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Multiple organ failures are the main cause of mortality and morbidity 
in the intensive care unit (ICU). The progression of organ failures in the 
ICU is usually monitored using the Sequential Organ Failure 
Assessment (SOFA) score. This study aims to perform the classification 
of multiple organ failures using machine learning algorithms based on 
SOFA score. Ninety-eight ICU patients’ data were obtained 
retrospectively from Universiti Malaya Medical Centre for analysis. 
Several machine learning algorithms which are decision tree, linear 
discriminant, naïve Bayes, support vector machines, k-nearest 
neighbor, AdaBoost, and random forest were used for the classification. 
The classifiers were trained on 80% of the patients with 10-fold cross-
validations and assessed on 20% of patients using 34 variables in the 
ICU. The random forest algorithm was able to achieve 99.8% accuracy 
and 99.9% sensitivity in the training dataset. Meanwhile, the AdaBoost 
algorithm achieved 99.1% sensitivity in the testing dataset. This study 
demonstrates the performances of different machine learning 
algorithms in the classification of multiple organ failures. The feature 
selection shows respiratory rate and mean arterial pressure (MAP) as 
the most important variables using chi-square test while insulin and 
fraction of oxygenated hemoglobin are the most important predictors 
by the mutual information test. 
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1. Introduction 
Multiple organ failures (MOF) are defined as the presence of two or more organ dysfunctions simultaneously. The 
term is sometimes interchangeably used with multiple organ dysfunction syndrome to describe improving organ 
function after receiving treatment. A more known representation of organ failure in the ICU are such as acute 
respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), or acute kidney injury (AKI). 
Sepsis is the main cause of organ failure as a response to infection, and septic shock is usually described for 
patients with multiple organ failures [1]. Other causes such as burn, trauma, and hematologic malignancies 
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patients also developed multiple organ failures [2-5]. In critically ill patients with COVID-19, MOFs are the main 
cause of mortality [6]. 

Several risk scores were developed to assess organ failure and mortality among patients in the ICU. The most 
used score for organ failure is the Sequential Organ Failure Assessment (SOFA) score [7]. Another known severity 
score for organ failure is the multiple organ dysfunction score (MODS) [8]. Both these scores evaluate the same 
organ systems which are respiratory, cardiovascular, renal, hepatic, coagulation, and central nervous system. 
These severity scores are preferred as they use a single variable to monitor each organ failure progression. In 
SOFA score, each organ is given a score between 0 to 4, where a score of 4 indicates severe organ dysfunction. 

The SOFA score is monitored daily using the worst reading of variables associated with each organ. Unlike the 
Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) or Simplified Acute Physiology Score 
II (SAPS II) which predict the risk of mortality based on variables value at admission, the daily SOFA score is 
accumulated for the six organs out of 24 total scores [9,10]. The individual score is used to monitor organ failure 
progression, while the cumulative daily SOFA score was mainly used as predictor of mortality. The cumulative 
SOFA score on admission up to 11 predicted risks of mortality at 50% while patients with SOFA score more than 
11 on admission have a risk of mortality up to 95% [11,12]. However, there is no clear indication of the number 
of organ failures using the cumulative SOFA score. For example, a daily SOFA score of 12 can be cumulative of 3 
organ systems with a score of 4 for each organ. The cardiovascular and renal components of the SOFA score are 
the highest predictors for 1-year mortality when evaluated independently [13]. 

The surge of electronic health records data has spurred machine learning applications in healthcare. In MOF 
prediction, machine learning has been utilized to predict the incidences within trauma and sickle cell disease 
patients [14,15]. Otherwise, machine learning algorithms have been used to predict mortality in patients with 
MOF [16]. Meanwhile, early sepsis prediction has shown outstanding potential with ground-breaking outcomes 
using machine learning [17-19]. A study has shown that sepsis can be predicted up to 48 hours in advance with 
high accuracy and minimal predictors [20]. These studies collectively highlight the potential of machine learning 
in identifying and predicting risk factors associated with specific organ failures in critically ill patients. 

In this study, we aim to report the classification of multiple organ failures based on SOFA score using machine 
learning. The main contributions of this paper include: 

• This article reports the performances of machine learning algorithms in the classification of multiple organ 
failures among ICU patients in Malaysia. 

• Patients’ comorbidities and metabolic variations were included as variables in the classification 

2. Materials and Methods 

2.1 Patients’ Data and Pre-Processing 
Patients’ data were collected retrospectively from Universiti Malaya Medical Centre (UMMC) for patients staying 
in the intensive care unit (ICU) from February to October 2018. Ninety-eight patients from age 17 to 82 years old 
with an average age of 57.14 consisting of 61 male patients were included in this study. Demographics data 
included are age and gender of the patients, meanwhile, the comorbidities considered as variables for 
classification are diabetes mellitus and hypertension. However, other comorbidities of the patients such as 
ischemic heart disease, coronary artery disease, ventricular failure, atrial fibrillation, congestive cardiac failure, 
chronic obstructive pulmonary disorder, obstructive sleep apnea, interstitial lung disease, bronchial asthma, 
chronic kidney disease, and end-stage renal failure were also recorded. Vital signs were recorded for all patients. 
Other blood gas measurements including pH, arterial blood gas, electrolytes, oximetry values, acid-base status, 
and metabolic variations variables were extracted whenever available. The total number of days for all patients 
was 628 days (13241 hours available). Table 1 shows the details of 34 variables considered for the machine 
learning algorithms.  

Prior to feeding the data for machine learning classifications, several data pre-processing was performed. The 
data was cleaned and stratified before being trained and tested. The patients’ gender was transformed into binary 
where male is 1, and female (2). Meanwhile, the presence of diabetes mellitus (DM) and hypertension (HPT) was 
recorded as 1 and the absence as 0. Similarly, for patients under mechanical ventilation and insulin infusion was 
labelled as 1. Other types of variables such as vital signs, blood gas values, and other variables were available 
hourly. The missing values for vital signs and glucose readings were imputed as carry forward until a new 
measurement is available while the other variables were recorded when available. The PF ratio was imputed when 
both partial pressure of oxygen (PO2) and fraction of inspired oxygen (FiO2) readings were available in the same 
hour. The snippet of variables used for classifications is shown in Table 2. The table included number of rows as 
row identifier and the outcome labelled as 0 for non-failure and 1 for multiple organ failures (MOF).  
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2.2 Classifications 
The primary outcome for classification is multiple organ failures which is defined as 2 or more organ failures 
based on SOFA score. An organ system is considered as failure for SOFA score ≥2. Table 2 shows the metrics and 
variables for organ failure measurements in SOFA score. The outcome is labelled as 1 for patients with multiple 
organ failures denoted as MOF. Meanwhile, patients without organ failures or with single organ failure are labelled 
as 0 denoted as NF in the confusion matrix.  

Table 1 Variables information 
Type of features No. Details 

Demographic 2 Age, gender 
Comorbidities 2 Diabetes mellitus (DM), hypertension (HPT) 
Vital signs 7 Temperature (temp), heart rate (HR), respiratory rate (RR), systolic blood 

pressure (sys), diastolic blood pressure (dia), mean arterial pressure (MAP), 
arterial oxygen saturation (SpO2) 

Blood gas values 17 pH, partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2),  
Electrolytes: Potassium (K), sodium, calcium chloride (Cl),  
Oximetry values: total hemoglobin (Hb), fractional oxygen saturation (fraction of 
oxygenated hemoglobin, sO2), and its hemoglobin fractions: FO2Hb, FCOHb, 
FMetHb, 
Acid base status: Base excess (BE), bicarbonate (HCO3), haemotocrit, glucose, 
and lactace. 

Others 6 Use of mechanical ventilation, provided insulin, fraction of inspired oxygen 
(FiO2), urine output, PO2/FiO2 (PFratio), and insulin sensitivity (SI). 

 

Table 2 Sample rows of data included for classification 

No Age Gender DM HPT SI glucose insulin 
(Y/N) HR Vent 

(Y/N) RR sy di 

1 67 1 1 1 0.000255396 8 0 60 0 24 87 55 
2 67 1 1 1 0.000255396 8 0 65 0 24 92 51 
3 67 1 1 1 0.000255396 8 0 65 0 23 101 61 
4 67 1 1 1 0.000255396 8 0 64 0 23 111 58 
5 67 1 1 1 0.000255396 8 0 64 0 23 111 58 
6 67 1 1 1 0.000255396 9.8 0 64 0 23 111 58 
7 67 1 1 1 8.47E-06 10.1 0 78 1 15 145 58 
8 67 1 1 1 8.47E-06 10.1 0 53 1 21 121 53 
9 67 1 1 1 2.74E-05 10.1 0 55 1 16 129 59 
10 67 1 1 1 4.85E-05 14.6 0 51 1 16 108 49 
11 67 1 1 1 5.15E-06 14.6 1 64 1 17 122 54 
12 67 1 1 1 5.92E-06 14.3 1 61 1 16 108 46 
13 67 1 1 1 6.63E-06 14.3 1 60 1 16 94 46 

Table 3 SOFA Score (adapted from [7]) 
Score 0 1 2 3 4 

Respiratory      

PO2/FiO2, mmHg 
(kPa) 

≥400 (53.3) <400 (53.3) <300 (40) <200 (26.7)* <100 (13.3)* 

Coagulation      
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Platelets x 103/µL ≥150 100 – 149  50 – 99  20 – 49  <20 

Hepatic      

Bilirubin, µmol/L <20 20 – 32 33 – 101 102 – 204  >204 

Cardiovascular MAP ≥ 70 
mmHg 

MAP < 70 
mmHg 

Low dose 
dopamine or 
any dose 
dobutamine 

Low-medium 
dose 
noradrenaline 
or adrenaline, 
medium dose 
dopamine 

High dose 
noradrenaline, 
adrenaline, or 
dopamine 

Renal      

Creatinine, 
µmol/L 

<110 110 – 170  171 – 299  300 – 440  >440 

Urine output - - - <500 mL/day <200 mL/day 

*With respiratory support; PO2 = partial pressure of oxygen, FiO2 = fraction of inspired oxygen. 
 
Several machine learning algorithms were considered for classification. They are decision tree (DT), linear 

discriminant (LD), naïve Bayes (NB), support vector machine (SVM), k-nearest neighbor (KNN), with two 
ensemble algorithms which are AdaBoost and random forest (RF). Decision tree (DT) classifier starts from a root 
node at the base of the tree which splits into branches. Each branch is attached to a leaf node representing the 
predicted outcome. In order to reach the final outcome, follow the decision from the root node to the desired leaf 
node. The usage of decision tree is preferable as they are easy to interpret and require lower memory usage. 
However, they are prone to overfitting. Linear Discriminant (LD) works by finding the combination of features 
with linear relationships to separate between the classes. The features in the linear discriminant analysis were 
assumed to be normally distributed. Naive Bayes (NB) classifier uses the Bayes theorem to calculate the 
probability of each class given the probability of other events. The advantage of naive Bayes classifier is they can 
handle a high number of features as each feature is considered as conditionally independent of each other. Support 
vector machines (SVM) separates data points into two regions using the best hyperplane, which has the highest 
margin between the closest data point and the hyperplane. In k-nearest neighbour (kNN), data is classified based 
on the majority class of its neighbours, where k is the number of neighbours considered. A weak classifier uses a 
higher number of neighbours, while a lower neigbours signifies a fine classifier. The ensemble learning method, 
AdaBoost assigns weight to misclassified samples and then, iteratively train weak classifiers focusing more on 
these misclassified samples. The sum of these weighted weak learners forms a final stronger classifier. Meanwhile, 
the random forest (RF) is a preferred classifier as they reduce overfitting by training random subset of features 
on one tree and another subset on another tree. The average prediction of these multiple decision makes the 
ensemble final prediction. 

The performances of these algorithms were measured using accuracy, sensitivity, specificity, and precision. 
These performance measures were calculated based on elements in the confusion matrix. The confusion matrix 
for two-class classifications and the performance measures are shown in Table 4. In the confusion matrix, the rows 
refer to actual number of cases while the columns are predicted number of cases. True Positive (TP) refers to 
correctly identified cases of multiple organ failures, while True Negative (TN) are non-failure cases identified 
correctly by the algorithms. Meanwhile, False Positive (FP) refers to patients without MOF which are mistakenly 
identified as experiencing multiple organ failures. Conversely, False Negative (FN) refers to incorrect 
classifications of patients with MOF. The dataset is divided randomly into 80% training data and 20% testing data. 
The classification algorithms are subjected to 10-fold cross-validations in the training dataset before running the 
model for the testing dataset. 

Table 4 Confusion matrix and performance measures 

  Predicted Class  

  MOF NF 

Actual Class 
MOF True Positive (TP) False Negative (FN) 
NF False Positive (FP) True Negative (TN) 

Accuracy ACC = (TP + TN) / (TP + TN + FP +FN) Correctly identified over all cases 
Sensitivity TPR = TP / (TP +FN) Correctly identified as positive (actual) 
Specificity SPE = TN / (TN + FP) Correctly identified negative 
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Precision PPV = TP / (TP + FP) Correctly identified positive (prediction) 

3. Results and Discussion 

3.1 Structure 
The demographics of 98 patients considered in this study are shown in Table 5. Patients with multiple organ 
failures (MOF) are generally older with median age of 62 as compared to 54 years old for patients without MOF, 
and 59 for the whole patient cohort. There are 62 male patients and 68 patients experienced multiple organ 
failures during their stay in the ICU. Distribution among race in the whole patient cohorts are balanced among 
Malay, Chinese, and Indian. Three other patients were identified as non-Malaysians. Among the comorbidities, 
diabetes mellitus and hypertension were prominent among all patients at 59% and 52%, respectively. Among all 
patients, 38 have both diabetes and hypertension. In the MOF cohort, there are higher number of patients with 
comorbidities compared to patients without MOF. For example, MOF patients with diabetes consist of 76% of 
patients with diabetes as comorbidity. Similarly, 31% of MOF patients have both diabetes and hypertension in the 
whole patient cohort. It is worth noting that 15% of patients have no reported comorbidities and pulmonary-
related comorbidities have the lowest number of patients at 7%.  

The breakdown of organ failure experienced by the patients during their stay in the ICU is shown in Fig. 1. 
This figure exhibited the number of patients with SOFA score ≥2 for each organ shown. Most patients experienced 
respiratory organ failure (PFratio<300) followed by cardiovascular failure. Patients with renal failure (39%) were 
determined by level of creatinine more than 170 µmol/L while bilirubin level >32 µmol/L were considered as 
hepatic failure. Subsequently, MOF patients were identified as patients with 2 or more organ failures. 

Table 5 Patients’ demographics 
Demographics All 

(n = 98) 
 NF 

(n = 30) 
MOF 

(n = 68) 
Age (median) 17 – 82  (59) 17 – 80 (54)  21 – 82 (62) 
Gender     

• Male 62   20 42 
• Female 36  10 26 

Race     
• Malay 35  (35.71%) 10 25 
• Chinese 36  (36.73%) 12 24 
• Indian 24  (24.49%) 6 18 
• Others   3  (3.07%) 2 1 

Comorbidity*     
• Diabetes Mellitus (DM) 58 (59.18%) 14 44 
• Hypertension (HPT) 51 (52.04%) 14 37 
• Cardiovascular 21 (21.43%) 6 15 
• Pulmonary 7 (7.14%) 2 5 
• Renal 13 (13.27%) 1 12 
• No listed comorbidity 15 (15.31%) 9 6 
• DM & HPT 38 (38.78%) 8 30 

*Cardiovascular comorbidity includes ischemic heart disease, coronary artery disease, ventricular failure, atrial fibrillation, congestive 
cardiac failure, pulmonary comorbidity includes obstructive sleep apnea, interstitial lung disease, bronchial asthma, and chronic obstructive 
pulmonary disorder (COPD), renal comorbidity includes chronic kidney disease (CKD) or end-stage renal failure (ESRF). 
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Fig. 1 Number of patients with organ failure 

The training and testing dataset used were the same for each classification algorithm. Fig. 2 shows the 
performances and confusion matrices as results of classifications. The highest accuracy in the whole and training 
dataset were achieved using random forest classifier at 99.8%. The average accuracy for the other classifiers is 
81.12% using the whole dataset and 85.4% for the training dataset. Accuracy measures correctly identified both 
positive and negative cases among all number of cases. Out of 100 cases, 80% accuracy shows that 80 cases were 
predicted accordingly as positive or negative. The random forest classifier also achieved the highest sensitivity, 
specificity, and precision in the whole and training dataset. At nearly 100% for these three performance matrices 
show that the classifier was able to classify all cases accordingly.  

The average sensitivity for all classifiers using whole, training, and testing datasets is 97.8%. High sensitivity 
is attributed to the ability of the classifier to identify correct MOF incidence over the actual number of MOF cases. 
In this case, it suggests that the predictor variables selected for the classifiers were able to classify MOF incidences 
correctly. The average precision for the whole and training dataset for all classifiers are 83.75% and 87.63%, 
respectively. However, the average precision across all classifiers in the testing dataset is 50.62%. The average 
precision in the testing dataset is significantly reduced compared to the whole and training dataset. Precision 
measures the ability of the classifier algorithm to correctly classify positive cases as compared to the total positive 
classification (actual and positively predicted). This contrasts with sensitivity which measures positive 
classification based on actual number of positive cases. In the testing dataset, a whole number of non-MOF cases 
were identified as false positives increasing the number of positives classification. Thus, the ratio between the 
correctly predicted and total positive prediction is much lower than in the training dataset. Meanwhile, in the 
whole and training dataset, the number of MOF cases correctly predicted is higher (TP) than false positives, 
increasing the precision matrix. This also explains the lower specificity achieved by all the classifiers using whole, 
training, and testing dataset. As specificity measures the correctly identified negative cases (in this case, patients 
without MOF), the classifiers achieved low specificity as they are prone to classify the negative cases as positive. 
It is not unusual for a model to have high sensitivity and low specificity as their relationship is inversely related. 
Higher sensitivity is usually preferred when the model is intended for positive classification (patients with MOF). 
Thus, these results suggest that the predictor variables selected were suitable for identifying MOF incidences. 
However, lower specificity model suggests overestimated patients without MOF as having MOF and may create 
false alarms. 
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Fig. 2 Performances of machine learning algorithms 

The most relevant variables as predictors were investigated using the chi-square and mutual information 
methods. The most important predictors using chi-square test are respiratory rate and mean arterial pressure 
(MAP) which are not included in Fig. 3a) as they are given infinite scores. The next most important feature is age, 
followed by temperature, systolic, and diastolic blood pressure. Diabetes status and insulin sensitivity as 
metabolic variation variables were also included among 10 highest predictor ranking using chi-square test. 
Meanwhile, the mutual information feature selection method shows age as the most important variable. The use 
of ventilation and PF ratio are also ranked as the most important variables. The overlapping variables as identified 
using the chi-square test and mutual information are age, temperature, systolic, and diastolic blood pressure, and 
diabetes status. Fig. 3 shows the scores of the variable’s importance using chi-square test and feature information. 
The limitation in this study is small sample obtained from a single center adult ICU in Malaysia. This might hinder 
generalizability of the machine learning models to other types of care such as multi-centre ICUs, emergency, 
inpatient, or pediatrics. There is also no status of mortality among the patients thus, limiting the association 
between organ failures and mortality. Lastly, this study only includes bedside monitoring variables omitting 
laboratory values which might be important biomarkers for MOF. Therefore, it is suggested to include other 
variables including laboratory values as predictors and perform feature selection towards reliable and optimal 
performance models.  

 
 

 

Fig. 3 Feature selection using (a) Chi-square test; (b) Mutual information 
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Table 6 Confusion matrices 

   Whole  Training  Testing  
1. Decision tree  MOF NF MOF NF MOF NF 

  MOF 10220 39 8995 26 1237 1 

  NF 2189 792 1295 520 1167 0 

         
2. Linear discriminant  MOF NF MOF NF MOF NF 

  MOF 10031 228 8885 136 1210 28 

  NF 2879 102 1761 54 1166 1 

         
3. Naïve Bayes  MOF NF MOF NF MOF NF 

  MOF 10142 117 8905 116 1203 35 

  NF 2896 85 1714 101 1157 10 

         
4. SVM  MOF NF MOF NF MOF NF 

  MOF 10236 23 8914 107 1110 128 

  NF 2898 83 1592 223 1165 2 

         
5. kNN  MOF NF MOF NF MOF NF 

  MOF 10214 45 8994 27 1090 148 

  NF 2197 784 1314 501 1158 9 

         
6. AdaBoost  MOF NF MOF NF MOF NF 

  MOF 10209 50 9011 10 1227 11 

  NF 1432 1549 1366 449 1167 0 

         
7. Random forest  MOF NF MOF NF MOF NF 

  MOF 10252 7 9017 4 1143 95 

  NF 35 2946 22 1793 1036 131 

4. Conclusion 
This article discussed different machine learning algorithms as classifiers for patients with MOF. The results show 
that the random forest classifier was able to correctly identify MOF cases with 99% accuracy in the whole and 
training dataset. The machine learning classifiers using the variables were able to achieve 98% sensitivity. The 
high sensitivity suggests the ability of the predictor variables to correctly identify all MOF incidences. 
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