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Fiber break because of third-party intrusion has become one of the 
challenges in maintaining the fiber-based communication link, 
especially those buried underground. Hence, we investigate the 
feasibility of using Distributed Acoustic Sensing (DAS) system to sense 
possible surrounding activities that might cause fiber break. This paper 
reviews the current digital signal processing (DSP) algorithm used in 
the DAS system designed to detect ground disturbance, highlighting the 
specific design parameters for each technique. These parameters 
include identification rate, classification accuracy, detection accuracy, 
training time, and signal-to-noise ratio (SNR). The algorithms used are 
near-field beamforming, phased-array beamforming, image edge 
detection, gaussian mixture model (GMM), gaussian mixture model - 
hidden Markov model (GMM-HMM), faster region-based convolutional 
neural networks (R-CNN), transfer learning, dual-stage recognition 
network, group convolutional neural network (100G-CNN), and 
support vector machine (SVM). By reviewing the existing techniques 
used in the DAS system for ground disturbance detection, we can 
determine the best DSP algorithm that should be implemented for fiber 
break prevention, enabling us to design a DAS system specifically for it 
in the near future. 
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1. Introduction 
The digital transformation that is happening globally has utilized the use of optical fiber in telecommunication 
lines replacing Copper cable, which had much lower bandwidth [1]. However, optical fiber cable installation is 
significantly more expensive than copper cable [2], making its maintenance crucial. Fiber break due to third-party 
disturbance has become a challenge in maintaining the fiber-based communication link [3]. Hence, we explore the 
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feasibility of using Distributed Acoustic Sensing (DAS) to sense the surrounding activities that might cause a break, 
such as digging, drilling, and shoveling. 

Distributed Acoustic Sensing (DAS) technology uses fiber optic cables as distributed sensors to monitor and 
analyze acoustic signals. The concept of using fiber optics for sensing can be traced back to the late 1970s, one of 
which was studies on the application of optical time domain reflectometer (OTDR) techniques and it was 
employed to identify the loss of optical fiber links [4]. Back then, research in the field of DAS was more focused on 
utilizing Rayleigh scattering within the fiber to detect acoustic waves. Further advancements in DAS technology 
came with the introduction of coherent detection techniques [5]. These techniques enhanced the sensitivity, 
resolution, and spatial coverage of DAS systems. Over the years, the capabilities and performance of the DAS 
system have gone through many improvements through the usage of new fiber optic technology and signal 
processing techniques. For instance, researchers explored the use of phase-sensitive detection for signal 
processing and achieving higher sensitivity [6]. 

DAS systems can be optimized and designed to detect acoustic waves that propagate through multiple 
medium, typically ground [7], air [8], [9], and underwater [10]. In each medium, DAS utilizes the same working 
principle where it enables real-time strain and vibration measurements along the entire length of a fiber optic 
cable. However, each medium might need different DAS techniques based on the application it is used for. For 
example, DAS systems that sense acoustic waves through air medium usually need some extra configuration 
rather than using only the fiber cable as the sensor. One example is the research done by Tang et al., where they 
developed handmade microphones for their DAS systems to sense airborne sound [8].  

As a result of the continuous development of fiber optic technology, DAS has found applications in numerous 
sectors, including oil and gas exploration [11]–[13], perimeter security [7], [14]–[17], earthquake monitoring [12], 
[18], [19], and railway monitoring [20]–[23]. DAS is a well-known method for subsurface imaging and monitoring 
in wells, especially for Vertical Seismic Profiling (VSP) surveys [24]. This method allows for an extensive 
investigation of reservoirs' subsurface structures and properties. In perimeter security, a DAS is used to 
continuously monitor and detect acoustic disturbances or vibrations along a fiber optic cable, signaling 
unauthorized access, infiltration attempts, or perimeter breaches. Due to the ability to detect and analyze 
earthquake seismic waves, disclosing their position, magnitude, and properties, there has been an increasing 
number of DAS implementations in seismology and earthquake monitoring applications [19], [25]. The 
implementation of DAS in railway monitoring applications has improved railway safety, maintenance, and 
productivity by providing continuous track monitoring, train identification and localization, wheel and bearing 
monitoring, and tunnel monitoring [23].  

Research in DAS continues to advance, focusing on improving the systems' performance in terms of accuracy 
and reliability [26]. New fiber designs [10], [13], [27], [28], sensing mechanisms [9], [29]–[33], deep learning (DL) 
[17], [34]–[36], machine learning (ML) [37]–[41], support vector machine (SVM) [42], [43], and data processing 
algorithms [7], [15] are being explored to enhance the capabilities of DAS.  

In this paper, a review of the existing DSP algorithm that was employed in DAS systems designed for ground 
disturbance detection was conducted to determine the possible algorithm to improve the detection performance 
of the DAS system and determine the best design of a DAS system with the most significant potential for preventing 
fiber break. 

 
Fig. 1 DAS basic working principle 

2. Basic Working Principle of DAS 
Distributed Acoustic Sensing (DAS) is a relatively new fiber optic technology that has undergone rapid 
development in recent years. DAS detects acoustic waves by measuring variations in Rayleigh backscattering of a 
laser pulse resulting from the axial strain of a fiber that experiences elastic vibrations [44]. By exploiting the 
scattering properties of light in optical fibers, DAS enables the transformation of the entire fiber length into an 
endless array of acoustic sensors. The fundamental principle behind DAS is Rayleigh scattering which occurs when 
a light signal interacts with external perturbation caused by acoustic energy in the fiber material [45]. These 
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interactions cause the light to scatter in all directions, including back along the fiber. Fig. 1 shows the basic 
working principle of DAS. 

To implement DAS, optical time-domain reflectometry (OTDR) is commonly employed. OTDR works based on 
the principle of time-domain reflectometry, where a short pulse of light is launched into the fiber, and the 
backscattered light is measured as a function of time. By analyzing the backscattered light intensity changes, DAS 
systems can identify the location and intensity of acoustic disturbances along the fiber [46]. Fig. 2 shows a sample 
of the OTDR setup. However, traditional OTDR cannot respond to external interference [26], as it heavily relies 
only on backscattered light intensity measurement to analyze the external perturbation that happened along the 
optical fiber. Both external perturbation and interference affected the intensity of the backscattered light, making 
it almost impossible to differentiate between the two and accurately identify the cause of the measured variation. 
The phase-sensitive optical time-domain reflectometry (Φ-OTDR) technique was used instead to overcome this 
problem. Unlike the traditional OTDR, which usually uses a broad linewidth laser, Φ-OTDR utilizes a narrow 
linewidth laser, significantly improving SNR and spatial resolution performance. The analysis of backscattered 
light in Φ-OTDR encompasses not only intensity but also phase, enabling the extraction of more precise details 
associated with the external perturbation [47]. Through the analysis of both intensity and phase, the Φ-OTDR can 
distinguish between external perturbation and noise or interference. Fig. 3 depicts the Φ-OTDR based DAS 
system. To analyze the backscattered light, digital signal processing (DSP) techniques will be utilized to process 
the acquired signal. DSPs extract essential information from the obtained signal and improve the accuracy and 
interpretability of the received results [48]. Some critical components of DSP in DAS are localization, event 
detection, and classification. Through DSP techniques such as beamforming, the location of the acoustic sources 
can be determined [49]. In addition, the DSP algorithm enables event detection and classification by detecting and 
classifying specific events or patterns in the acquired data, which can be achieved through deep learning [17].  

 
Fig. 2 OTDR setup 

 
Fig. 3 Φ-OTDR based DAS system 

3. DSP Algorithm Used in DAS System for Ground Disturbance Detection 
Ground disturbance detection is usually used in perimeter security applications whereby some of the focus of the 
application is to detect intrusion that happened on the ground's surface. Examples of this intrusion are human 
activities such as walking or digging, heavy machinery such as excavating, and vehicles such as passing cars. The 
main things usually discussed in this application are the performance of localization, detection, and classification 
accuracy of the event, where state-of-the-art DSP algorithms have been used to improve it.  

One of the pioneers of using DAS in perimeter security applications was OptaSense, which proposed using 
DAS for border monitoring by using the existing or new fiber optic communication cable [14]. In 2012, OptaSense 
employed its own DAS System unit with the most recent signal processing method at the time, which was phased-
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array beamforming. For detecting human foot traffic, vehicles, mechanical and manual excavating, and general 
human activity, OptaSense has demonstrated a high Probability-of-Detection and low false and nuisance alarm 
rates. It provides a cost-effective solution with better performance than the traditional monitoring system. Oak 
Ridge National Laboratory (ORNL) has independently evaluated OptaSense DAS for border smuggling and illicit 
trafficking prevention. Their findings conclude that the OptaSense DAS system achieved the 90% Probability of 
Sense, Ps for all activities and soil conditions tested. 

In 2013, OptaSense later discussed more about their system by discussing their methods for detecting 
different intrusions [7]. To detect walking activity on compact sandy soil, they employ near-field beamforming to 
estimate the location of the footsteps on the ground surface. The location of footsteps can be determined by 
implementing near-field beamforming to approximate the distance and lateral offset of these sources of SH waves 
along the cable. This beamformer focuses on estimating the seismic propagation velocity of the dominant SH 
(horizontally polarised shear wave) mode generated by footsteps traction. In addition, they also tested their DAS 
system in a snowy environment where snow depth of 0.2 to 0.3 meter covered the ground that was frozen. Despite 
those conditions, the DAS system could still detect footsteps with an SNR of 30 dB. 

Dejdar et al. proposed a post-processing algorithm for edge detection using the Sobel and Prewitt operators 
instead of the conventional differential method commonly used in DAS systems [15]. The DAS system was entirely 
regulated by the FPGA. It was tested on a prepared test path that included a specific location for optical security 
cables, such as buried in the ground or mounted on a secure fence. Sobel and Prewitt edge detection methods with 
three different kernel sizes and a simple conventional differential method were used to detect any intrusion, 
whereby the conventional method was used as a reference to analyze the performance improvement. The noise 
level of the derived Rayleigh traces was reduced using the moving average method. The detection effectiveness 
was determined using SNR, with the Sobel operator of size 5 x 5 producing the most excellent results with average 
SNR of higher than 21dB at a distance of 5 meters from the sensing fiber. 

Table 1 DSP algorithm used for DAS in the perimeter security application 
Published 

Year 
Researcher Method Used Performance 

2012 Owen, et al. Phased-array beamforming Probability of sense, Ps = 90% 
2013 Duckworth, et al. Near-field beamforming Footstep localization in snowy 

terrain SNR = 30dB 
2022 Dejdar, et al. Image edge detection Average SNR of > 21dB 

3.1 Employing Deep Learning 
In recent years, more research on the use of deep learning (DL) in DAS systems has emerged, including the use of 
Faster Region-based Convolutional Neural Networks (R-CNN) in high-speed railway perimeter monitoring. Xiao 
et al. introduced the use of Faster R-CNN to enable DAS systems to recognize a variety of irregular intrusion 
occurrences [35]. In their system, a DAS system that utilized Φ-OTDR technique was designed to collect acoustic 
signals. The data of the signal were then subsequently standardized in both temporal and spatial domains and 
transformed into Spatio-temporal pictures. The Spatio-temporal features were then extracted using the Faster R-
CNN to classify and detect five irregular intrusion events: excavating, thorn cage pulling, climbing, wall chiseling, 
and train background noise interference. An experiment was initiated, and the results of the tests show that their 
system's average detection accuracy for all strange intrusion events is above 89%. Furthermore, improvement in 
term of the detection accuracy was achieved when compared to conventional methods which are ConvLSTM and 
anti-noise ConvLSTM. The system can also tell the difference between background noise that doesn't pose a 
danger and noise that does, which helps a lot to lower the number of false positives. 

Yang et al. presented pipeline safety early warning (PSEW) systems based on DAS. The purpose of this system 
is to identify and pinpoint third-party events that have the potential to cause damage to long-distance energy 
transportation pipelines. These system play a crucial role in ensuring both pipeline safety and the continuous 
delivery of energy [36]. Nevertheless, the huge cost associated with collecting extensive real-site data sets for 
model building, coupled with the low proportion of labelled data, typically amounting to less than 0.5%, hinders 
the practical implementation of PSEW systems in natural environments. In their paper, they suggest a unique 
semi-supervised learning model for monitoring pipeline safety in real time. The semi-supervised learning model 
with the utilization of sparse stacked autoencoder (SSAE) is suggested for damage event recognition and 
spatiotemporal localization. The utilization of the SSAE is specifically employed to extract features that are more 
robust, particularly when trained on unlabelled data. 

On the other hand, the fully linked network that has been trained using a limited amount of labelled data is 
employed for the purposes of localization and identification. An experiment using real-world long-distance energy 
pipelines of the PipeChina demonstrated an improvement in terms of identification and location performance with 
a significant amount of unlabelled data and a small amount of labeled data under low SNR conditions, potentially 
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lowering data collection and system deployment costs. The unlabelled data encoding has strong spatiotemporal 
transferability, which can increase the portability of the PSEW system. Furthermore, the decoded feature has good 
visualization, and the model is relatively small in size and latency. Based on the various unlabelled datasets and 
the collection frequency (100Hz and 500Hz), it can be observed that all classification performance evaluation 
values are above 90%. 

In the same years, Shi et al. developed a method for event recognition with high precision based on transfer 
learning which was built for DAS systems based on Φ-OTDR [34]. The motivation behind this method is because, 
although deep-learning-based event identification systems achieve high levels of classification accuracy, they 
require substantial computational resources and extended training. The results of conducting experiments on a 
data set consisting of 4254 samples on a portable computer demonstrate the efficiency of employing a transfer-
learning-based approach for event recognition in Φ-OTDR. This method exhibits enhanced classification accuracy 
and decreased training time. Moreover, through the process of freezing the head of a specific portion which is one-
fifth of the pre-trained AlexNet, the neural network is able to achieve a higher level of accuracy, specifically an 
increase of 1.9% resulting in an overall accuracy of 96.16%. Additionally, this freezing technique also leads to a 
reduction in training time, with a decrease of 27.2% equating to a total training time of 275 seconds. According to 
supplementary testing, the network demonstrates a classification accuracy of 95.67% even when the training 
database's capacity is decreased to 1146.  

Table 2 Deep learning employed in DAS system 
Published 

Year Researcher Method Used Performance 

2021 Xiao, et al. Faster Region-based Convolutional Neural 
Networks (R-CNN) Detection accuracy of >89% 

2021 Yang, et al. Semi-supervised learning model based on sparse 
stacked autoencoder (SSAE) Classification accuracy of > 90% 

2021 Shi, et al. Transfer Learning 
Classification accuracy of 96.16% and 

reduced training time by 27.2% 
(275s) 

2022 He, et al. Dual-stage-recognition network Classification accuracy of 97.6% 

2022 Yan, et al. Group Convolutional Neural Networks (100G-CNN) Classification accuracy of 99.6% 

 
Furthermore, He et al. proposed the use of a dual-stage-recognition network to reduce the number of false 

alarms, thereby increasing the accuracy of the DAS system in detecting actual intrusion in an environment with 
undetermined disturbances, such as animal activities [16]. This is possible because this method enables much 
more precise and effective recognition of intrusion patterns. The dual-stage recognition network is made up of 
two stages: the pre-recognition stage, which is responsible for shallow classification, and the sub-recognition 
stage, which is responsible for differentiating between events that are quite similar.  

The decision tree classifier can classify three target events of non-intrusion, human-animal interactions, and 
mechanical movements in the pre-recognition stage based on temporal energy and frequency spectrum 
information. Following that, at the sub-recognition step, the target events of human and animal actions can be 
distinguished further by combining time-frequency analysis with the BP neural network. Furthermore, the 
characteristics information of the time-frequency energy distribution is efficiently compressed by the proportion 
statistics of four energy levels in order to improve the computing efficiency of the BP network model. This method 
was evaluated for a month and produced an average recognition accuracy rate of 97.6% for five normal 
occurrences with a rapid average response time of 0.253 s. This indicates that it is very promising in recognizing 
intrusion events in a practical context. 

Unlike (He et al., 2022), Yan et al. focused on recognizing mixed intrusion events, which occurred when 
multiple intrusions occurred simultaneously and in close proximity [17]. Current identification schemes will 
prove challenging to recognize the numerous events; hence the use of group convolutional neural networks was 
proposed to solve this problem. A method based on a convolutional neural network with 100 groups (100G-CNN) 
was proposed, and this model was designed to get the most useful information from sample vibration information 
for feature extraction and classification. It can learn to extract features in the time dimension by analyzing how 
the vibration changes at different places. It makes getting valuable features from the raw data possible and 
reduces the time needed for training and recognition. An experiment was conducted to evaluate the performance 
of this method, and it was determined that the proposed 100G-CNN model is significantly more stable than a 
conventional CNN model. In addition, the proposed algorithm’s average classification accuracy during training can 
reach 99.6%. Consequently, the proposed scheme has tremendous potential in the field of fiber perimeter security. 
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3.2 Employing Machine Learning 
In DAS, machine learning (ML) facilitates more efficient and accurate acoustic signal analysis, improves data 
interpretation, and contributes to better decision-making in various applications, including perimeter security. 
Tejedor et al. implemented ML into their DAS system, which is developed to detect external threats in the vicinity 
of the gas pipeline. Various methods were implemented, resulting in mixed classification performance in 
determining threats happening along the gas pipeline under surveillance. Furthermore, the incorporation of 
pattern recognition strategies (PRS) has been implemented to enhance the classification of detected vibrations 
into a group of relevant activities. This integration has proven to be effective in significantly reducing the 
occurrence of false alarms, thereby improving the cost-effectiveness of the system. A Gaussian Mixture Model 
(GMM), a generative model-based method, was used in [37]–[41] for pattern classification. During the training 
phase, each class was initially represented by a Gaussian Mixture Model (GMM) consisting of a single component. 
During the testing step, the feature vector is assigned to the class that has the highest probability, which is 
determined based on the collection of Gaussian Mixture Models (GMMs). 

The DAS+PRS surveillance system [37]–[41] encompasses two operational modes: machine and activity 
identification, which involves identifying both the machine and the performed activity, and threat detection, which 
aims to detect any suspicious threats to the integrity of the gas pipeline. In 2016, Tejedor et al. introduced the first 
pipeline integrity threat detection system that utilizes distributed acoustic sensing (DAS) for data collection [37]. 
As previously mentioned, the utilization of GMM for pattern classification is motivated by its low consumption of 
resources and excellent performance in pattern matching tasks. This study presents a comprehensive assessment 
and comparison of several position selection and normalization techniques. The evaluation was conducted 
utilizing a rigorous experimental methodology and real-world field data. The result on threat detection is 
considerably good, with the ability to correctly recognize 80% of the threat activities and average classification 
accuracy of 64.3%. Due to the rigorous experimental procedure and complexity of the task, the machine + activity 
identification achieved only 45.2% average classification accuracy. 

The following year, Tejedor et al. (2017) improved their previous system by implementing contextual 
information at the feature level and applying a system combination strategy for pattern classification [38]. Tejedor 
et al. incorporated a post-processing technique for combining the results of the pattern classification system with 
the feature vectors that span various temporal contexts which consists of short, medium, and long. This 
combination was performed at the probability level, and it involves calculating a new probability for each original 
feature vector in order to recognize this as the class with the most significant probabilities. The probability of each 
combination was carried out by using three methods. First, the sum method was employed to add up the 
probabilities derived from the contextual feature vectors and the result was normalized by the number of 
temporal contexts. Next, the product method was employed to multiply the probabilities derived from the 
contextual feature vectors, followed by normalizing the result by the number of temporal contexts. Lastly, the 
maximum method assigns the class with the highest probability, based on the contextual feature vectors, to the 
original feature vector. The results reveal that the system combination using contextual feature information 
improves the results for each individual class in both operational modes and the overall classification accuracy, as 
compared to a previous system [37] based on the same rigorous experimental design. The average classification 
accuracy achieved 54.9% for machine + activity identification and 68.3% for average classification accuracy for 
threat detection.  

In 2018, the DAS+PRS surveillance system was further improved by introducing the Gaussian Mixture Model-
Hidden Markov Model (GMM-HMM) [39]. Instead of only using GMM for pattern classification, Tejedor et al. 
incorporate GMM-HMM into the system, which consists of two different processes: training and recognition. In 
the training process, it uses data from numerous field test recordings and only needs to be conducted once. In the 
machine + activity identification mode operation, a GMM-HMM with a single Gaussian component for each activity 
was built. In contrast, two different GMM-HMMs representing threat and non-threat classes, with single Gaussian 
components, were constructed in the detection mode operation. The GMM-HMM training involves estimating the 
Gaussian component's mean and entire covariance matrix and the transition matrix probabilities for each HMM 
state [50]. In the recognition process, the Viterbi algorithm [50] was used to classify each acoustic test frame as 
the class with the highest probability (machine+activity or threat/non-threat). The Viterbi algorithm identifies 
the most effective path between acoustic test frames and previously trained GMM-HMMs. For each acoustic test 
frame, three recognition processes were executed to compute three individual frame-level decisions. In the 
machine + activity identification mode, the average classification accuracy is 45.7%, which slightly improves over 
the GMM approach's accuracy of 45.2%. However, in term of threat detection, the average classification accuracy 
is much lower which is only 56.4% compared to the GMM approach which is 64.5%. 

To improve the result of [39], the same method used in [38] was applied to their current DAS+PRS system 
[40]. Tejedor et al. (2019) proposed the implementation of contextual information at the feature level in a GMM-
HMM-based pattern classification and employed a system combination strategy for acoustic trace determination 
[40]. The system combination is based on the majority vote of the decisions made by the individual contextual 
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information sources and the number of states utilized for HMM modeling. Based on the same rigorous 
experimental setup, the system combination from the contextual feature information and the GMM-HMM methods 
experiment result was improved for both machine + activity and threat detection modes compared to the previous 
[39] systems. While the average classification accuracy for threat detection improved by 10.4%, reaching 67%, 
the average classification accuracy for machine + activity increased by 13.4%, reaching 59.1%.  

The result presented by [37] was further enhanced in the year 2021 when Tejedor et al. (2021) suggested a 
multi-position technique in GMM-based pattern classification systems [41]. This approach functions in a real-field 
scenario by undergoing the same rigorous experimental procedure. Using multiple positions for model training 
improves system performance for activities with consistent behavior and high energy. Still, it decreases system 
performance for activities with multiple behavior and low energy, as determined by a rigorous experimental 
procedure. Concerning threat detection, they have demonstrated that the multi-position approach can improve 
overall accuracy. The average classification accuracy for the machine + activity mode was 48%, a 2.8% increase. 
In comparison, the threat detection mode's average classification accuracy is 69% which is a 4.5% increase 
compared to the GMM-based system approach.  

Table 3 Machine learning employed in DAS system 
Published 

Year Researcher Method Used Performance (Classification 
Accuracy) 

2016 Tejedor, et al. Gaussian Mixture Model (GMM)  Machine + Activity Mode: 45.2% 
Threat Detection Mode:    64.5% 

2017 Tejedor, et al. Contextual Gaussian Mixture Model (GMM)  Machine + Activity Mode: 54.9% 
Threat Detection Mode:    68.3% 

2018 Tejedor, et al. Gaussian Mixture Model-Hidden Markov Model 
(GMM-HMM)  

Machine + Activity Mode: 45.7% 
Threat Detection Mode:     56.4% 

2019 Tejedor, et al. Contextual Gaussian Mixture Model-Hidden 
Markov Model (GMM-HMM)  

Machine + Activity Mode: 59.1% 
Threat Detection Mode:       67% 

2021 Tejedor, et al. Multi-Position Approach in Gaussian Mixture 
Model (GMM)  

Machine + Activity Mode:  48% 
Threat Detection Mode:       69% 

3.3 Employing Support Vector Machine 
The DAS system developed by (Shi et al., 2021) was incorporated with support vector machine (SVM) 
methodology. Li et al. proposed a technique that leverages transfer learning and support vector machines (SVM) 
to efficiently construct a classifier of high precision using a limited number of training samples and a conventional 
device devoid of a graphics processing unit (GPU) [42]. To conduct pre-processing on the raw data, a simple 
bandpass filtering and scaling procedure was employed. Transfer learning is utilized in the extraction of class 
identification features by the pre-trained AlexNet model. These features are subsequently employed in the direct 
construction of SVM classifiers without undergoing any feature selection procedure. The study's findings, which 
utilized 4254 samples and encompassed eight distinct event categories, demonstrate that the support vector 
machine classifier can achieve a classification accuracy of 94.67%. This level of accuracy was attained by 
employing extracted features and conducting a training process that lasted for a duration of 13 seconds. Notably, 
the training was conducted on a portable computer with an Intel i5-7300HQ processor without a GPU. 
Furthermore, further research indicates that a classification accuracy of 90.82% can still be achieved when the 
training data size is decreased from 4254 to 1146. 

Table 4 Support vector machine employed in DAS system 
Published 

Year Researcher Method Used Performance 

2022 Li, et al. Transfer learning and Support Vector Machine 
(SVM) 

Classification accuracy of 94.67% 

2023 Saleh, et al. Pre-existing Support Vector Machine (SVM) Classification accuracy of 95% 
 
Another implementation of SVM into the DAS system was introduced by Saleh et al., who developed a DAS 

system to detect intrusion happening in the vicinity of critical energy infrastructure [43]. The researchers put 
forward a classification framework for human activities utilizing a Distributed Acoustic Sensing (DAS) system. 
This framework employs a Support Vector Machine (SVM) that operates alongside a coexisting SVM. The input 
features for this system are derived from the envelope of the gammatone filter cepstrum coefficient (GFCC). The 
detection and classification campaign consists of four independent phases which are evaluation, classification, 
detection, and feature extraction. In order to improve the ability to detect signals, a method that combines wavelet 
and normalized differential techniques is utilized with the aim of enhancing the SNR. A feature extraction 
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technique utilizing a Gaussian filter (GF) is employed to implement an auditory filter. This process involves six 
sub-phase processing steps, which include envelope wrapping, identification of local maxima, averaging the 
dataset, truncation of the dataset, rearrangement of the dataset, and random permutation. These steps are integral 
to the management of the dataset during the feature extraction process. The primary goal of this methodology is 
to reduce the number of dimensions in problem spaces, hence addressing computational constraints. A pre-
existing Support Vector Machine (SVM) classifier was utilized to perform the task of classification. Human 
activities such as jumping, tapping, and walking can be categorised into three distinct groups: jumping versus 
tapping, jumping versus walking, and tapping versus walking. In general, the classification performance was 
considered satisfactory as it exceeded the threshold of 95%.  

4. Discussion and Conclusion 
Ground disturbance detection systems based on DAS technology play a crucial role in perimeter security 
applications by detecting surface-level intrusion caused by various human activities and machinery. The previous 
section reviewed the DSP algorithm used in the DAS system for ground disturbance detectors, focusing on the 
performance of localization, detection, and classification accuracy of the event. OptaSense, one of the pioneering 
companies in this domain, introduced a cost-effective solution utilizing DAS technology in 2012 [14]. They 
demonstrated how DAS is perfect for ground disturbance detection. Their system demonstrated high detection 
rates and low false alarms, surpassing the traditional monitoring systems’ performance which was a camera 
surveillance system. The following year, OptaSense introduced its method for detecting different types of 
intrusion, employing near-field beamforming to estimate the location of footsteps on the ground surface [7]. This 
improved the ability of the system to detect and locate the intrusion happening in places of interest. In the recent 
year, we were introduced to using post-processing algorithms for edge detection, specifically the Sobel and 
Prewitt operators, as an alternative to the conventional differential method commonly used in DAS systems [15]. 
Their algorithm, implemented on an FPGA, exhibited improved performance of the SNR of the system. 

Subsequently, research on applying deep learning (DL) to DAS systems has gained momentum. One of them 
was the use of faster region-based convolutional neural networks (R-CNN) in detecting strange intrusion events 
in high-speed railway perimeter [35]. Other than having good recognition accuracy for all the peculiar intrusion 
events, faster R-CNN also have better performance compared to traditional methods in term of detection accuracy. 
In addition, Yang et al. introduced a pipeline safety early warning (PSEW) system based on DAS to detect and 
pinpoint third-party events that pose a risk to long-distance energy transportation pipelines [36]. The authors 
propose an innovative semi-supervised learning framework for real-time pipeline safety monitoring. A study 
conducted by PipeChina utilized existing long-distance energy pipelines to observe enhancements in 
identification and location accuracy. The experiment successfully demonstrated that incorporating a substantial 
quantity of unlabelled data and a limited amount of labeled data under low signal-to-noise ratio (SNR) conditions 
can potentially reduce costs associated with data collection and system deployment. The utilisation of transfer 
learning has been proposed as a viable approach to mitigate the computational and training requirements 
associated with deep-learning-based event identification techniques, regardless of its notable efficiency in 
classification accuracy [34]. Shi et al. proposed a transfer learning-based approach for event recognition that 
demonstrates enhanced precision in classification and reduced training time.  

In the subsequent year, He et al. proposed the utilization of a dual-stage recognition network as a means to 
mitigate false alarms and improve the precision of detection in settings characterized by uncertain disturbances, 
such as animal behaviors [16]. By integrating temporal energy and frequency spectrum information, as well as 
utilizing a decision tree classifier and a BP neural network, this methodology facilitated the accurate and efficient 
identification of intrusion patterns. DL has also been employed as a solution for detecting multiple events 
occurring simultaneously in close proximity [17]. The utilization of 100G-CNN for feature extraction in the 
temporal domain, through the analysis of vibration variations at different locations, has facilitated the acquisition 
of advantageous features from the unprocessed data. Consequently, this approach has resulted in a reduction in 
the duration needed for training and recognition tasks. 

In the meantime, Tejedor et al. conducted a study investigating the incorporation of machine learning (ML) 
techniques into distributed acoustic sensing (DAS) systems with the aim of identifying ground disturbances [37]–
[41]. This research spanned from 2016 to 2021 and involved the implementation of various methods. Over the 
course of several years, a series of enhancements were implemented, resulting in notable improvements to the 
performance of the system. The authors employed Gaussian Mixture Models (GMM) as a method for pattern 
classification in their preliminary study [37]. Their findings demonstrated considerable potential in threat 
detection, accurately identifying 80% of threat activities. The average classification accuracy achieved was 64.3%. 
In contrast, the classification accuracy of the machine + activity identification mode was found to be significantly 
lower, with an average of 45.2%. 

Further enhancements were implemented by integrating contextual information at the feature level and 
employing system combination strategies [38]. Incorporating contextual feature information in the system 
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combination resulted in a notable enhancement in the overall classification accuracy. Specifically, the average 
accuracy for machine + activity identification increased to 54.9%, while the accuracy for threat detection 
improved to 68.3%. In a subsequent iteration of the system, the integration of GMM with Hidden Markov Models 
(HMM) was introduced, resulting in the development of GMM-HMM [39]. The incorporation of this integration 
yielded marginal enhancements compared to the GMM approach, exhibiting an average classification accuracy of 
45.7% for machine + activity identification and 56.4% for threat detection. 

To optimize the system's performance, contextual information and system combination strategies were 
implemented in the GMM-HMM-based pattern classification [40]. As a result, enhancements were observed in the 
identification of both machines and activities, with an average classification accuracy of 59.1%. Additionally, there 
was an improvement in threat detection, achieving an average classification accuracy of 67%. The authors of their 
latest publication have put forth a novel methodology that involves a multi-position approach within Gaussian 
Mixture Model (GMM)-based pattern classification systems [41]. The aforementioned methodology demonstrated 
enhanced efficacy in identifying potential threats, as evidenced by an average classification accuracy of 69%. 

Additionally, there was a marginal improvement in accurately identifying both machine and activity, resulting 
in an accuracy rate of 48%. In summary, the author primarily employed Gaussian Mixture Models (GMM) and 
Hidden Markov Models (HMM) for pattern classification and successfully obtained enhanced outcomes by 
incorporating contextual information and employing system combination strategies. The range of average 
classification accuracy for threat detection varied between 56.4% and 69%, whereas for machine + activity 
identification, it ranged from 45.2% to 59.1%.  

In addition to ML and DL, support vector machines (SVM) have also been employed in ground disturbance 
detection using the DAS system. However, the utilization of SVM in this context remains comparatively limited 
compared to ML and DL. The classification accuracy results were relatively comparable to those obtained from 
implementing deep learning. In their study, Li et al. improved their DAS system by integrating SVM methodology, 
resulting in a classification accuracy of 94.67% across eight event categories [42]. The researchers employed 
transfer learning and SVM without conducting feature selection. The training process was performed on a portable 
computer that did not possess a Graphics Processing Unit (GPU). In a recent study by Saleh et al., a DAS system 
was developed with the aim of detecting intrusions in the vicinity of critical energy infrastructure [43]. The system 
employed SVM classification and inputted Gammatone filter cepstrum coefficient (GFCC) features. The 
researchers were able to attain a classification performance that met the criteria for satisfactory performance, 
exceeding a threshold of 95%, for various activities, including jumping, tapping, and walking. 

Overall, the performance of ground disturbance detection based on DAS can be improved by introducing a 
new algorithm scheme and integrating DL, ML, and SVM into the system. However, there are still other ways to 
improve the system’s performance, such as using a new fiber design. In recent years, the use of enhanced fiber in 
DAS has been on the rise. The enhanced fiber in DAS is a fiber with higher Rayleigh backscattering signal power 
than conventional fiber, which significantly increases the detection capabilities of the DAS system. However, this 
method will require a new fiber to be installed, increasing the cost of deployment. Hence, it may not be a good 
solution, especially for the application that uses existing installed fiber. 

Furthermore, the integration of DAS with other sensor technologies that complement its capabilities has the 
potential to improve system performance. An instance of integrating DAS with video surveillance, infrared, or 
seismic sensors can result in the fusion of multi-modal data, thereby enhancing the accuracy of detection and 
mitigating the occurrence of false alarms. This approach exhibits potential efficacy and practicality in perimeter 
security implementations. This may be very effective and practical for perimeter security applications but may 
not be applicable for specific applications, including those for fiber break prevention. 

In conclusion, this paper systematically reviews the DSP algorithm used by the DAS system for ground 
disturbance detection. The latest methods mainly use improved algorithms and ML, DL, and SVM integration into 
the system. Based on the algorithm reviewed, integrating DL into the DAS system was the most used method that 
produced high classification accuracy. All reviewed DL algorithms achieved at least 89% classification accuracy; 
some even almost reached 100% accuracy [17]. The DL algorithm that piqued our interest the most was the Dual-
stage-recognition network [16] and Group Convolutional Neural Networks [17]. The difference between these two 
is the issue that they are trying to solve where He et al. was trying to solve the false alarm caused by unwanted 
disturbance such as animal activities, while Yan et al. aimed to classify two different activities that happened at 
the same time that was near to each other. Both have the potential to be used in the DAS system for fiber break 
prevention; however, the classification of two different activities that happened concurrently in close proximity 
prove to be more beneficial for this application as the same issue may be faced during the deployment. 
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