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Since the outbreak of the COVID-19 pandemic, many companies have 
started to work from home. As the pandemic recovers, companies 
slowly start to adapt to the situation by making the workers work from 
the office. This is an effort to reduce the risks of spreading diseases in 
the workplace during the endemic of COVID-19. An effective solution is 
urgently needed to reduce and control the transmission rate of COVID-
19. This has motivated us to design an Internet of Things (IoT) Health 
and Social Distancing Monitoring System (IHDS). This system aims to 
support that initiative and introduce a system that can control the risks 
of infection among workers due to a worrying spike in the number of 
cases in the workplace. The proposed system monitors the health 
condition of the users and controls social distancing at the workplace 
by using IoT technology and machine learning. Extensive experiments 
were conducted to assess the performance of the proposed system. 
Four critical health metrics were closely monitored: body temperature, 
pulse rate, blood oxygen saturation, and cough detection, achieving 
impressive accuracy rates of 99.91%, 94.32%, 99%, and 80.5%, 
respectively. The proposed system initiates the assignment of red 
boxes to couples who are separated by less than 1 meter, while it 
designates green boxes for couples who maintain more than a 1-meter 
distance from each other. 

Keywords 
Cough detection, health monitoring, 
IoT, social distancing monitoring  

1. Introduction 
COVID-19 was reported in its first case in Wuhan, China. The earliest report was documented on December 1, 
2019 [1]. After that, it kept increasing the number of cases and spreading across the globe. In Malaysia, the 
government had the initiative to track the movement and control the case count by implementing an application 
called MySejahtera. The application can track the movement of a person by checking in to a premise by scanning 
a QR code that has been placed at the entrance of the premises. By doing this, it is much easier to do contact tracing, 
as the record can be traced back to search for possible clusters. This initiative focused more on a larger group of 
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people. This system will be more focused on the workplace due to a worrying increase in cases in workplace 
clusters lately in Malaysia. 

Swab testing is implemented in the workplace not just to check that employers follow the law but also to 
ensure the safety of all employees. This is an attempt to stop COVID-19 from spreading in the workplace. Due to 
the high cost of swab tests, the company may find it burdensome to allocate expenditures for swab test kits 
regularly. It is also uncomfortable to take the test, which must be repeated every two weeks. It is critical for the 
day-to-day operation to continue and to prevent being shut down. In the workplace, there is no specialized health 
monitoring system. Body temperature is the sole parameter tested before entering the workplace to ensure that 
the individual entering does not have a fever, which is a typical indication of COVID-19.  

The IoT has become one of the most essential applications today as a result of rapid technological 
advancements. It elevates our way of life to new heights, and knowledge can be communicated in the blink of an 
eye. It can assist devices in communicating with one another through the internet. This design will use this 
application to improve an existing health monitoring system. Body temperature, cough frequency, pulse rate, and, 
last but not least, oxygen content in the blood are some of the parameters that will be monitored as part of this 
project. The readings can then be saved in a comma-separated values (CSV) file, which can subsequently be viewed 
and used as needed. This can assure the health of workers in a workplace, whether or not they are experiencing 
symptoms. Artificial Intelligence (AI) has grown increasingly popular in recent years as a result of technological 
advancements. The proposed project will attempt to explore the concepts of computer vision and neural network 
classification in order to determine social separation and a person's cough frequency.  

To ensure that the number of cases rising from workplace clusters is contained, the health monitoring system 
must be more comprehensive, with additional features to better identify possible spreaders. Because the COVID-
19 virus may be spread via the air by minute water particles dispersed in the air, it is critical to maintain a safe 
distance between people. This is one of the attempts being made to combat the disease's high infection rate 
throughout the world. The public implementation of this campaign is inept and ineffective. In public, people 
seldom remember to keep their distance. As a result, a computer vision system has been developed to aid the 
campaign in becoming more effective while also serving as a reminder to the public to keep their distance from 
the public in this extremely challenging pandemic. As a result, a health and social distance monitoring system can 
be established in the workplace to let organizations remotely monitor their employees' well-being while also 
minimizing outbreaks in workplace clusters. 

2. Related Works 
Since the World Health Organization (WHO) declared a worldwide pandemic in March 2020, the virus has spread 
rapidly around the world. The first case of COVID-19 was reported in late December 2019 [1]. In recent research 
on 99 patients, the most prevalent symptoms reported by COVID-19 patients were fever (83 percent) and cough 
(82 percent). According to the same survey, oxygen therapy is the most prevalent treatment received by patients, 
accounting for 76 percent of all patients. These figures show that COVID-19 patients had poor blood oxygen 
saturation, which is linked to the use of ventilators [2]. 

We cannot expect to physically confine the next influenza pandemic to the location where it arises, nor can 
we expect to prevent sickness from spreading worldwide for more than a short period, as the COVID-19 pandemic 
has demonstrated. COVID-19 virus strains are transmitted mostly through intimate interpersonal contact [3]. The 
purpose of social distancing strategies is to reduce the frequency of interactions and increase the physical distance 
between people, reducing the risk of transmission from one person to another [4]. Investigations were carried out 
to identify mask efficacy, social distance, lockdown, and self-isolation, among other things [5]-[6]. The author 
employed agent-based simulation modelling to provide a multivariate analysis utilizing the Morris Elementary 
Effects method of simulation, with social distance and wearing a mask as the major variables in controlling the 
spread [7]. Ahmed et al. evaluate the evidence that social distance in non-healthcare contexts reduces or delays 
influenza transmission. Workplace social distancing approaches, according to modelling studies, reduced 
cumulative influenza overall harm by 23% on average [8].  

Wearable devices like smartwatches are used to track health metrics, including heart rate, calories burned, 
and distance travelled, then extract the data and plot it on a graph. In the CSV file, the parameters for the data 
collected can be defined. With the addition of a social distance monitoring system to provide a safe working space. 
In addition, a mobile application has been developed to assist users in saving time and energy when accessing 
data. As a result, the procedure is simplified, and the findings may be more accurate [9]. Furthermore, solutions 
are proposed to monitor health conditions and develop a real-time face mask detection algorithm for COVID-19 
prevention [10].  

Home health monitoring is critical for detecting the early stages of diseases. It is impracticable to visit 
hospitals frequently to check their health conditions. It is also suggested that, by doing so, it would be possible to 
save a significant amount of money on medical expenses. Data from the past may also be utilized to predict future 
health patterns. A large amount of data can assist in distinguishing between extraordinary changes in one's health 
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state and regular swings. If a significant disease arises, the researcher discovers that a lengthy history of data can 
help predict when the disease episode begins, which can assist in determining the early signs of a more serious 
condition [11]. A remote monitoring system is proposed to identify the signs of COVID-19. A device in the form of 
a wristband is being developed. A survey is being conducted to look at the health equipment that is commonly 
utilized during pandemics. The pulse oximeter, digital thermometer, and digital blood pressure monitor are used 
by most of them [12].  

Three stages were described in the paper [13]-[14] to develop a social distancing system. The initial phase is 
object detection, in which they strive to identify and tag everything they find, as well as delete any objects that 
aren't humans. The next step is to determine the pairwise distance between the centroids of the bounding boxes, 
which may be done using Euclidean distance. The last phase is a visualization that includes a counter that counts 
the number of people in the crowd that broke the required social distance. To connect with this work, the designed 
system employed the OpenCV library to implement a social distance monitoring system that used YOLO v3 as an 
object identifier. The researcher's work was utilized as a model for the proposed system.  

The AI-based solutions had to overcome accuracy, cost, privacy, availability, and power consumption issues 
[15]-[16]. The foreground detection strategy has the drawback of being unable to recognize foreground objects 
that have stopped moving because the system's focus is on updating the background model. To anticipate the 
placement of items in a subsequent scenario, the Kalman filter is used. This is done to get around the disadvantages 
of using the foreground detection method. The positions in real-world coordinates were determined using the 
bird's-eye perspective and the location of the objects in pixels. Triangular equations were used to support this 
approach. The final step is to calculate the distance between objects in Euclidean distance to determine whether 
two people were in the encounter. The prior research provided valuable insights that guided us in designing the 
IHDS with Artificial Intelligence and IoT.  

3. Details of the Design  
IHDS is divided into four sections: data collection from each component, data transmission from a 

microcontroller to an IoT platform, image processing for social distancing detection using computer vision, and 
last but not least, sound recognition for cough sound detection using Artificial Intelligence software. The systems 
are independent of one another and function on their own, yet they work together to support the IHDS proposed. 
Fig. 1 shows the overall structure of the proposed IHDS system. 
 

 
Fig. 1 System architecture of the IHDS  
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The MLX90614 sensor connected to the Raspberry Pi 4B was used to capture temperature data for the body 
temperature reading. Through WiFi connectivity, body temperature readings will be transmitted to the Blynk 
platform. The data was sent from the Raspberry Pi 4B to the Blynk IoT platform, where it can be seen on a 
dashboard using smartphones. The MAX30100 sensor was utilized for the oxygen level concentration in blood 
and heartbeat readings, and it was attached to the NodeMCU V3 board, which has integrated an ESP8266 module. 
The sensor will employ an LED to create light, which will be used to measure oxygen levels. Blood that has been 
oxygenated absorbs more infrared light and emits more red light. Deoxygenated blood, on the other hand, 
interacts more with red light and less with infrared light. As a result, the sensor takes advantage of the situation 
and detects the absorption levels for both red and infrared light, storing them in a buffer that is subsequently read 
through the Inter-Integrated Circuit (I2C). The data from the sensor will be transferred to the microcontroller 
board to be processed before being sent back to the IoT platform, Blynk, to be seen on the dashboard through 
WIFI connectivity. 

The Arduino Nano 33 BLE Sense with a built-in microphone was used to detect coughs. It accomplished its 
goal by employing a machine-learning approach. Edge Impulse is the system's supporting software. Edge Impulse 
can generate multiple functions and systems using a machine-learning method. Sound recognition is utilized in 
IHDS to distinguish between background noise and cough sounds. It can also make a library for use with the 
Arduino Integrated Development Environment. It allows the user to choose the algorithms they want to utilize. 
The information from this board may be saved in a CSV file to demonstrate how often a person coughs over time. 
IHDS was established to keep track of individual health reports. As a result, a report in the form of a CSV file may 
be generated from the Blynk server. Throughout the day, users may examine their health status and upload the 
information to the company for extensive review. 

The monitoring system for social distancing is run on a Raspberry Pi 4B using a Python script. The operation 
flow chart of the monitoring system for social distancing is shown in Fig. 2. It made extensive use of computer 
vision to identify a variety of parameters. The social distancing monitoring system in IHDS identifies people and 
their distance from one another. To help this system distinguish the objects, an additional algorithm, such as 
YOLOv3, is required to recognise the object detected as a human. OpenCV is the library that was utilized in this 
technique (a computer vision open-source library that can be used in Python scripts). This setup used the 
PiCamera to record video and save it on the Raspberry Pi 4B. The program can then process the captured footage 
further. In a recorded version, it will demonstrate if the individual conforms to social distance or not. This 
captured and processed video may subsequently be used for a variety of purposes, including proof and reminders. 

 

 
Fig. 2 The block diagram of the social distancing monitoring system 

4. Results and Discussion 

4.1 Body Temperature Monitoring System 
Multiple temperature data points were collected daily to assess the temperature sensor's accuracy and precision. 
With 15 temperature readings recorded during each session, the following data was obtained in the morning, 
afternoon, evening, and night. The results of the MLX90614 measurement were compared to those of a 
conventional infrared thermometer. After that, the error will be calculated to evaluate the reading variation 
compared to the conventional device. The formula used to calculate the error is shown in (1). 
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(1) 

 
 
The average error percentage of body temperature measurements recorded with MLX90614 ranged from 

0.07% to 0.09%, which is quite low. This demonstrates that the MLX90614 readings are accurate and acceptable 
for body temperature monitoring in the proposed system. The distance between the skin and the sensor when the 
reading was taken varies for each measurement, which might explain why the temperature reading varies. 

4.2 Pulse Rate Monitoring System 
A set of data was acquired to evaluate the MAX30100 sensor's performance. This sensor was used to assess pulse 
rate and blood oxygen levels. The data collected by the MAX30100 was compared to that recorded by a 
conventional pulse oximeter, such as the Oxitech Pulse Oximeter, to evaluate the accuracy of the data collected by 
the MAX30100. The Medical Device Authority Register (MDAR) lists the Oxitech Pulse Oximeter as a registered 
device. This is to ensure that the sensor's reference value is as accurate as possible in order to verify the sensor's 
reading. The data was captured in six separate events: 1) before eating breakfast, 2) after eating breakfast, 3) 
before taking a test, 4) in a relaxed state, 5) before the workout, and 6) after the workout. The data was recorded 
for 1 minute and 10 seconds, with 5 seconds intervals for each occurrence. The data was interpreted by calculating 
the mean pulse rate in 30 seconds and 1 minute, as pulse rate is the measurement of the average value of the 
heartbeat over time, as shown in Table 1. 

Before breakfast, during resting, and before working out are examples of low-pulse-rate activity occasions. 
Because the heartbeat is low throughout these activities, one should have a low pulse rate. After breakfast, before 
taking an exam, and after working out are the events specified in the high pulse rate activity class. These activities 
prompted the heart to beat quicker, resulting in a faster pulse rate. Low pulse rate activity should, in theory, have 
a lower average BPM measurement than high pulse rate activity. It can be seen from Table 1 that it supports the 
idea. As a result, the sensor data becomes more reliable. 

Table 1 The average data reading for all events 
Mean BPM MAX30100 Oxitech MAX30100 Oxitech 
 Before Breakfast After Breakfast 

30 secs 73 73 88 83 
1 min 73 71 88 84 

 When Relaxing Before a Test 
30 secs 82 80 83 86 
1 min 80 82 81 87 

 Before Workout After Workout 
30 secs 74 75 78 76 
1 min 75 73 76 74 

4.3 Oxygen Saturation in Blood, SpO2 Monitoring System 
The data was gathered using the MAX30100, which can detect both pulse rate and blood oxygen saturation, or 
SpO2. The data for oxygen saturation was collected at the same time as the data for pulse rate, and the events were 
comparable. The data was also compared to the Oxitech Pulse Oximeter, which is an identical device. The 
MAX30100 reading before and after calibration is shown in Fig. 3.  
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Fig. 3 The SpO2 readings before and after calibration 

 
The y-axis displays the percentage of oxygen saturation in the blood, while the x-axis represents the time 

when the reading was taken. The blue line depicts the reading from MAX30100 before calibration, whereas the 
grey line depicts the value from MAX30100 after calibration. The reading from the Oxitech pulse oximeter is 
represented by the orange line. With two outliers found, the result received after calibration is virtually identical 
to the data acquired from the pulse oximeter device. The reading from the sensor and the result from the device 
are nearly identical. The sensor's correction factor is 5, based on the outcomes of the study. This correction factor 
can be used to tweak the sensor's code so that it produces more precise results. However, it must not exceed 100; 
otherwise, the calibration will become faulty, rendering the sensor unusable. 

4.4 Cough Detection System 
The Edge Impulse can provide users with cough detection results. A red LED is added to the Arduino Nano 33 BLE 
Sense to indicate whether the board caught a cough or a noisy sound. As shown in Table 2, 90.4% of the training 
dataset marked cough was properly labelled as cough by the algorithm, whereas the rest, which is also cough data, 
was wrongly classified. This suggests that cough was incorrectly identified as noise in 9.6% of the training dataset. 
The same can be said for the noise training datasets, which accurately identified 97.9% of the noise data. As a 
result, the model misidentified 2.1% of the noise data, which the model mistook for a cough.  

After the model has been trained, it is time to put it to the test. The test dataset's data was left unlabeled, as it 
should be. This is done to see if the model can correctly predict the unlabeled data in the test dataset. This test 
dataset serves as the penultimate step before deploying the model. The results are shown in Table 3. In the test 
dataset, the model accurately recognized cough sounds at 80.5%. It did, however, categorize the dataset 
inaccurately in 9.4% of the cases. The data under the uncertain category simply implies that the model failed to 
recognize the data was either cough or noise, which accounted for a solid 10% of the dataset. This signifies that 
the model was unable to determine the type of 10% of the dataset. The model, on the other hand, accurately 
recognized 97.2% of the noise in the test dataset. This shows that the model can simply recognize a noise sound. 
The data that the algorithm mistook for a cough but turned out to be a noise sound accounts for around 0.7% of 
the test dataset. Uncertainty was assigned to 2.1% of the test dataset. 

Table 2 Confusion matrix for the training dataset 
 COUGH NOISE 

COUGH 90.4% 9.6% 
NOISE 2.1% 97.9% 

  

Table 3 Confusion matrix for the test dataset 
 COUGH NOISE UNCERTAIN 

COUGH 80.5% 9.4% 10.2% 
NOISE 0.7% 97.2% 2.1% 
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4.5 Social Distancing Monitoring System 
On the deployment of the social distancing monitoring system, a set of factors in terms of the distance of the person 
from the camera and the distance between individuals were examined. This is done to see where the algorithm's 
boundaries are in terms of accurately detecting distance. The camera's footage is then sent into the algorithm, 
which generates a video file with the detection output encoded in it. The algorithm's result will be a human 
enclosed in a colored box. If the individual kept a safe distance, they received a green box, and if they did not, they 
received a red box. The centroid computation is used to compute distance. 

Fig. 4 shows the output of the Social Distancing Monitoring System. If the individual was within 5 meters of 
the camera, the result is invalid. Because the distance between the centroids is large enough to be identified as the 
allowable distance, the algorithm cannot determine the right distance within a close range. As a result, even if the 
people are near each other, they will be bound by a green box. When the person's distance from the camera is 
between 6 and 9 meters, the algorithm's result becomes legitimate. The algorithm begins to assign red boxes to 
couples who are 0.5 meters apart and green boxes to couples who are 1 meter or more apart at 6 meters. The 
outcome became more consistent after 7 meters from the camera, since the algorithm only provided green boxes 
to those who were 1.5 meters apart and red boxes to those who were less than 1.5 meters apart. This output 
occurs only until the person and the camera are separated by 9 meters. After 10 meters, the system begins to only 
show green boxes to couples who are 2 meters apart. This was caused by the camera's perspective view and the 
fixed distance between the centroids that was established in the source code that controls whether green or red 
boxes are displayed. 

 

 
 

Fig. 4 The output of the social distancing monitoring system 
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Fig. 5 The output of the data retrieved from Blynk 

4.6 Retrieve Data from Blynk 
When Blynk sends an email, the workers can download the ZIP file containing the sensor's records from the email 
attachment. The CSV file contains all the data that was transmitted to the Blynk server. The worker can return the 
health report to the company as a daily health report for extensive analysis using the information in the file. The 
output of the data retrieved from Blynk is illustrated in Fig. 5. 

5. Conclusions 
A low-cost IHDS that can aid in the prevention of viral spread in the workplace was proposed. Workers or users 
may obtain their health information throughout the day by using the IHDS system. The valuable data collected can 
be used as a dataset for additional health studies in the future. The prototype is designed on a low-cost small 
computer, i.e., the Raspberry Pi 4B, which significantly reduced the cost of deploying the IHDS. IHDS delivers 
impressive accuracy, with 99.91% precision in body temperature monitoring, 94.32% accuracy in pulse rate 
measurement, 99% in blood oxygen saturation, and 80.5% in cough detection. Additionally, IHDS proactively 
alerts users when they breach social distancing guidelines, particularly when the distance between individuals is 
less than 1 meter. In a nutshell, the IHDS system is designed to be as low-cost as feasible while achieving all of the 
goals of the IoT health and social distancing monitoring system. The IoT platform is being used in the IHDS system 
to create a health data record. This approach aids the organization in minimizing the spread of COVID-19 in the 
workplace in an indirect manner. 
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