
 INTERNATIONAL JOURNAL OF INTEGRATED 
ENGINEERING 
ISSN: 2229-838X     e-ISSN: 2600-7916 
 

IJIE 
Vol. 16 No. 1 (2024) 293-300 
https://publisher.uthm.edu.my/ojs/index.php/ijie 

   
 

This is an open access article under the CC BY-NC-SA 4.0 license. 

 
 

An Optimized Semantic Segmentation Framework for 
Human Skin Detection 
Audrey Huong1*, Xavier Ngu1 

1  Faculty of Electrical and Electronic Engineering, 
Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA 

 
*Corresponding Author: audrey@uthm.edu.my 
DOI: https://doi.org/10.30880/ijie.2024.16.01.024 

Article Info Abstract 
Received: 27 October 2023 
Accepted: 14 February 2024 
Available online: 22 May 2024 

The study incorporating optimization strategy in semantic 
segmentation is underexplored in dermatology. Existing approaches 
used complex and various heuristic designs of image processing 
algorithms and deep models customized for skin detection problems. 
This paper demonstrates Particle Swarm Optimization (PSO)-
incorporated AlexNet framework for the skin segmentation task. The 
results from testing the trained model are promising. The model 
produced satisfactory performances even with a strict split of 50 %, 
confirming the high efficiency of the proposed framework. The mean 
Jaccard index and Dice similarity measures evaluated between the 
annotated and predicted mask ranged from 0.80 to 0.93 in the binary 
classification of pixels as “skin” versus “background”. This work 
identified that the location and color variability of skin pixels in the 
training data are crucial to obtaining a good skin segmentation 
performance. Further works that can be explored in this area include 
adopting a robust preprocessing strategy to increase data variability 
and improve model generalization or implementing an optimization-
enhanced strategy on the existing segmentation models for 
comparison. 
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1. Introduction 
Skin is a multi-layered tissue consisting of stratum corneum, epidermis, deeper connective dermis tissue layer, 
and subcutaneous adipose. It is the largest organ in the human body and serves as a strong barrier to protect the 
internal organs from external pathogens, harmful rays, and harsh environments, making it an immune-competent 
tissue. A disrupted skin barrier integrity is often associated with inflammatory and many immune-mediated 
diseases, so skin examination is the first step in the clinical examination of a patient. It is also a key characteristic 
to locate and track humans. Accurate and efficient human skin detection and segmentation is a challenging yet 
important task in many applications, such as healthcare support, security and surveillance, automation and 
interactive communications, and nutritional industries. Some of the important works in the past include the 
detection of facial micro-expressions in coma patients [1] and neurological impaired and dementia patients [2]. 
There is also a growing interest in this research area and telemedicine for automatic diagnosis of different skin 
conditions [3-4] and remote monitoring for elder care. Researchers in [5] and [6] used skin detection to detect 
explicit images and pornography content. Skin is also a powerful feature for pedestrian detection in autonomous 
driving systems, multi-person tracking, crowd density estimation [7], and privacy protection through real-time 
surveillance by differentiating humans and machines. Xie et al. [8] investigated the relationship between the 
diversity of the detected skin tone and marketing communication in the fashion industry. Other works adopted 
skin detection and segmentation for noncontact continuous monitoring of vital signs [9], sign language 
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recognition, and skin care product recommendations. Most conventional systems use infrared and thermal 
imaging technology to detect skin. Meanwhile, advancements in the technologies using multispectral imaging and 
Terahertz attenuation reflectance technologies offer the potential for further improvement in imaging sensitivity. 

Recent years have seen a remarkable rise in the number of innovations invented and efforts made involving 
artificial intelligence (AI) in these industries. The emergence of this technology brings a new air to society by 
promoting a better quality of life, offering better healthcare and opportunity, simplifying a used-to-be laborious 
task, and providing an efficient and effective system for equal-balanced social life. Even though the trade-offs of 
introducing AI in most everyday tasks have been a hot debate, the advantages of this technology in terms of low 
effort and high efficiency cannot be ignored. They are transforming how humans live, work, and interact with 
others. AI is particularly pronounced in medical image analysis to assist clinical decision-making and speed up the 
diagnosis process where early treatment can be initiated. AI-enabled skin detection and segmentation 
technologies are currently used in medical and dermatological research for remote monitoring and classification 
of skin lesions and diseases [10], jaundice detection, rehabilitation assessment, early detection of diabetic foot 
ulcers, and aesthetics class prediction [11]. Among these applications, skin disease classification is the major 
medical complication in dermatology, affecting one-third of the world population [12].  Misdiagnosis of disease, 
especially malignant cancers, may lead to late treatment and increased morbidity.  

Semantic segmentation is a critical step for the skin disease diagnosis task. Recent studies in the field include 
comparing various feature extractor techniques for skin detection and strategies to improve the designed system’s 
detection accuracy and segmentation performance. Since human skin has distinct physical and color properties 
that allow for its differentiation from nonskin objects, texture-based techniques and color models, i.e., RGB (red, 
green, blue), HSV (hue, saturation, value), and YCbCr (Luma and chroma components of an image), are used as a 
feature extractor for skin detection and localization using machine learning methods [13], convolutional neural 
networks (CNN), statistical methods (e.g., histogram and distribution analysis), and traditional methods, such as 
wavelet transform [14].   

Deep learning methods using a pretrained CNN, for example, AlexNet, VGGNet, and ResNet, or their variants, 
are an increasingly popular approach. However, these methods have not been rigorously studied and tested in 
dermatology. Existing Fully-CNNs, such as U-Net and SegNet, are available for semantic segmentation, but failed 
to process complex feature information [15]. These models transferred learning for the problem using large 
amounts of labeled data to learn and extract important features in the input images automatically. The ensemble 
system that combined CNN with map expansion technique and outer residual skip connection-based deep CNN 
are alternatives that have been shown to work considerably well for skin segmentation [16-17]. However, these 
methods exhibit heavy computational burdens and tedious design processes. Besides, adapting these models to 
the target dataset depends heavily on the hyperparameters used in the training. Thus, careful tuning of these 
parameters is required to infer the most relevant features and enrich the learning of quality representations. Even 
though optimization techniques, such as genetic algorithm (GA), PSO, and Bayesian algorithm (BA), are among the 
available approaches, grid search that requires minimal programming effort is most often used for the problem. 
The process can be laborious with a high probability of converging to local minima. Instead of using a complex 
feature engineering method, this paper demonstrates the PSO auto-search method to address the optimization 
problem and improve skin segmentation efficiency using a simple network modified from AlexNet.  Section 2 
presents the data used and introduces the proposed framework, followed by the presentation of the results in 
Section 3. Section 4 discusses results from the model trained with different experimental settings and outlines 
future directions before concluding in section 5. 

2. Material and Methods 

2.1 Human Skin Dataset and Data Handling 
There are many human skin datasets publicly available for use; for demonstration of the proposed framework, 

this study used a private face and skin dataset obtained from the Visual and Audio Signal Processing Lab (VASP) 
University of Wollongong (https://documents.uow.edu.au/~phung/download.html) due to the availability of its 
ground-truth. This dataset contains 4,000 RGB images with diverse background scenes, lighting conditions, and 
skin types. The annotated skin-segmented images contain exposed skin regions, e.g., facial skin, arms, hands, neck, 
and background (i.e., nonskin) pixels. The size of these images is 352 × 288 pixels; an image resizing process was 
performed to change the size to 300 × 400 pixels to match the input of the proposed model. Shown in Fig. 1 are 
examples of the resized images and the binary ground-truth images (pixel value “0”: skin and “1”: nonskin). These 
images were divided into training, validation, and testing sets using two split ratio settings of 0.70/0.10/0.20 (i.e., 
70 % split) and 0.50/0.05/0.45 (i.e., 50 % split). A constant random seed number was used in the splitting process 
for the reproducibility of the results. For a more objective evaluation of the efficiency and robustness of the 
proposed system, this study has not considered other performance improvement strategies, such as dataset 
enrichment through image augmentation or synthetic data generation and regularization methods. 
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Fig. 1 (Left) Examples of human skin images and (Right) the annotated images 

2.2 Skin Semantic Segmentation Network 
AlexNet is an efficient CNN network for image recognition problems. It contains series and continuous modules 
comprised of convolutional layers; thus, it can easily be modified for different operations compared to the 
GoogleNet variants that contain inception modules and ResNet with residual connections. Meanwhile, VGG 
variants are heavy and computationally exhaustive. In the pre-experiment simulations, the initial performance of 
the VGGNet and GoogleNet have been explored, but both networks failed to converge satisfactorily using the 
considered dataset. The VGG models, even with the shallow VGG-16, took about ten times longer than AlexNet in 
its training and optimization process. So, only the results from AlexNet are reported in this paper. 

Fig. 2 shows the AlexNet architecture modified for the segmentation task. A large input size of 300 × 400 pixels 
is used in this study to refine the segmented results, and a padding of 100 was applied on the first convolutional 
layer of the model (Conv1) to prevent mismatch problems. Two-dimensional convolutional layers (Conv6 and 
Conv7) with 4,096 neurons have been added after the POOL5 max-pooling layer for efficient inference and 
learning. The output feature from Conv7 is fed into the score layer to obtain a feature map of the semantic labels. 
These feature maps are upsampled using a transposed convolutional layer (deConv) before the output is cropped 
to align with the input size. This is followed by pixels’ label prediction in the Softmax layer. 

 
 

 
Fig. 2 Skin segmentation AlexNet architecture 

2.3 PSO Optimization Framework 
This paper adopts PSO to find the optimal solution for the training hyperparameters problem due to its fast 
convergence rate compared to other techniques [18]. Training solver type, epoch number, mini-batch size, and 
initial learning rate were chosen as the hyperparameters to be optimized due to their significant effect on the 
model learning efficiency. The objective function to be minimized is shown in Eq. (1).   

 
𝑓𝑓(𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑡𝑡) =  (100 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)2 + (100 − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎)3 + 𝑡𝑡

1000�  (1) 
 
Tacc, Vacc, and t represent training and validation accuracies and training time, respectively. This process begins 
with randomly initializing 20 particles in the search space defined in Table 1. While these ranges were mainly 
chosen to meet the limitation of the GPU memory, other factors that help in the decision are (1) based on the 
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recommendation of the relevant study [18] for mini-batch size and initial learning rate, while (2) maximum epoch 
number is empirically decided during the pre-experiment runs, by weighing the computational efficiency and 
classification performance. The performance of each particle (i.e., candidate solution) is evaluated in Eq. (1). The 
current best solution is identified before each particle changes its position and velocity in the iteration that 
follows. After each iteration, the current best solution is updated to the new one. The process is repeated five times 
before determining the global optimal hyperparameter solution. The termination criteria include when the 
maximum epoch number is reached or if the Vacc has not increased in the last ten consecutive evaluations. The 
chosen hyperparameter set is used in training the model for segmenting the unseen testing images. This process 
has been implemented on the dataset of different splits. 
 

Table 1 The boundary limit of the considered hyperparameters in the search space 

Hyperparameter Lower limit Upper limit 

Solver, ꓡ 1 →3: {Adam, Sgdm, RMSProp} 
Epoch number, α 50 100 
Mini-batch size, β 8 64 

Init. learning rate, γ 1e-5 1e-1 
 

2.4 Image Segmentation Performance 
The predicted two-class segmented mask consists of an image containing pixels with values “0” and “1”, 
representing that of the skin and non-skin region, respectively. Thus, similarity and overlap percentages between 
the predicted (PRED) and ground-truth binary map (GT) are used to evaluate the performance of the system 
training for the skin segmentation problem. The Intersection Over Union (IU or Jaccard index) and Dice similarity 
(DS) in Eqs. (2) and (3) are used as performance measures. IU is the probability of correctly classifying pixels of a 
class, while DS determines the area of overlap divided by the total pixel number in both PRED and GT masks. Their 
value can range from 0 to 1, with higher scores indicating better segmentation quality. This study also considered 
pixel accuracy (ACC) as a prediction correctness metric in Eq. (4). It is the ratio of correctly classified pixels to the 
total number of pixels. 
 

IU =  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂𝑎𝑎𝑂𝑂 (𝐼𝐼)
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑜𝑜𝑈𝑈 (𝑈𝑈)

 
 

(2) 

DS = 2 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂𝑎𝑎𝑂𝑂 (𝐼𝐼)
𝐺𝐺𝐺𝐺+𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 
 

(3) 

ACC = 𝐺𝐺𝑃𝑃+𝐺𝐺𝑇𝑇
𝐺𝐺𝑃𝑃+𝐺𝐺𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑃𝑃

 
 

(4) 

TP and TN are the number of pixels correctly identified as skin and nonskin class, respectively. FP represents the 
incorrect prediction of nonskin pixel number as the skin class, while FN is the opposite. 

3. Results and Analysis 
The optimal hyperparameter setting for training the AlexNet model in Fig. 2 for the skin segmentation problem is 
identified as {ꓡ = ‘Sgdm’, α = 69, β = 62, and γ = 0.054} and {ꓡ = ‘Sgdm’, α = 100, β = 57, and γ = 0.0809} using the 
dataset of 70 % and 50 % split, respectively. The mean search time is 1,263 s and 1,380 s, respectively, on an 
NVIDIA Tesla K80 GPU. The final network is 27 layers deep with 56.8 million parameters for training. The model 
trained with 70 % of data samples performed slightly better than the 50 % split. So, results from this rigid split 
are presented in more detail in the following. Fig. 3 shows the IU and DS values calculated for skin and nonskin 
(background) regions. Table 2 shows their mean value averaged from the results for both classes. Also shown in 
this table is the average ACC. There is a noticeable issue with the class imbalance in most testing images, wherein 
the number of nonskin pixels (i.e., background) in an image is considerably larger than the target pixels (skin 
region). Thus, in Table 2, this work addressed the problem by including mean weighted IU as an important 
performance metric. The best and the worst-performing test images identified based on the mean IU and DS 
results in Fig. 3 were chosen for further investigation in Figs. 4 and 5. Also shown in the figures are the original 
image and the overlaid mask of the predicted classes. The right of these figures shows the gradient-weighted class 
activation mapping (grad-CAM) of the deConv output features. 
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Table 2 Evaluated performance metrics of model trained using different data splits 
 Evaluated metrics* 

Split setting 
(Train/Val./Test) Mean IU Mean DS Mean ACC Weighted 

IU 
70 % split 0.82 0.89 0.94 0.93 (0.7/0.1/0.2) 
50% split 0.80 0.88 0.93 0.92 (0.5/0.05/0.45) 

*IU: Intersection of Union, DS: Dice similarity, ACC: Pixel accuracy  
 
 

  
Fig. 3 The calculated (a) Intersection of union (IU) and (b) Dice similarity (Dice) evaluated for each testing 

image. These results are obtained from the experiment using the rigid 50 % split 
 

 
 

 

Fig. 4 (Left) The best-performing test image and the overlaid predicted map (yellow hue) with mean IU and DS 
of 0.93 and 0.88, respectively. (Right) The deConv layer feature activation map 

 

 
 

 



Int. Journal of Integrated Engineering Vol. 16 No. 1 (2024) p. 293-300 298 

 

 

Fig. 5 (Left) The worst-performing test image and the overlaid predicted map (yellow hue) with mean IU and DS 
of 0.48 and 0.49, respectively. (Right) The deConv layer features activation 

 

4. Discussions 
The most conventional method for skin detection requires tedious manual labor annotation, while the automatic 
approach using the machine learning method involves the time-consuming and meticulous design of a model for 
the problem. This study overcomes this challenge by using an automatic search algorithm in the training process 
to optimize the model learning efficiency and improve its generalization ability using the relatively simple and 
shallow network in Fig. 2. 

The good performance of this model trained with a 70 % split in Table 2 is due to the rich features 
representation of input images learned by the network. On the contrary, the experiment using a strict 50 % split 
deprived the model of a significant proportion of the dataset, setting aside large and different testing data for 
evaluating the model. This experiment design is closer to real-world scenarios when a model trained with limited 
training data is used to predict extensive unseen data. The comparable performance between the different split 
ratios in the evaluated metrics in the table confirmed the feasibility of the proposed strategy. 

The IOU and DS metrics evaluated for each pixel in the testing set from the 50 % split experiment in Figs. 4 and 
5 showed a comparative inferiority in the model’s recognition of skin pixels. The mean IU and DS evaluated for 
the skin pixels are given by 0.7 and 0.8, respectively, implying that, on average, 30 % of the skin region has been 
misclassified as the background. Conversely, the background pixels have near-perfect prediction accuracy, with 
IU and DS ranging between 0.9 and 1.0. The areas covered by skin in most testing images are noticeably smaller 
than the background. The weighted IU metrics considering the number of pixels for each class showed a good 
performance of 0.92 in Table 2 due to the accurate prediction of the extensive background pixels. The same reason 
applies to the high mean pixels’ accuracy of 0.93 in Table 2. Two main reasons have been identified for the 
misclassification of the skin pixels. The first is the limited variability in the location of the target pixels in training 
images. In nearly all the images, the object (human) is located near the photograph’s center, resulting in the hot 
regions (red color) crowded around the center of the activation maps, e.g., shown on the right of Figs. 4 and 5. 
These high-heat regions indicate the network’s focus on skin prediction; thus, the model is not expected to work 
equally well when the object is located at the edge of the image. The second is the skin color factor. The model has 
been trained to recognize mostly the skin of Caucasians, Mediterraneans, and Asians. These are the populations 
with lighter skin colors with Fitzpatrick skin phototype I-IV. Therefore, darker skin tones (type V-VI), such as 
those of African or Caribbean origin in Fig. 5, may be harder to detect. The image shows a small number of sling 
bag pixels whose color is similar to the skin and has been misclassified as “skin” (circled in red). This produces a 
very high IU and DS score (about 0.98) for background pixels but zero overlapping between the segmented and 
annotated skin regions (IU and DS = 0) in Fig. 3. Other factors that influence skin detection accuracy include the 
visual (size, shape, and connectivity) components in the image. The model can work well in most images with high 
textural details and good contrast between skin regions and the background, such as the high-contrast image in 
Fig. 4.  

Although a larger training set has been shown in Table 2 to improve the detection accuracy of skin pixels, the 
inclusion of data enlargement strategies using different image preprocessing techniques, such as data 
augmentation and generation, is expected to enhance the model performance further. The augmentation that 
involves affine transformations would also modify the deConv gradient-weighted activation maps in Figs. 4 and 5, 
allowing better skin recognition at all points in an image. The deeper models, namely GoogleNet and VGG-16, have 
been investigated in the pre-experimental stage. However, the initial results showed overfitting problems. 
Therefore, other directions worth exploring include truncating these models to reduce the architecture 
complexity using the proposed system as the benchmark. The original AlexNet is not designed for the problem 
explored in this study, causing insufficiency of the model even with the larger dataset in Table 2. Hence, future 
comparisons to U-Net and SegNet models that are popular for various segmentation tasks would also be valuable. 

5. Conclusion 
This research demonstrates the use of the PSO method in training the AlexNet modified for the skin semantic 
segmentation task. The results comparing the difference in the segmentation performances of the model trained 
using 70 % and 50 % splits showed the potential of the proposed framework for automatic fine-tuning of 
important hyperparameters for fast and optimal convergence in the model training. This approach is notably more 
practical and efficient than the prior works that required the sophisticated design of the model structure. The 
results showed an overall satisfactory matching between the predicted and annotated masks, with the evaluated 
mean IU and DS ranging from 0.80 to 0.93. In the future, data enhancement and image preprocessing algorithms 
can be implemented to improve the system’s performance further. The new and improved system can facilitate 
future comparison with other popular segmentation networks. 
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