  Observing and understanding atmospheric clouds is crucial for weather 
forecasting, climate modeling, and studying atmospheric dynamics. To understand the behavior of clouds, follow 
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their motions, and forecast their evolution, scientists use a combination of ground-based observations, satellite 
photography, and sophisticated computer models. The ability to forecast meteorological conditions such as the 
possibility of precipitation, the emergence of severe storms, and the evolution of atmospheric disturbances is 
made possible by this knowledge [1]. 

Deep learning is a branch of machine learning focus on training artificial neural networks to recognize 
patterns and extract pertinent information from massive datasets in order to learn and make decisions. It draws 
inspiration from the design and operation of the human brain, particularly from the intricately interwoven 
network of neurons that makes up the brain. Deep neural networks, which are neural networks with several 
hidden layers, are what distinguish deep learning. The network can learn hierarchical representations of the input 
data using these layers, where each layer captures increasingly sophisticated and abstract properties. Recently, 
convolution neural network (CNN) architecture, a type of deep learning architecture, has gained prominence in 
practical applications. The primary factor in its appeal is its ability to automatically extract and classify features, 
eliminating the need for manual feature extraction and selection [2]. 

Transfer learning is a powerful technique in deep learning where knowledge gained from training a model on 
one task is leveraged to improve the performance on a different but related task. By transferring learned 
representations from one domain to another, transfer learning enables models to benefit from pre-existing 
knowledge and overcome challenges of limited labeled data [3].  

The dynamics of climate, weather patterns, and the energy balance of the planet all depend heavily on 
atmospheric clouds. For many applications, such as weather forecasting, climate modelling, and remote sensing, 
accurate and fast cloud identification is crucial. Manual cloud identification techniques, however, take a lot of time, 
are arbitrary, and frequently only cover a small area. Therefore, there is a need for an automated cloud detection 
system that can efficiently and accurately identify cloud regions in atmospheric imagery.  

The objective of this study is to develop an automated atmospheric cloud detection system which is reliable, 
efficient, and accurate in cloud identification based on satellite or aerial imagery. The outcome of the study will 
have significant implications for weather analysis, climate modeling, and environmental monitoring which enable 
more precise predictions and a better understanding of atmospheric processes. 

2. Literature Review 
Some background studies on atmospheric cloud image detection done by other researchers is discussed in this 
section. In [4], a novel cloud detection method considering both spectral and spatial information is proposed for 
the multispectral remote sensing images. Firstly, the image is divided into spectrally homogeneous segments, 
namely superpixels, by Simple Linear Iterative Cluster (SLIC) method.  A two-step classification strategy is used 
to divide these superpixels into cloud and non-cloud. The second step further classifies the potential cloud as cloud 
and non-cloud using the PCA Network (PCANet) combined with Support Vector Machine (SVM). Finally, a fully 
connected Conditional Random Field (CRF) model is employed to refine the cloud detection result and accurate 
cloud borders are obtained. The experimental images of this paper are obtained from the Landsat 8 Cloud Cover 
Assessment (L8 CCA) dataset which contains a total of 96 images with image size of approximately 6400 × 6400. 
The images are divided into two parts: 24 for training and remaining 72 for testing. 

Table 1 Right rate (RR), error rate (ER), and ratio of RR to ER (RER) of each method 
Methods RR ER RER 

Single-branch PCANet(9D) 0.9023 0.0829 10.8854 
Single-branch PCANet(5D) 0.8010 0.1164 6.8828 
Double-Branch PCANet 0.9138 0.0729 12.5289 

 
The statistical result obtain by different network architectures are shown in Table 1. It can be seen that in two 

single-branch PCANets, the 5-dimensional PCANet has lower performance than the 9-dimensional one due to the 
incomplete spectral information input. In addition, when combining the two single-branch PCANets together, it is 
exactly the final double-branch PCANet which produces a better cloud detection result than both of the two single-
branch PCANets. 

The authors in [5] designed a novel Multilevel Convolutional Neural Network (MCNNs) architecture for 
multilevel cloud detection. The MCNN model used three different-sized patches (128 × 128, 64 × 64, and 32 × 32) 
as the input data to extract features from remote sensing imagery and the output is a 1024-dimensional vector, 
which is reshaped into four 16 × 16 channels to perform cloud detection.  

Three categories of different spatial resolutions satellite imagery, GaoFen-1 (GF-1), GaoFen-2 (GF-2), and 
ZiYun-3 (ZY-3), were used for multilevel cloud detection. The ratio of the training set used are (10 ZY-3: 7 GF-1: 9 
GF-2) and (2 ZY-3: 1 GF-1: 1 GF-2) for testing.  
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The impact of the superpixel segmentation on the performance of multilevel cloud detection has been studied 
by comparing the cloud detection accuracy using Adaptive-SLIC (A-SLIC) + MCNNs, SLIC + MCNNs, and Pixel 
+MCNNs methods. The statistical result obtained are shown in Table 2. 

Table 2 Statistics of different superpixel algorithms 
Parameter 
(%) 

A-SLIC SLIC Pixel 

OA 98.27 94.34 92.14 
Kappa 92.34 88.31 87.31 
EOA 97.36 92.13 90.38 
EOE 0.94 2.61 4.24 
ECE 1.70 4.26 5.38 

**Overall Accuracy (OA), Edge Overall Accuracy (EOA), Edge Omission Error (EOE), and Edge Commission 
Error (ECE) 

 
From Table 2, it is observed that the proposed method yields the best OA and EOA, and its EOE was lower 

than that of the other methods. This is because the superpixel segmentation method introduced the idea of affinity 
propagation, adaptively determining the number of superpixels and the center of clustering, the superpixel can 
contain the cloud boundary well. 

The proposed method is then compared with other CNN approaches using spatial average pooling (SAP), max 
pooling (MP) and average pooling (AP). The statistical result obtained are shown in Table 3. 

Table 3 Statistics of different CNN architectures 
Parameter 
(%) 

PA SAP MP AP 

OA 98.64 96.17 89.07 84.13 
Kappa 95.27 88.34 89.34 87.81 
EOA 97.37 94.01 87.34 82.41 
EOE 1.02 2.28 4.81 8.17 
ECE 1.61 3.71 7.85 9.42 

**PA: Proposed Approach 
 
Table 3 demonstrate that SAP+MCNNs is more effective at extracting cloud features and detects thin and thick 

cloud effectively on different underlying surfaces. 
In addition, the proposed CDnet in [6] is a modified ResNet-50 network in order to extract features. The 

authors use three small filters with 3 × 3 receptive fields with stride 1. In addition, the incorporated three 
nonlinear 3 × 3 convolutional layers also make the modified ResNet-50 deeper and more discriminative than 
ResNet-50. Furthermore, ZY-3 Satellite Cloud Cover dataset that consists of 475 images are used in this paper. The 
data set is divided into three parts: 200 for training, 80 for testing and 195 for validation. The input size for CDnet 
is 321 × 321 pixel and hence around 46k of sub images are used at the training stages. The result of obtained by 
the CDnet are shown in Table 4. 

Table 4 Cloud extraction accuracy by CDnet 
Method CDnet SVM PSPnet 

OA 96.47 78.21 94.24 
MIoU 91.70 66.79 88.37 
Kappa 85.06 54.87 81.41 
PA 89.75 91.77 86.67 
UA 90.41 56.37 89.17 

** Overall Accuracy (OA), Mean value across all the classes (MIoU), Product Accuracy (PA) and User 
Accuracy (UA) 
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From Table 4, it is observed that CDnet consistently outperforms compared to other models. 
Luotamo et al. proposed a novel two-phase semantic segmentation framework for cloud detection from high-

resolution optical remote sensing images, drawing on state-of-the-art CNN architectures [7]. To alleviate the 
drawbacks of either approach, a model architecture that combines coarse analysis of under sampled images with 
fine-grained analysis for a small number of patches selected by the coarse model are used. This allows fast and 
memory-efficient analysis of global features while retaining a capability for full-resolution segmentation.  

478 Sentinel-2 (S2) Multispectral Instrument (MSI) LIC images from years 2016 to 2017 are used as data set 
for training and evaluating the model. 454 of the original 478 MSI images are used to train the model and the 
remaining 24 images were used for model testing evaluation. The modified architecture is applied to some of the 
model and the results are shown in Table 5 and Table 6. 

Table 5 Comparison of encoder backbones used with a semantic segmentation architecture fixed to U-NET 
Encoder Acc Pre Rcal 

EfficientNet 0.5515 0.5112 0.8308 
ResNet-50 0.7158 0.7044 0.6422 
VGG16 0.7299 0.7219 0.6122 
InceptionV3 0.7336 0.6936 0.6907 
SEResNeXt-50 0.7345 0.6898 0.6703 

Table 6 Comparison of encoder-decoder semantic segmentation architectures, with the encoder backbone fixed to 
SEResNeXt-50 

Segment Acc Pre Rcal 

U-Net 0.7345 0.6898 0.6703 
LinkNet 0.6346 0.5562 0.6898 
PSPNet 0.6666 0.5841 0.7096 
FPN 0.737 0.7184 0.6426 

**Accuracy (Acc), Precision (Pre), and Recall (Rcal) 
 
Next, the segmentation architecture is modified, to evaluate with U-Net, Linknet, FPN, and PSPNet, by fixing 

the encoder to SEResNeXt-50 that initially performed best with U-Net. Table 5 indicates that in terms of accuracy, 
the best results for the considered encoder–decoder architectures are obtained with a combination of FPN and 
SEResNext-50. 

Among the papers studied, the MCNN model shows the highest overall accuracy but the training time and the 
memory used to train the model are still unsatisfactory. Therefore, the aim of this paper is to propose a solution 
to build a more simplified cloud detection model which has higher accuracy, lower training time and lower 
memory usage. 

3. Methodology 

3.1  Problem Formulation 
Atmospheric cloud detection plays a crucial role in various fields, including weather forecasting, climate research, 
and satellite imagery analysis. However, because they come in a variety of sizes, shapes, and textures, it can be 
difficult to correctly identify clouds in complex weather conditions. Transfer learning using the U-Net architecture 
is a technique that has attracted a lot of attention and produced outstanding outcomes in cloud identification. 

Transfer learning is a machine learning technique where knowledge gained from solving one task is applied 
to a different but related task. Transfer learning enables us to make use of previously trained models on massive 
datasets, such as natural photos, and modify them to precisely recognize clouds in atmospheric imaging [3]. The 
U-Net architecture, originally introduced for biomedical image segmentation, has proven to be highly effective in 
various computer vision tasks. It is a CNN that consists of an encoder path and a decoder path, enabling it to 
capture both global and local context information. The encoder path captures high-level features through 
downsampling, while the decoder path reconstructs the output at the original resolution using upsampling.  
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Fig. 1 U-Net Architecture [8] 

 
As shown in Fig. 1, U-Net is a U-shaped encoder-decoder network architecture, which consists of four encoder 

blocks and four decoder blocks that are connected via a bridge. The encoder network (contracting path) halves 
the spatial dimensions and doubles the number of filters (feature channels) at each encoder block. Likewise, the 
decoder network doubles the spatial dimensions and halves the number of feature channels [8]. 

By employing transfer learning with U-Net, we can harness the power of pre-trained models like VGG16 or 
ResNet50, which have been trained on vast amounts of natural images, and fine-tune them for cloud detection. 
The lower layers of these models learn general features like edges and textures, which are valuable for cloud 
identification. The higher layers of the pre-trained model are retrained using transfer learning on a smaller dataset 
of annotated atmospheric photos. With the help of this fine-tuning, the model may focus on identifying features 
unique to clouds while still maintaining its broad comprehension of visual patterns from the pre-training stage. 
As a result, the model can now accurately separate clouds under various meteorological circumstances, such as 
those with diverse lighting, cloud thickness, and cloud kinds. 

The combination of transfer learning and U-Net architecture provides a powerful and efficient solution for 
atmospheric cloud detection. By leveraging pre-existing knowledge and effectively capturing the unique features 
of clouds, this approach offers enhanced accuracy and robustness, which is vital for applications such as weather 
prediction, climate monitoring, and environmental analysis. 

3.2 Data Preparation 
For training and evaluating the model, we use a data set of 38 Landsat 8 scene images which are manually 
extracted pixel-level ground truths for cloud detection. 38-Cloud dataset is introduced in [9], and yet it was a 
further modification of the dataset in [10]. The entire images of these scenes are pre-processed and cropped into 
multiple 384×384 patches to be proper for deep learning-based semantic segmentation algorithms. There are 
8400 patches of image for training. Each patch has 4 corresponding spectral channels which are Red (band 4), 
Green (band 3), Blue (band 2), and Near Infrared (band 5).  

In order to prepare the dataset to be suited for the model, a dataset class that reads the Red, Green, Blue and 
Nir patches and stack them all into a tensor is created. The 4 channels are combined into a single tensor for a given 
index, and return a tuple (x,y) with a sample from the dataset where x is the 4 channels tensor and y is the ground 
truth mask. Besides, the ground truth values are modified to 0 and 1 from 0 to 255 to fit correctly in the model. 
Next, the data inside the dataset is split into train and validation sets. In addition, a data loader which is 
responsible for preparing the batches of data to pass them to the model is also created.  

3.3 Optimizer and Hyperparameters 
The choice of optimizer and hyperparameters are crucial since they can greatly impact the performance and 
convergence of the model. For training the U-Net model, the Adam optimization algorithm is chosen because it 
combines the advantage of adaptive learning rates and momentum. Based on previous gradients, it adjusts the 
learning rate for each parameter and applies momentum to smooth out updates. Moreover, the algorithm is 
straightforward to implement, has a faster running time, low memory requirements, and requires less tuning than 
any other optimization algorithm. 
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Equation (1) represents the working of Adam optimizer, where β1 and β2 represent the decay rate of the 

average gradients [11]. Next, the learning rate determines the step size taken during gradient descent to update 
the parameters of the model. The learning rate for the Adam optimizer to train the model is 0.01 to achieve a 
better a result. 

Hyperparameters are parameters that are set prior to the training of a model and define its architecture and 
behaviour. They have a significant impact on the model’s performance, convergence speed, and generalization 
ability. In the building of U-Net model, cross-entropy loss function is used for image segmentation. The function is 
well-suited for multi-class classification tasks, where each pixel can belong to one of several classes. It combines 
a SoftMax activation function with the negative log-likelihood loss, effectively measuring the dissimilarity between 
the predicted class probabilities and the true class labels. By minimizing the cross-entropy loss function during 
the training process, the U-Net model learns to assign higher probabilities to the correct classes for each pixel, 
thereby improving its ability to segment and classify objects accurately in the input images. The cross-entropy is 
defined as: 

𝛿𝛿𝐶𝐶𝐶𝐶 = −�𝑡𝑡𝑖𝑖 log(𝑝𝑝𝑖𝑖) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑛𝑛

𝑖𝑖=1

 (2) 

where 𝑡𝑡𝑖𝑖   is the truth label and 𝑝𝑝𝑖𝑖  is the Softmax probability for the 𝑖𝑖𝑡𝑡ℎ  class [12]. In addition, the batch size 
used to train the U-Net model is equal to 12. This means that 12 training examples are processed together in each 
iteration of the training algorithm.  

3.4 Model Architecture 
The Kaggle is one of the largest data science communities for open-source data and collaboration. Kaggle 
notebooks function the same way as Colab or Juptyer notebooks. The most frequently used packages are already 
preinstalled in the Kaggle environment [13]. In this paper, the U-net model is trained in the Kaggle notebooks.  

Our proposed U-Net model consists of 3 contracting blocks and 3 expanding blocks. The first part of the U-Net 
model (contraction block) is a set of convolutions with pooling that downsizes the image resolution and creates 
additional layers to extract the features from the image.  

 

 
Fig. 2 Contracting phase architecture 

 
Fig. 2 shows the first and second contraction blocks, each of them is composed of two convolutions with a 3 × 

3 kernel and a max pooling with a stride of 2 × 2 that cuts in half the size of the input image. Hence, from here the 
image will be modified from 128 × 128 to 64 × 64. In addition, the number of layers increase from 3 to 64, 
indicating the design decision of the number of kernels used in the first convolution.  
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Next, the expanding block in the U-Net model complements the contracting block by progressively increasing 
the spatial dimensions while reducing the number of channels. It seeks to recover the compact representation 
produced by the contracting block from the high-resolution segmentation map. The main component inside the 
expanding block is the transpose convolutions which perform an inverse operation to the convolution by 
expanding the spatial dimensions while reducing the number of channels. 

The combination of the contracting blocks and the expanding blocks is the final architecture of the U-Net 
model. The U-Net model proposed consists of 3 contracting blocks and 3 expanding blocks to achieve exactly the 
same resolutions and maintain two channels, as shown in Fig. 3. 
 

 
Fig. 3 Proposed U-Net model 

In other words, a U-Net model that receives 4 channels as input and returns 2 channels is constructed as 
shown in the architecture in Fig. 3.  

3.5 Model Architecture 
Train function that receives the mode, the loss function, the optimizer, an accuracy function, the number of epochs, 
the train and the validation data loaders is created to train the U-Net model. The PyTorch Cross Entropy function 
is used as the loss function. In addition, the accuracy of the model is defined as equation (3) below: 
 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴 =
𝑁𝑁𝐴𝐴𝑚𝑚𝑁𝑁𝑐𝑐𝑓𝑓 𝑓𝑓𝑓𝑓 𝑚𝑚𝑐𝑐𝑡𝑡𝑐𝑐ℎ𝑐𝑐𝑒𝑒 𝑝𝑝𝑖𝑖𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑓𝑓𝑡𝑡𝑐𝑐𝑐𝑐 𝑛𝑛𝐴𝐴𝑚𝑚𝑁𝑁𝑐𝑐𝑓𝑓 𝑓𝑓𝑓𝑓 𝑝𝑝𝑖𝑖𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑛𝑛 𝑐𝑐 𝑁𝑁𝑐𝑐𝑡𝑡𝑐𝑐ℎ
 (3) 

Moreover, the Adam optimizer with a fixed learning rate of 0.01 is applied. Meanwhile, the number of epochs 
to train the U-Net model is 50 in order to increase the accuracy of the model. 

In order to achieve a better performance for the U-Net model constructed, the model is further modified with 
other pre-trained model concept. In this work, the U-Net model is further modified with ResNet34 model and 
VGG16 model. 

ResNet34 (Residual Network-34) is a popular CNN architecture that belongs to the ResNet family. This 
architecture was introduced in [14] back in 2016. ResNet34 has shown impressive performance in various 
computer vision tasks including image classification, object detection, and image segmentation. Its deep 
architecture and residual connections enable it to capture intricate patterns and features, making it highly 
effective in handling complex visual data. To modify the U-Net architecture with ResNet34, the initial contracting 
blocks are replaced with the layers of ResNet34 model, whereas the expansive path of the model remains. 

VGG16 is a widely recognized CNN architecture that was developed by the Visual Geometry Group (VGG) at 
the University of Oxford. This architecture was introduced in [15].  The VGG16 architecture is significantly 
advanced in the field of deep learning and has emerged as a standard for image classification problems. It has 
sparked additional investigation and advancements in the construction of deep neural networks and served as the 
basis for many future CNN architectures. For this modification, the contracting path is replaced with VGG16 model. 
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4. Results and Discussions 
In this paper, the proposed cloud detection model is implemented in Kaggle on a computer with AMD Ryzen 5 
3500U CPU at 4GHz and 13GB RAM. The training process is enhanced with the GPU P100 (NVIDIA Tesla P100) 
which contains 16GB of memory to accelerate the computing power and improve the efficiency of the machine 
learning workflows. The loss plots of the training atmospheric cloud detection model for U-Net, modified U-Net 
with ResNet34, and U-Net modified with VGG16 are obtained and shown in Figs. 4, 5, and 6, respectively. 

4.1 Loss Plots 
 
 

 
Fig. 4 Loss plot of the U-Net model 

 

 
Fig. 5 Loss plot of the U-Net model modified with ResNet34 
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Fig. 6 Loss plot of the U-Net model modified with the VGG16 

 
From the loss plots obtained, the blue lines which represent the training loss of the 3 models decrease until 

they reach a point of stability smoothly. Whereas, the red lines represent the validation loss fluctuate throughout 
the model training processes. Fig. 7 and Fig. 8 show the training loss plot and the validation loss plot of the 3 
models respectively. 
 

 
Fig. 7 Training loss plot of the 3 different models 
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Fig. 8 Validation loss plot of the 3 different models 

 

Table 7 The validation loss of the models during training 
Model Validation 

Loss 

U-Net 0.1212 
U-Net with ResNet34 0.0800 
U-Net with VGG16 0.0822 

 
From Table 7, the U-Net model modified with ResNet34 has the lowest average validation loss, followed by 

the U-Net model modified with VGG16 and the original U-Net model.  

4.2 Validation Accuracy 
The validation accuracy plots of the training atmospheric cloud detection model for U-Net, modified U-Net with 
ResNet34, and U-Net modified with VGG16 are generated and shown in Fig. 9. 

 

 
Fig. 9 Overall accuracy plot of the 3 models 

 
From the accuracy plot obtained in Fig. 9, it is observed that the accuracy of training for the 3 models increase 

until they reach a point of stability smoothly.  
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Table 8 The validation accuracy of the models 
Model Validation 

Accuracy 

U-Net 0.9523 
U-Net with ResNet34 0.9695 
U-Net with VGG16 0.9633 

 
Based on Table 8, the U-Net model modified with ResNet34 has the highest validation accuracy which is close 

to 97%, whereas the U-Net model modified with VGG16 and the original U-Net model show the validation accuracy 
around 95%. 

4.3 Training Efficiency 
The model training efficiency is a critical aspect of machine learning, and the time used for model training is 
significant in determining the efficiency of the training process.  

Table 9 Training time of the models 
Model Training Time 

(min) 

U-Net 158.55 
U-Net with ResNet34 117.93 
U-Net with VGG16 135.10 

 
From Table 9, the training time of the U-Net model modified with ResNet34 is the lowest, followed by the 

original U-Net model and the U-Net model modified with VGG16.   

5. Conclusions 
In conclusion, this project has successfully developed an atmospheric cloud image detection model. The model 
utilizes advanced techniques such as transfer learning with the U-Net architecture to accurately identify and 
segment clouds in complex atmospheric conditions. By leveraging pre-trained models and fine-tuning them on a 
specific dataset of annotated atmospheric images, the model demonstrates robust performance in detecting cloud-
specific features.  

The combination of transfer learning and the U-Net architecture allow the model to capture both local and 
global contextual information, enabling accurate cloud segmentation across various lighting conditions, cloud 
types, and cloud thickness. The constructed model has enormous potential for use in a variety of fields, such as 
weather forecasting, climatology, and satellite image analysis. For bettering weather forecasts, comprehending 
climatic patterns, and evaluating environmental effects, accurate cloud identification is essential. In order to 
improve the performance of the   model, it is suggested to explore the integration of different data sources, such 
as satellite imagery, weather radar data, or ground-based sensors, to enhance cloud detection accuracy. 
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