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The integration of dynamic simulation analysis has become widespread 
in general-purpose software, providing enhanced capabilities. 
However, accurately tracking deformations based on complete 
equilibrium solutions remains a significant challenge in problems 
characterized by strong geometric nonlinearity. This study examines 
the accuracy of the combined Newmark β method and Tangent stiffness 
method in dynamic analysis with ultra large displacements and 
evaluates the utility of Rayleigh proportional damping in numerical 
simulations compared to experimental models. An experimental model 
of a slender steel plate undergoing free vibrations after being released 
from a deformed state was created. Video footage capturing the 
deformation histories was compared to computational simulations to 
verify accuracy. The study also examines the appropriate values of the 
damping ratio (ζ ) and the Newmark β value in the simulations. The 
results indicate that adjusting various damping ratio and a β value of 
1/2 yield more realistic simulations with longer conservation of 
mechanical energy. The findings suggest that incorporating numerical 
damping into actual damping settings can achieve a more realistic 
simulation of dynamic behaviour with ultra-large displacements. 
Furthermore, experiments and analyses were performed to correct 
natural frequency by changing Young’s modulus, which is a key factor 
influencing natural frequencies, with observed correlations to plate 
thickness, setting the stage for further research under varied 
conditions to develop a more rational methodology for structural 
analysis. 

Keywords 

Ultra large displacement, tangent 
stiffness method, Rayleigh damping, 
FEM 

1. Introduction 
Recently, the integration of dynamic simulation analysis has become a standard feature in general-purpose 
software, providing enhanced capabilities. However, when addressing problems characterized by strong 
geometric nonlinearity, achieving accurate deformation tracking based on a complete equilibrium solution 
remains a formidable challenge due to ultra large displacements, material nonlinearity, numerical instabilities, 
high computational costs, and mesh distortion [1]. Geometrically nonlinear structural analysis heavily relies on 
the finite element method, which requires the use of various approximation concepts to discretize the nonlinear 
stiffness equation [2]-[4]. The accurate assessment of the effects of these approximations on the solution through 
physical considerations remains a complex task. Furthermore, these approximations of FEM introduce cumulative 
errors during incremental analysis, leading to significant discrepancies in the case of ultra large displacements. 
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Consequently, the elimination of these errors becomes impractical, presenting substantial difficulties in ensuring 
reliable behaviour tracking.   

Considering the above, the combination of the Newmark β method and the Tangent stiffness method [5] offers 
a favourable approach for achieving accurate solutions in dynamic analysis involving significant displacements. 
The Newmark β method [6], [7], known for its unconditional stability in linear analysis, it reliably solves dynamic 
behaviour equations, independent of the chosen time step, making it a preferred choice for various applications 
in structural engineering and other fields. Meanwhile, the Tangent stiffness method, is a highly advantageous 
choice for accurately evaluating rigid body displacements in static analysis, particularly when dealing with 
structures exhibiting large deformations and significant geometric changes. This method excels in capturing the 
complexities of nonlinear behaviour, which linear theories may not adequately address. By considering higher-
order terms in the strain-displacement relationship, the tangent stiffness method provides more realistic and 
precise results. By leveraging the complementary strengths of these methods, it becomes possible to enhance the 
reliability and effectiveness of dynamic analyses with ultra-large displacements. 

This study aims to assess the accuracy and utility of Rayleigh proportional damping and the aforementioned 
analysis program through a comparative analysis of experimental models and numerical simulations [8]. The 
findings will provide insights into rational damping ratio settings and enhance fundamental knowledge in this 
field. 

An experimental model which is to observe free vibration of a slender and thin steel plate after being released 
from a deformed state of circle shape was created. Using a high speed camera, the video footage capturing the 
deformation histories, taken after the removal of external forces, was compared to computational simulation to 
verify its accuracy. The computational simulation was executed by the geometrically nonlinear theory based on 
the simple displacement method, and solutions fill strictly equilibrium conditions. 

Estimation of the damping ratio is complex, influenced by factors such as material micro-level properties, 
friction, and air resistance in member joints. According to the general way to determine Rayleigh proportional 
damping coefficients, eigenmode displacement responses under undamped conditions were studied. Natural 
frequencies of dominant modes were used as initial values for the damping coefficient.  

In this study, a discussion for the appropriate value of β is also shown. In general, the mean acceleration 
method with β =1/4 is used as the most reliable time incremental method, and it is said that ‘β =1/4’ can realize 
the conservation of mechanical energy. First, this study examines the appropriate order of damping ratio under 
the condition of ‘β =1/4’ by comparison of computational simulation results and a measurement result of the 
actual behaviour of the model. However, it became evident that using ‘β =1/4’ makes numerical instability caused 
by the divergence of mechanical energy so frequently.  

Therefore, re-consideration about the time integration method was required, and adopting of ‘β =1/2’ was 
suggested for improvement. This causes numerical damping, but longer conservation of mechanical energy could 
be observed by our examination. It is a breakthrough point of this study to assume that numerical damping can 
be incorporated into actual damping settings to achieve a more realistic simulation. 

As a result, simulation of the model in a long time span could be realized, and it was confirmed that each shape 
of computational solution during the time range with ultra-large displacement is so reliable match to the 
corresponding photo captured by video. Furthermore, a series of experiments and numerical analyses were 
conducted on plates with varying thicknesses to correct natural frequency by changing Young’s modulus, which 
is a dominant factor in natural frequencies. This revealed a correlation between the correction coefficient and 
plate thickness, setting the stage for future research to accumulate data under diverse conditions and advance a 
more rational methodology for structural analysis. 

2. Tangent Stiffness Method 
In structural analysis using the finite element method, the geometric nonlinearity can be separated into two 
components. The first component is caused by the rigid-body displacement of each finite element, while the 
second component is caused by the deformation of the element itself. To conduct a geometric nonlinear analysis, 
both components must be evaluated accurately. 

The element deformation can be reduced by using denser finite element partitioning, but the rigid-body 
displacement cannot be reduced. Therefore, it is crucial to evaluate the first nonlinear component caused by rigid-
body displacement precisely, especially in ultra-large deformation regions where nodal displacement increases. 

The tangent stiffness method is used to ensure stable and static equilibrium conditions in each element, which 
only constrain rigid-body displacements. Eq. (1) is the element force equation and shows the stiffness relationship 
between the element force vector S and the element deformation vector s in the element coordinates with stable 
support conditions. 
 

=S ks  (1) 
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The equilibrium equation gives the relationship between the element force S vector and nodal displacement 
vector D as shown in Eq. (2). 

 
=D JS  (2) 

 
The tangent stiffness equation is formulated using the first-order derivative of the equilibrium equation 

between the nodal vector in the global coordinate system and the element end force vector in the element 
coordinate system, provided that the element force equation is complete. 

 

0( )Gδ δ δ= + =D K K d K d  (3) 

 
where, KG is the geometric stiffness matrix, caused by the first nonlinear component due to rigid-body 
displacement, and K0 is the element stiffness matrix caused by the second nonlinear component due to the 
element's deformation described in the element local coordinate 

3. Rayleigh damping ratio 
In this study, we use Rayleigh proportional damping to compare simulations and actual phenomena in programs 
for dynamic analysis. The motion equation can be expressed as: 
 

0u u u+ + =M C K   (4) 
 
Assuming that the damping matrix is proportional to the mass matrix and the stiffness matrix, with 
proportionality coefficients μ and ν, respectively, we obtain the following damping matrix: 

 
µ ν= +C M K  (5) 

 
The damping ratio ζ formula is given by:  
 

0

c
c

ζ =  (6) 

 
where c is the actual damping coefficient and c0 is the critical damping coefficient. And if the same damping ratio 
ζ0 is used for all modes, we obtain: 
 

1 2
0

1 2

2ω ωµ ζ
ω ω

=  (7) 

 

0
1 2

2ν ζ
ω ω

=
+

 (8) 

 
Here the natural frequencies 𝜔𝜔1 and 𝜔𝜔2 are chosen based on initial values of main modes' frequencies of the main 
modes where mode displacement predominates in free vibration analysis without damping. 

4. Model 
In this study, a cantilever model with ultra-large deformation is used. The model consists of a moment applied on 
the free edge, which deforms the cantilever into a circular shape to achieve an initial equilibrium state, as 
illustrated in Fig. 1. The circular shape is obtained through iterative solving and updating with the tangent stiffness 
equation in a static analysis until the unbalanced force reaches convergence. In this study, the actual behaviour of 
the model whose conditions are shown in Fig. 1 is observed and examined by comparison with results of 
computational simulation. 
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Fig. 1 A model for numerical example 

The undamped free vibration dynamic analysis is conducted after removing the external force, and the study 
focuses on the optimization of damping ratio to recreate the actual behaviour. Here, Newmark beta process is 
adopted. The iteration for geometrical nonlinear analysis to find the displacement to the time step of i+1 from i 
can be expressed as in Eq. (9) to Eq. (12). If the constant external force can be expressed as: 
 

1 4 1 1( ) 1 1 1
2 4 4i it t

tβ β β β
        

= + − + + − ∆ + −        ∆        
i iF P M u u C u u     (9) 

 
Here, P(t) is external force depending on time, and M and C are mass matrix and damping matrix respectively. In 
this paper, we didn’t apply damping so C=0. Further, the unbalanced force of jth iteration can be: 
 

1, 1, 1,2 ( ) ( )
2j i j i j i jt tβ β + + +

 
∆ = − + ∆ − ∆ ∆ ∆ ∆ 

M CU F u J u S u  (10) 

 
Therefore, we can use the tangent stiffness equation for each iteration step will be: 
 

1
1, 1 1,i j i j j

−
+ + +∆ = ∆u K U ,       0G= +K K K  (11) 

(12) 

5. Numerical Experiment and Adjusting to Actual Behaviour 

5.1 Examination for Appropriate Damping Ratio in Case of β =1/4 
In this section, we will discuss how to set the damping constants using the mean acceleration method with                     
β = 1/4, which is a reliable method for small displacement analysis. By this method, we can expect exact solutions 
with energy conservation under the condition of no-damping for ultra large displacement analyses. Prior to 
discussing about damping coefficients, free vibration analysis without damping was executed, and the maximum 
amplitude of displacement is picked up for each mode (Fig. 2). According to this result, the 33rd mode can be 
selected as having the most unstable waveform and the highest amplitude. However, as the other mode which 
should be adopted as one in Eq. (7) and Eq. (8), any other mode except for the 32nd mode among the 17th to 32nd 
of the secondary higher amplitude group didn’t show significant damping. Therefore, the 32nd and 33rd are 
adopted in this study. 

Fig. 3 shows a comparison of the time history of horizontal edge displacement depending on the difference of 
the value of the damping ratio in Table 1.  

As a result of this numerical experiment, the findings indicated that the mass proportionality coefficient was 
significantly more dominant than the stiffness proportionality coefficient. Also, we could find that the order of 
1.0×10-5 is a match to the experimental data respectively and did not show divergence of mechanical energy. 
Therefore, we can judge the order to be adequate for the damping ratio of this model. On the other hand, using 
Newmark β =1/4, that divergence cannot be avoided even in the case of no-damping, and we are forced to adopt 
quite a small time-increment of 1.0×10-4 s. Fig. 4 shows the chaotic shape of the solution when the energy 
divergence occurred in case that ζ = 1.0×10-2 was adopted. Consequently, it is unstable to use Newmark β = 1/4 
for ultra-large deformational analysis just like in this case, and we have to modify the time incremental method. 

Basic conditions: 
L = 1.0 (m) 
Cross-section A = 1.75 × 10−5m2 
Moment of Inertia I = 7.15× 10−13m4 
Young's modulus E =  193 GPa 
Density ρ = 7930 Kg

m3 
Material: Stainless steel  
(ISO: 4319-301-00-I) 

After loading Initial state 
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Fig. 2 Maximum amplitude of displacement for each mode 

 
Fig. 3 Time history of horizontal edge displacement 

 
Fig. 4 Shape of solution in divergence case              

  Table 1 Examined damping ratio and coefficients 

Damping ratio, ζ µ ν Time to energy divergence, s 

1.0 × 10−2 1.38 × 102 7.17 × 10−7 0.09 
1.0 × 10−3 1.38 × 101 7.17 × 10−8 1.2 
1.0 × 10−4 1.38 × 100 7.17 × 10−9 4.9 
1.0 × 10−5 1.38 × 10−1 7.17 × 10−10 After 30 
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5.2 Re-consideration of Newmark β  value 
In this section, the relation between the Newmark β value and energy conservation in the case of free vibration 
analysis without damping is investigated, and it is discussed about suitable β value [9]. The study tested 25 
different β values, ranging from 0.2 to 0.5 at intervals of 0.0125, and the duration of energy conservation is 
examined for each β  value. The termination point of duration is defined when the energy exceeds five time of the 
initial energy. The results indicated that a higher β  value tends to realize a longer duration, as illustrated in Fig. 5. 

 
Fig. 5 Relation between conservation duration and β 

Fig. 6 shows as energy time history with β =1/2 under non-damping conditions. Here, the numerical damping 
of gradual energy decreasing can be observed. Despite this, using β =1/2 can still suppress energy divergence and 
amplification. Hence, it is suggested that numerical damping can be incorporated into actual damping settings to 
achieve a more realistic simulation. 
 

 
Fig. 6 Numerical damping of energy when β=1/2 

Fig. 7 shows a comparison of horizontal displacement response between the simulations with ζ = 1.0×10-5,       
ζ = 3.0×10-5 for each by  β =1/2 ∆t = 1.0×10-2, and actual behaviour by experiment. In the case of ζ = 1.0×10-5, the 
analysis is executed quite stable even under the condition of so large time increment of 1.0 × 10−2(s) which is 100 
times of upper limit when β =1/4 is adopted. However, when ζ = 3.0×10-5 is substituted to be adjusted to real 
phenomenon, divergence of mechanical energy has occurred around t =6s. Fig. 8 is the shape of solution just before 
appearance of divergence, and we can observe that higher mode becomes dominant even in the process toward 
damping convergence. Therefore, how to suppress the higher mode in damping process may become problem to 
be solved. 
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Fig. 7 Time history of horizontal displacement  
with β =1/2, Δt = 1.0×10-2s 

Fig. 8 Shape of solution just before divergence 
(ζ = 3.0×10-5) 

 
Fig. 9 compares the shape of the numerical solution of the simulation with the behaviour of the experimental 

model and shows that the displacements of all nodes are generally well reproduced in the phase immediately after 
the start of vibration, which involves very large displacements. 
 

      
(a) 0.07s (b) 0.10s (c) 0.12s 

      
(d) 0.28s (e) 0.47s (f)0.64s 

      
(g) 0.78s (h) 1.00s (i) 1.14s 

Fig. 9 Actual behaviour (left side) and simulation (right side) 

5.3 Adjustment of Damping Ratio and Phase Shift to The Result of The Actual Behaviour 
of The Model 

By consideration in the previous section, the possibility that a rougher time increment can be adopted by ‘β =1/2’ 
was suggested. Here, we shall discuss how to adjust it to actual behaviour in this section. For the time increment, 
Δt = 1.0×10-3 is used, it is more reasonable than in the case of ‘β =1/4’ and more stable than in the case of ‘β =1/2’ 
and Δt = 1.0×10-2. Moreover, by the result until the previous section, adoption of ζ = 3.0×10-5 can be expected more 
strict adjustment between real and simulation.  

In Fig. 10, the time history of horizontal displacement is depicted, comparing it with the actual structural 
behaviour. The data from the experiment is represented by the black curve, while the data from the initial 
simulation is shown by the orange curve. Importantly, a phase difference is observed between these two sets of 
data, necessitating a correction of the natural frequency. To affect this correction, a modification of the Young's 
modulus in the simulation was made. The Young's modulus was adjusted from the actual value of E = 193 GPa to 
E = 330 GPa, as indicated by the blue curve in the figure, this adjustment enabled a more precise alignment of the 
simulation with the experimental results, minimizing the phase shift in the data.  
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Fig. 10 Time history of horizontal displacement (plate thickness 0.7 mm) β =1/2, Δt = 1.0×10-3s, ζ =3.0×10-5 

Up until here, the simulations and experiments were conducted with a plate thickness of 0.7 mm.  Fig. 11 
compares the time-history response of horizontal displacement when the plate thickness is changed to 0.8 mm. It 
compares the measured values with the calculated results based on the actual Young's modulus of 193 GPa and 
the calculated results with a Young's modulus corrected to 310 GPa.   
 

 
Fig. 11 Time history of horizontal displacement (plate thickness 0.8mm), β = 1/2, Δt= 1.0×10-3s, ζ = 4.25×10-5 

The primary natural frequency of the cantilever beam's bending vibration is expressed as: 
 

2

1
1.8751

i
EI

L A
ω

ρ=
 =  
 

 (13) 

 
Therefore, in this case, a correction factor of �(310/193)  =  1.27  is applied to the natural frequency. It's 
important to note that a damping ratio ζ = 4.25×10-5 is used in this analysis. 

To investigate a reasonable correction coefficient method for this phase difference, experiments were 
conducted with six different samples by varying the plate thickness of the model to 0.5 mm, 0.6 mm, 0.7 mm,         
0.8 mm, 0.9 mm, and 1.0 mm. Similar to the previous case, the behaviour in experiments and numerical 
calculations was compared, and the Young's modulus influencing the natural frequency was corrected. Based on 
this, the study examined correction coefficients that exhibit good reproducibility over several cycles, as seen in 
Fig. 11. 
 

Experiment 330GPa 

193GPa 310GPa Experiment 
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Fig. 12 Correction factor for each element 

6. Conclusion 
This study aimed to evaluate the effectiveness and reproducibility of a dynamic large deformation analysis 
program using the tangent stiffness method to simulate the deformation history of an experimental model. For 
the evaluation of the damping phenomenon, it was crucial to set an appropriate damping ratio to achieve 
consistency in the simulation, rather than relying on the natural frequency of the mode.  

The Newmark β method with a value of β set to 1/2 was found to suppress energy divergence and replicate 
real behaviour. Integrating numerical damping into actual damping could lead to reasonable simulations.  

At the same time, some new challenges have become evident when ‘β =1/2’ is adopted. One challenge of 
damped ‘β =1/2’ analysis is that computational instability has been detected when the process closes to stationary 
under the condition of rough time increment in which undamped free vibration produces a stable response. It can 
be considered that the higher modes of displacement become dominant even in small displacement situations.  

The second challenge originated from the fact that the simulation predicted lower natural frequencies 
compared to the actual values, and it revealed phase discrepancies between experimental data and simulation 
results. In this study, numerous experiments and numerical analyses were conducted on models with different 
plate thicknesses, with an attempt made to correct the natural frequency by changing Young's modulus, which 
dominantly influences the natural frequencies. It was observed that the correction coefficient correlated with 
plate thickness. In the future, further research will involve the accumulation of data under various conditions, 
including the use of different material lengths and different initial states of damping-free vibration, contributing 
to the development of a more rational methodology. 

Overall, this study provides fundamental knowledge for the evaluation of a dynamic large deformation 
analysis program and addressing damping phenomenon, offering valuable insights for enhancing accuracy in 
simulating complex nonlinear behaviour. 
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