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The formation of desiccation cracks has detrimental effects on the 
hydraulic conductivity that affects the overall mechanical strength of 
expansive soil. Qualitative analysis on the desiccation cracking 
behaviour of expansive soil provided understanding of the subject 
based on various concepts and theories, while quantitative analysis 
aided these studies through numerical supports. In this study, a 
machine learning technique in image processing is developed to 
evaluate the surface crack ratio of expansive soil. The desiccation 
cracking tests were conducted on highly plastic kaolinite slurry 
samples with plasticity index of 29.1%. Slurry-saturated specimens 
with thickness of 10 mm were prepared. The specimens were subjected 
to cyclic drying-wetting conditions. The images are acquired through a 
digital camera (12 MP) at constant distance to monitor the desiccation 
cracks. The images are then pre-processed using OpenCV before crack 
feature extraction. In this study, a total of 54 desiccation crack images 
were processed, along with 8 images from trial test to train the model. 
The processed images are used to quantify the desiccation cracks by 
evaluating surface crack ratio and average crack width. It was identified 
that the accuracy of the model for the quantification of surface crack 
ratio and average crack width were 97.24% and 93.85% respectively 
with average processing time of 1.51s per image. The results show that 
the model was able to achieve high accuracy with sufficient efficiency 
in determining important parameters used for crack characterization. 
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1. Introduction 
Desiccation cracking also known as shrinkage cracking on soil occurs due to moisture lost in the soil. Volumetric 
shrinkage causes the buildup of tensile stress from matric suction during desiccation process, and crack is 
generated when this stress exceeds the tensile strength of soil [1]. The tensile stress developed tends to degrade 
the hydraulic and mechanical properties of soil [2]-[4]. Crack formation can affect the performance and 
application of clay in various sectors including geotechnical, geo-environmental, and agricultural fields.  

Climate change imposed substantial influence on the consistency of the recurring drying and wetting cycles, 
bringing higher frequency of extreme weather with dryer dry season and wetter wet season [5], making the 
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recognition of desiccation cracks crucial. Quantitative analysis is becoming more important in desiccation 
cracking studies as the crack patterns are linked to the historical load and might affect its future functionality. 
Numerous research has been conducted to analyse and describe soil cracks based on manual approach (e.g., wired 
probe [6], polythene sheets [7], cement slurry [8], and dye [9]), and non-intrusive approach (e.g., image analysis 
[9], [10]). Some manual methods that include low capital and readily available equipment can disturb the original 
crack patterns, resulting in measurement with low accuracy [11]. This led to the advancement of the quantitative 
analysis approach from manual to image analysis techniques, which focused on extracting useful information from 
crack patterns such as crack width, length, and shape through collected visual data [12]. For the analysis, majority 
of existing investigations on digital image processing of desiccation cracking patterns rely on commercial graphics 
software or open-source image processing program, which are not suitable for desiccation cracks studies and are 
incapable of providing comprehensive quantitative analysis of crack patterns [1], [10], [12], [14]. Therefore, the 
incorporation of machine learning techniques in image processing is the new method to provide better crack 
detection performance.  

Machine learning-based image processing involved pre-processing steps and noise removal in conventional 
image processing techniques to prepare the images for crack detection by a trained machine learning model [15]. 
Xu et al. [16] carried out semantic segmentation in clayey soil cracking network detection using U-Net CNN 
algorithm. Parente et al. [17] presented a simplified machine learning-based crack monitoring method through 
open sources software that successfully detects cracks with single-image training. Han et al. [18] proposed Mask 
R-CNN structure for the detection and instance segmentation of clayey soil desiccation cracks. As the use of 
machine learning techniques in desiccation crack recognition is still in its premature phase, further validation is 
essential in assessing its reliability in crack quantification analysis. 

In this study, laboratory experiments on desiccation tests were conducted on kaolinite slurry to investigate 
its desiccation cracking behaviour under repeated wetting and drying cycles. This study investigated the viability 
and efficacy of machine learning for estimating the desiccation cracking of expansive soil. Laboratory-scale image 
collection was conducted through the use of a digital camera. The acquired images were then pre-processed and 
processed with image processing model architected based on machine learning algorithm. Quantification of 
desiccation cracks through feature extraction was based on defined parameters such as surface crack ratio and 
average crack width. The proposed technique proved to forecast the fracture intensity factor with satisfactory 
precision. 

2. Methods 

2.1 Materials 
The expansive soil used in this investigation was kaolin clay. The clay had a particle size range of 2.0 μm to 3.0 μm. 
Soil classification tests were conducted prior to sample preparation. The chemical composition of the kaolin clay 
(through XRF test method) is shown in Table 1, along with the properties obtained from soil tests.  

Table 1 Chemical composition and soil properties of kaolin clay 
Chemical Components Composition 
Aluminum (Al2O3) 32.0 – 38.0% 
Silica (SiO2) 47.0 – 53.0% 
Loss on Ignition @ 1025°C 11.0 – 14.0% 

Soil Properties  
Liquid Limit (LL) 66.0% 
Plastic Limit (PL) 36.9% 
Plasticity Index (PI) 29.1% 
BSCS Classification MH (highly plastic silt) 

2.2 Sample Preparation 
The specimens were prepared at targeted moisture content of about 120%. The mixture was stirred until a 
homogenous slurry state was reached. The slurry was then sealed and left for 24 hours at room temperature. This 
is essential to ensure that the moisture is uniformly distributed in the soil [1]. The samples were then prepared 
by pouring the slurry into 120 mm (D) x 20 mm (H) glass Petri dishes until desired height was achieved. Vibration 
was applied to remove the entrapped air. The specimens were subjected to two drying methods i.e., oven drying 
and 45°C drying approach.  
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2.3 Desiccation Tests 
The prepared specimens were subjected to 4 wetting and drying cycles under 2 drying approaches. The first 
drying method was oven drying which provided 105°C drying temperature and 0% relative humidity. The second 
drying approach was drying under controlled temperature and relative humidity (RH) of 45 ± 2°C and 40 ± 5% 
respectively. These controlled drying conditions were achieved using a humidity chamber and oven bulbs as 
shown in Fig. 1. Distilled water was added for the wetting phase. The volume of water added was based on the 
mass of moisture lost in the preceding drying path to achieve the initial water content. The re-hydrated specimens 
were left to stand for 24 hours (sealed) before the commencement of the subsequent drying cycle. A digital camera 
with 12 MP resolution was used to capture the surface cracking patterns throughout the test at varying time 
intervals. The acquired images were then fed to an image processing model for crack quantification. 
 

 

Fig. 1 Second drying approach set up with humidity chamber 

2.4 Image Processing 
The image processing model was architected with Python as the programming language and OpenCV as image 
processing application. In this model, OpenCV was imported to Python for image processing functions. The 
acquired images were cropped to specimen size to remove unnecessary information contained in the outer region 
of the sample, then these raw RGB images were subjected to pre-processing, processing, and feature extraction to 
achieve crack quantification and the image undergo pre-processing steps including grey-scaled using grey scaling 
function (minimized processing needs) and noise filtering by median filter (remove noise). In the processing stage, 
the image was subjected to: (i) Sobel operator as edge detection algorithm that detects discontinuities and 
information’s edge so that the crack edges can be emphasized in the output image; (ii) thresholding to separate 
useful and unnecessary pixels, and convert useful ones (crack) into white pixel while unnecessary ones into black 
pixel; (iii) morphological closure to make fracture line display more visible; (iv) contour area function to reduce 
noise in the processed binary image; (v) filling method through dilation and erosion steps that converted the black 
pixels enclosed within white pixels to white pixels. At last, circle function and bitwise function were applied to 
draw a circle that eliminates the mould of the soil so the image was readied for feature extraction. The sample 
image after each process is shown in Fig. 2. 

2.5 Information Extraction 
The desiccation cracks were quantified by evaluating surface crack ratio and average crack width. Surface crack 
ratio (SCR) was calculated by dividing the crack pixel by background pixel where the crack pixel was determined 
using contour area function. 
 

 (1) 

 
where PW is the white pixel which represents the crack pixel and PT is the total pixel in the image (background 
pixel). 

Surface Crack Ratio, % W
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Fig. 2 Stages in Images Processing model (a) Gray scaling; (b) Median filtering; (c) Sobel operator; (d) 
Thresholding; (e) Morphological closure; (f) Contour area function; (g) Filling; (h) Circle and bitwise 
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To evaluate average crack width, skeletonization was applied to the binary image to convert the crack lines 
to single pixel width. Average crack width was then computed by dividing crack pixel (PC) by skeletonized crack 
pixel (PC,S) as shown in the equation below. 
 

 (2) 

 
The efficiency and capability of the proposed model were assessed through its processing time and accuracy. 

The average processing time for each image was estimated by dividing the total time taken to process the total 
number of images by the total number of images processed. The accuracy of the model was assessed by averaging 
the results from the images with identical crack patterns but acquired under different photography skills. The 
equation for accuracy assessment is shown below.  
 

 (3) 

 
where xi is the current data of the image to be tested, ∑x is the summation of results obtained from all the different 
images with identical crack patterns, and n is the total number of images with identical crack patterns. The final 
accuracy of the model was determined as the average of the accuracy from all images. 

3. Results and Discussion 

3.1 Quantitative Analysis Through Image Processing Model 
There was a total of 54 images obtained randomly from the desiccation tests, which includes 2 images from 10 
mm trial set dried at 45°C, 26 from 10 mm specimen dried at 45°C, and 26 from 2 identical 10 mm specimens 
dried at 105°C. Among those, 8 images were selected randomly to use as training sets for model enhancement and 
modification work. The average processing time was 1.51s for the model, which means that generally the model 
used 1.51s to generate all the output from the input raw image. Fig. 3 shows extracted surface crack ratio, average 
crack width, and their respective accuracy for each image under different test conditions. The accuracy of the 
model was evaluated by the average accuracy of the whole dataset, except for one image that does not have an 
identical crack image under different photographic conditions. The final accuracy of the model was computed as 
97.24% and 93.85% for surface crack ratio and average crack width respectively. 

The determination of surface crack ratio and average crack width is essential in describing the desiccation 
cracking behaviour of expansive soil as they are highly linked to the shrinkage process during evaporation events. 
The complexity of crack patterns makes it difficult to be measured on-site, and manual measurement methods are 
extremely time-consuming with potential crack disruptions that cause measurement errors. Therefore, the use of 
image processing techniques with high efficiency and accuracy is advantageous to facilitate the crack recognition 
process. 

Fig. 3 shows the surface crack ratio and average crack width distributions with respective accuracies, where 
D1 to D4 were the drying cycles annotations. For instance, in Fig. 3(a), the data with D1 labels are crack images 
from onset of cracking to the end of the first drying cycle progressively. Comparing surface crack ratio and average 
crack width distributions in Fig. 3, it can be observed that the accuracy for average crack width under both testing 
conditions experienced more fluctuation in general. From the equation for the computation of surface crack ratio 
and average crack width, as both parameters include dividing crack pixel with denominator, it can be expected 
that with a high-value denominator comes a low-value result. In this sense, the denominator for surface crack 
ratio was the background pixel, which was relatively high when compared to crack pixel, leading it to have a 
comparatively stable range of outputs. Thus, the fluctuation mentioned was mainly due to the rather low-value 
denominator (skeletonized crack pixel) used to compute average crack width.  

From Table 2, it was observed that there are only 2 datasets having accuracy below 70%, while the others fall 
in the range of 80% - 100%, showing the overall high accuracy achieved by the model. The low accuracy was 
caused by the circle function that includes circumferential crack lines which formed along the circular shape of 
the glass container. These crack lines were formed due to the weak bonding between the clay and container at the 
boundaries which leads to easier crack formation. Such cracks should not be considered in crack quantification as 
it does not reflect the shrinkage behaviour of the sample. Those datasets with 3 to 5 identical crack images show 
high accuracy, almost all ranges between 90% to 100%, which presented the reliability and consistency of the 
model at evaluating bigger datasets. Despite the overall high accuracy, the proposed model is unable to eliminate 
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the influence of photographic conditions. For instance, the images used as input for the model must be cropped to 
mould size to help the model in distinguishing information between the inside and outside of the mould. 
Conversely, the model was able to process images captured under uneven illumination without difficulty and noise 
removal was done with satisfactory results. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 3 Result distribution with respective accuracies (a) Surface crack ratio and (b) average crack width at 45°C; 
(c) Surface crack ratio and (d) average crack width at 105°C 

Table 2 Accuracy distribution for each soil parameter 
Accuracy Range Surface Crack Ratio Average Crack Width 

60% - 70% 0 2 
70% - 80% 0 0 
80% - 90% 3 6 

90% - 100% 50 45 

3.2 Surface Crack Ratio and Average Crack Width 
In Fig. 4(a) there is a clear increasing trend in the recorded surface crack ratio with increasing drying and wetting 
cycles for specimens dried at both temperatures. While from Fig. 3(a), the surface crack ratio shows an increment 
during the drying cycle in the first and second cycles but stabilized in the third and fourth cycles. These results 
match those observed in earlier studies and the phenomenon was claimed to be caused by the damaged cohesion 
between the soil particles that eases the generation of cracks [19]. By comparing the 10 mm specimens dried at 
45°C and 105°C in Fig. 4(a), it was apparent that the specimen dried at lower temperatures reported a higher 
surface crack ratio. The possible explanation was that water molecules gained kinetic energy at higher 
temperatures that facilitated their escape from the formed crack and migration of moisture to the mentioned 
crack, thus reducing the possibility of crack formation at other parts of the soil surface [20]. In        Fig. 3(b), the 

50

60

70

80

90

100

0.0

1.0

2.0

3.0

4.0

5.0

TR
IA

L
D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D4 D4 D4

Ac
cu

ra
cy

, %

Su
rf

ac
e 

Cr
ac

k 
Ra

tio
, %

Drying Cycle, D (nos)
Surface Crack Ratio Accuracy

50

60

70

80

90

100

0.0

0.2

0.4

0.6

0.8

TR
IA

L
D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D4 D4 D4

Ac
cu

ra
cy

, %

Av
er

ag
e 

Cr
ac

k 
W

id
th

, m
m

Drying Cycle, D (nos)
Crack Width Accuracy

40

50

60

70

80

90

100

0.0

1.0

2.0

3.0

4.0

D1
-A

D1
-B

D2
-A

D2
-B

D3
-A

D3
-A

D3
-A

D3
-B

D3
-B

D4
-A

D4
-A

D4
-B

D4
-B

Ac
cu

ra
cy

, %

Su
rf

ac
e 

Cr
ac

k 
Ra

tio
, %

Drying Cycle, D (nos)
Surface Crack Ratio Accuracy

40

50

60

70

80

90

100

0.0

0.2

0.4

0.6

0.8

1.0

D1
-A

D1
-B

D2
-A

D2
-B

D3
-A

D3
-A

D3
-A

D3
-B

D3
-B

D4
-A

D4
-A

D4
-B

D4
-B

Ac
cu

ra
cy

, %

Av
er

ag
e 

Cr
ac

k 
W

id
th

, m
m

Drying Cycle, D (nos)
Crack Width Accuracy



14 Int. Journal of Integrated Engineering Vol. 16 No. 4 (2024) p. 8-15 

 

 

average crack width in the first and second drying cycles shows increments throughout the cycles, but not in the 
third and fourth cycles. These observations were not unexpected because the ongoing evaporation leads to 
increased shrinkage activities during the drying cycles, causing the crack segments to pull in together and increase 
the crack width between them. In the third and fourth cycles, the cohesion at the sealed crack lines was damaged 
by previous cracking activities, causing the crack formed at the beginning of the desiccation process to be 
relatively stable, thus eliminating further changes. From Fig. 4(b), it can be observed that the average crack width 
in the first and second drying cycles was generally higher than in the third and fourth cycles. This is because as 
the number of dry-wet cycles increased, the crack segments increased and evened out the shrinkage behaviour 
throughout the soil surface, thus making each crack have lesser shrinkage activities. 
 

  
(a) (b) 

Fig. 4 Crack parameters at the end of each drying cycle under different drying temperature (a) Surface crack ratio; 
(b) Average crack width 

4. Conclusion 
Machine learning-based image processing model with methods including grey scaling, noise filtering, edge 
detection, thresholding, and feature extraction was constructed in this study. The proposed image processing 
model provided an efficient and cost-effective way to quantify crack patterns. Parameters such as surface crack 
ratio and average crack width were defined to quantify cracks. Desiccation tests were conducted, and crack images 
were acquired using a digital camera. 54 images were processed with the proposed model and the accuracy for 
the surface crack ratio and average crack width were 97.24% and 93.85% respectively with 1.51s average 
processing time per image. The integration of machine learning techniques in the image processing method had 
been proved a success as the model was able to provide efficient analysis with high accuracy. Despite the downside 
of needing cropped images to eliminate unnecessary information, the model was able to process images with 
uneven illumination and noise. Surface crack ratio was found to be increased with increased drying and wetting 
cycles and decreased drying temperature. Average crack width in the first and second dry-wet cycles was greater 
than in the third and fourth cycles due to increased crack segments. 
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