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1. Introduction 

The presence of electromyography (EMG) as 

representative of muscle activity is closely related to the 

work of nervous system. Electrochemical transmission 

between nerves starting from the brain produces action 

potential which propagates through nerve fibers. Action 

potential moves along nerve fiber will stimulate skeletal 

muscles which then create muscle contraction. This then 

results in movement of human limbs. Action potential 

acts on a single nerve. Since there are vast numbers of 

skeletal muscle fibers, the electrical potential from 

muscle recorded for EMG is actually superposition of 

action potentials acting on skeletal fiber muscles [1]. 

Study on EMG had been intense, especially for the 

last couple of decades, due to the use of modern 

electronic devices along with numerous emerging 

techniques in signal processing. With advancement in the 

area of signal processing, pattern recognition and 

machine learning, EMG signal can be further examined to 

obtain its characteristics according to the corresponding 

body movements and gestures. For example, muscles that 

enable movement of forearm are the biceps and triceps. 

Thus, acquiring EMG from these two muscles will enable 

the assessment of the characteristics forearm movement.  

Similarly, for examining the characteristics of human 

chest movement due to breathing, EMG signal that 

corresponds to the breathing action could be used as the 

subject of study. There are several of such muscles 

located around the chest, neck and abdomen. 

Electromyography signal can be acquired from these 

muscles which then bring to the utilization of signal 

processing techniques.   

 

Various studies had been done on human muscles 

through EMG signal. Biceps brachiii of the upper arm 

and brachioradialis of the forearm had been investigated 

on their role in elbow movement [2]. EMG of rectus 

femoris of the hip had been studied to investigate the 

effect under certain workload of leg exercise [3]. Other 

leg muscles such as vastus lateralis, biceps femoris and 

soleus had been chosen for study on its EMG activity 

during certain physical exercise [4]. Study on muscle pain 

during certain physical task or exercise could also utilize 

the EMG signal like the one that had been done on upper 

trapezius muscle [5]. Even facial muscle such as 

zygomaticus had seen its EMG application for human-

machine interaction [6].               

When represented in waveform, the EMG signal 

recorded from muscles activity seems fluctuates rapidly 

between maximum and minimum value. An example of 

EMG signal is shown in Fig. 1. Although the signal 

seems to be chaotic, it could contain information on 

muscle activity or characteristic. Usually, signal 

conditioning need to be performed to obtain much 

meaningful expression of EMG signal. 

 

 

 

 

 

 

 

Fig 1  An example of EMG signal in time-domain 

waveform 

Looking at the appearance of the EMG signal based 

on Fig. 1, if such signal needs to be analyzed, it is more 

Abstract: Typical method on assessing the human breathing characteristics is based on measurements of breathing 

air parameters. Another possible method for human breathing assessment is through the analysis of respiratory 

muscles electromyography (EMG) signal. The EMG signal from different breathing task will be analyzed in order 

to determine the characteristics of the EMG signal pattern. Thus, feature extraction need to be done on the EMG 

signals. This paper  will look into the use of Mel-Frequency Cepstral Coefficients (MFCC) in providing the 

features for EMG signal. Analysis is done using different data analysis frame sizes. EMG signal classification is 

done using K-Nearest Neighbour. Results shows that MFCC is a good feature extraction method for this purpose 

with classification accuracy exceeds more than 90% for data analysis frame size of 2000 ms, 4000 ms, 5000 ms 

and 10000 ms. 
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convenient for it to be presented in much simpler form. 

This is where feature extraction comes into the picture.        

Among the method that is used for EMG feature 

extraction are Mean Absolute Value, Root Mean Square, 

Simple Square Integral, Variance, Zero Crossing, Slope 

Sign Change and Willison Amplitude [7]. Root Mean 

Square (RMS) in particular, is the most popular method 

that is based on time domain feature. In RMS, each data 

point is squared and the sum is divided by the number of 

data point before the result is square rooted. In other way, 

RMS value would provide the representation of EMG 

amplitude. This type of feature usually applied in studies 

concerning muscle performance based on certain human 

motion activity [8, 9].        

Time-domain based features are usually suitable for 

use on EMG signal that has obvious variation in its 

amplitude such as hand flexion and extension movement 

[10]. For this type of movement, the EMG signal would 

have a burst when the corresponding muscle contracts. 

The burst would also indicate increase in EMG amplitude 

[11].  

For frequency-domain features, there are techniques 

such as Autoregressive Coefficients, Mean Frequency, 

Median Frequency and Fourier Transform [7]. 

Frequency-domain features show better performance in 

the study of muscle fatigue [12] with Mean and Median 

Frequency as the most popular technique for that 

particular purpose [13]. Autoregressive Coefficients on 

the other hand is normally used for signal modeling [14].  

     Another type of feature is time-frequency where 

Wavelet Transform is the most commonly used [15]. 

Apart from that, there are also Short-Time Fourier 

Transform, Wigner-Ville Distribution and Choi-Williams 

Distribution. A comparative study had been done by 

Karlsson et. al. where Continuous Wavelet Transform is 

compared with the other time-frequency domain 

techniques mentioned previously. This study concluded 

that Continuous Wavelet Transform is useful for the use 

on EMG signal [16]. 

For the scope of this paper, Mel-Frequency Cepstral 

Coefficient (MFCC) will be used to provide the features 

of the EMG signal. Even though MFCC is a very well-

known tool for feature extraction in speech recognition, it 

had also been used for other type of signal such as 

electroencephalography [17], electrocardiography [18] 

and electromyography [19].  

 Example of previous works on application of MFCC 

on EMG is by Manabe and Zhang. They had used EMG 

signal to improve recognition accuracy of a speech 

recognition system. Instead of using speech signal, EMG 

signals from several facial muscles had been acquired and 

MFCC had been used as one of the feature extraction 

technique for the EMG [19]. This is an example of an 

EMG-based speech recognition system that utilizing the 

movement of facial muscle during speech. 

 

 

 

 

 

2. EMG Data Source and Analysis  

2.1 Respiratory Muscles 

Movement of chest wall enables the human breathing 

mechanism, which is the expansion and shrinking of lung 

that allows inhalation and exhalation of air. Like other 

human limb, movement of chest is also related to action 

of muscles. There are several muscles that are working 

during the human breathing activity. These muscles are 

called respiratory muscles that mainly involve the 

diaphragm, rib cage and abdominal muscles [20]. Apart 

from that, there are also several other muscles that plays a 

minor role in human breathing mechanism. They are 

scalene and sternocleidomastoid that are located around 

the neck [21].   

The respiratory muscles can be assessed through 

EMG measurement to investigate its characteristics that is 

associated with certain breathing tasks. Shown in Fig. 2 

are the locations of respiratory muscles [22]. Listed in 

Table 1 are several respiratory muscles and its function in 

breathing mechanism. Diaphragm and intercostal muscles 

are the major muscle in breathing mechanism. Other 

muscles such as sternocleidomastoid, scalene and 

pectoralis major are considered as accessory muscles 

[23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Respiratory muscles location [22] 

 

 

Table 1  Respiratory muscles and its function in 

breathing mechanism 

 

Muscle Function 

Diaphragm Expands thoracic cavity. 

Intercostal Alter the configuration 

of the rib cage [26]. 

Sternocleidomastoid Upward pulling of rib 

cage [23]. 

Scalene Upward pulling of rib 

cage [23].  

Pectoralis Major Raising the ribs [27]. 

Serratus Anterior Elevate rib cage during 

inspiration [28]. 

Abdominal Muscles Increase abdominal 

pressure [26]. 
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Studies on EMG respiratory muscles had been done 

for various purposes such as investigating the respiratory 

muscle performance under certain breathing condition. 

For example, Reilly et al had done studies to examine the 

relationship between neural respiratory drive measured as 

the EMG of diaphragm and parasternal intercostal 

muscles during two different ventilatory loadings i.e. 

acute hypercapnia and inspiratory threshold loading [24]. 

Jung and Kim did a work on effects of different 

intensities of inspiratory muscle training where EMG is 

acquired from diaphragm, external intercostal and 

sternocleidomastoid [25]. 

Effect of head posture and respiratory pattern on 

respiratory muscle had been studied by Koh and Jung. 

They had chosen EMG from the sternocleidomastoid and 

scalene with subjects performing maximal respiration 

[29]. Another study done by Santos et al performs certain 

breathing exercises to evaluates the influence of incentive 

spirometry and forward leaning  on inspired tidal volume 

and EMG activity of diaphragm, external intercostals, 

sternocleidomastoid and scalene [30]. There was also 

comparison study to differentiate EMG activity of certain 

respiratory muscles between mouth breathing and nasal 

breathing of adults. This had been done by Trevisan et al 

by choosing the diaphragm and accessory inspiratory 

muscle as the EMG target muscles [31]. 

EMG respiratory muscles are also examined on 

patients with certain pathological condition especially 

those that related to respiratory diseases. A study by Kim 

et al on chronic obstructive pulmonary disease (COPD) 

patients had acquired EMG from respiratory muscles of 

scalene and sternocleidomastoid to determine the effects 

on EMG activity due to breathing maneuver and sitting 

posture of the patients [23]. In another study on several 

patients with acute respiratory failure, EMG of 

extradiaphragmatic inspiratory muscles was analyzed to 

determine any correlation with dyspnea when patients are 

mechanically ventilated [32]. 

Another most well-known disease related to 

respiration is asthma. In a research done by Silva et al 

using EMG of sternocleidomastoid and diaphragm, 

finding shows lower EMG activity on both muscles for 

asthmatic group of adult subject compared to their normal 

counterpart [33]. Cystic fibrosis is another respiration 

type disease. There is a work comparing EMG parameter 

of patient with the disease and healthy subjects upon 

cycling exercise. EMG was taken from diaphragm and 

parasternal intercostal muscle [34]. Parasternal intercostal 

muscle had also been utilized to assess respiratory load in 

children. This had been done by MacBean et al where 

analysis on EMG of parasternal intercostal shows that it 

is feasible in both healthy and diseased children [35]. 

    Another interesting study regarding human 

respiration is on the human breathing type i.e. the way a 

person breath. Several literature records a study on two 

types of human breathing namely upper costal and costo-

diaphragmatic [36]. 

 

 

 

2.2 Feature Extraction of EMG 

Feature extraction is one of an essential stage in 

signal analysis. In case if there is a huge sample of data 

with random stochastic and non-stationary signal, feature 

extraction is essential to reduce the number of data points 

that need to be processed. Thus, the purpose of feature 

extraction is to represent a complex or chaotic data into a 

simpler form. For example, an EMG data such shown in 

Figure 1 could be analyzed easier if the signal is 

simplified by showing its amplitude envelope.  

Another purpose of feature extraction is for signal 

classification [37]. Having a set of simplified data where 

the number of data points had been reduced from the 

original signal; it is much easier for the data to be 

differentiated to classes of specific feature values. 

Classification can be done either through supervised or 

unsupervised learning approach.      

Some of the EMG feature extraction techniques that 

were used had been mentioned earlier in Section 1.0. A 

literature by Phinyomark et al had listed out a number of 

EMG feature extraction technique with the corresponding 

equations [37]. 

 

2.3 Mel-Frequency Cepstral Coefficient 

The name MFCC is derived from the use of Mel-

scale triangular filter bank. First step of MFCC is Fast 

Fourier Transform (FFT) on the signal. If the data is 

divided into window segments with window function, w 

and length L, FFT is formed by : 

 

   
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n 0
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            (1) 

 

Equation (1) is Discrete Time Fourier Transform 

with frequency denoted by k. Given k = 0 ... N -1, where 

N is the number point of the FFT. Then the Mel-scale 

filter is derived with frequency transformation given by : 
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Frequency transform in Equation (2) is done for the 

highest and lowest frequencies from the normal 

frequency scale of X(k). Suppose the normal frequency 

scale is f, then f(i)  [flow , fhigh] where i = 1,…,N with 

N is the number of FFT length.  

Then, the cut-off frequencies for each of the 

triangular filters in the filter bank are obtained from :   
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Here in Equation (3), fmel(low) is the lowest 

frequency value in the Mel-scale associated to the lowest 

frequency in the normal scale and fmel(high) is its highest 

frequency value counterpart. M is the number of Mel-

scale filters with m’ = 1,…,M+1. These cut-off 

frequencies in Mel-scale are then retransformed back to 

normal frequency scale using the inversed expression for 

f in Equation (2). The retransformed frequencies are 

denoted as fn(m’). 

Knowing the cut-off frequencies, triangular filters 

can be generated based on relationship in Equation (4). 

Filter index number is symbolized as m’’ where m’’ = 

1,…,M. 

 

             

 

 

 

 

 

 

 

(4) 

 

Next is applying these filters to the frequency 

spectrum X(k) and the result from these operation can be 

expressed as XH which is the mel frequency power 

spectrum. Finally, the coefficients of MFCC are obtained 

from the discrete cosine transform of the log of mel 

power XH. The expression for MFCC coefficient is shown 

in Equation (5). 

 

                                            

 

 

 

 

  (5) 

 

Index number of the coefficient is given by q and 

again M is the number of Mel filter. These coefficients of 

MFCC will be used as the features for the EMG signal.     

 

3. Methodology 

 

3.1 Experimental Setup and Protocol 

To obtain the EMG signal of human breathing, an 

experiment had been performed. It involves 11 human 

volunteers consists of healthy males aged between 23 to 

35 years old. Muscles that are chosen for acquiring the 

EMG signals are sternocleidomastoid, scalene, second 

intercostal muscle and diaphragm. Pre-gelled Ag/AgCl 

disposable surface electrodes are used as the sensor to 

obtain the EMG signal. These electrodes will be patched 

on the muscles where each muscle will have two 

electrodes. The position of electrodes and thus the 

location of muscles are shown in Fig. 2 

There will be four breathing activities that will 

performed by all the subjects. They are quite breathing, 

deep breathing, deep breathing with breath hold and fast 

breathing. The EMG signal for all the activities are 

recorded for 10 seconds. Each activity are consists of five 

trials. Fig. 3 shows the flow chart of the experiment 

protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Electrodes attachment on muscle locations. Label 

shown here indicates the musles which is defined as A : 

Sternocleidomastoid; B : Scalene; C : Intercostal Muscle; 

D : Diaphragm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Flow chart of the experiment protocol 
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Data acquisition is done using ADInstrument 

PowerLab 4/25T. It is equipped with amplifier circuit 

specific for bioelectrical signal measurement. To work 

with this device, is has to be connected to a computer that 

is installed with software called ADInstrument Lab Chart 

7.  The software is used to configure the settings for data 

acquisition device. It is also used for data recording 

configuration and real-time signal observation. Fig. 4 

illustrates the experiment setup.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4   Experiment’s equipment setup 

 

 

3.2 Signal Pre-processing 

Pre-processing is necessary to improve the acquired 

data quality from noises and inappropriate information. 

The process could enhance the pattern recognition 

performance. This pre-processing usually involves 

filtering which is mainly for removal of noise and any 

unwanted signal. 

Earlier, during the experiment and data acquisition, 

the raw data is recorded without any pre-filtering through 

the data recording software i.e. LabChart 7.  This is to 

make sure that all necessary information on the EMG 

signal is recorded before deciding on which signal is 

undesirable and thus would be considered as noise. 

There are several types of noise that could 

contaminate the EMG signal. The work in this paper will 

be focusing on three categories of noise. First is baseline 

wander and movement artifact [38]. Both are in similar 

form where the center of the signal is not fixed at the 

baseline of 0 volt. In most cases, the signal appears wavy. 

It also appears that DC offset is present since the signal is 

shifted either to positive or negative y-axis region. The 

presence of this kind of noise is mostly related to physical 

motion of the electrode and electrode’s cable. It could 

also happen due to subject’s movement.   

 Second type of noise is signal that comes from other 

bioelectrical signal sources such as ECG. In case of 

respiratory muscle EMG, several spikes similar to the 

ECG’s QRS profile would appear especially when signal 

is acquired near to the part of chest where the heart is 

located. In some other cases, EMG signal from adjacent 

muscle could also interfere. This is called electrical cross-

talk and it usually occurs when using electrodes that are 

placed on a region where different muscles are quite close 

together [39]. For the purpose of this paper, ECG would 

be the signal that needs to be removed. The pulses or 

spikes that consistent with the heartbeat are seen clearly 

in intercostal muscle and diaphragm.           

Then there is also noise due to the power line 

frequency. Since the data acquisition device used in the 

data collection requires AC power source, such noise 

would be inevitable. 

In this work, filtering of the EMG signals involves 

6th order Butterworth high-pass filter with cut-off 

frequency of 20 Hz. This would be enough to remove the 

movement artifact, DC offset and also the spikes due to 

heartbeat that resembles the ECG. Then, for the power 

line interference, a notch filter is implemented with center 

frequency of 50 Hz. This filtering stage is done offline 

using MATLAB programming tools. 

 

3.3 Feature Extraction 

Feature extraction using MFCC is done with 

different analysis frame sizes. The frame sizes ranges 

from 1000 ms up to 10000 ms with overlapping of 50% 

from the frame size. For the window function, Hamming 

window is used. Number of Mel filter banks is 20 and the 

number of cepstral coefficients is 12.   

EMG data from subjects is taken for 10 seconds. 

There are five trials for each task where data from all five 

trials are considered for feature extraction and 

classification. Thus the total EMG data length from each 

subject for each task is 50 seconds. Since there are four 

tasks undergone in the experiment, there will be 200 

seconds of EMG data per subject.  

Result from feature extraction is given as value of 

cepstral coefficients that obtained from the window frame 

analysis. Classification would then be based on these 

coefficient values. 

 

3.4 Classification Using K-Nearest 

Neighbour 

K-Nearest Neighbour (K-NN) is chosen as the 

classification tools to classify the EMG features based on 

the breathing tasks. K-NN is a method of classification 

based on closest training example [40]. Given an 

unlabeled sample x, K-NN will calculate the distance 

between x and all the data point in training data and 

assigns its class according to the nearest neighbor of K 

training samples, where K is a positive integer.  

In this work, the calculation of distance is based on 

Euclidean and K is fixed at 1. Result of K-NN 

classification will be in form of percentage of 

classification accuracy, which is the measure of samples 

that is classified correctly.  The number of classes is four 

that is corresponds to the number of breathing tasks in the 

experiment. 

 

4. Results and Discussion 

Classification is done to classify all sets of EMG data 

into four different breathing tasks. There are 10 sets of 

EMG data with different analysis frame sizes and each 

data set contains features from 12 cepstral coefficients. 

K-NN classification is performed on each of the
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coefficients. In total, there are 120 classification results 

based on frame size and coefficients.   

The accuracy results are shown in Table 2. Three 

coefficients show 100% accuracy i.e. frame size 5000 ms 

at 2nd and 3rd coefficients; and also frame size 10000 ms 

at 5th coefficient. K-NN classification accuracy exceeds 

90% for all coefficients for frame size 2000 ms, 4000 ms, 

5000 ms and 10000 ms. The remaining frame size has 

accuracy varies from 25% to 90% with frame size 1000 

ms having the lowest accuracy for all coefficients i.e. 

between 26.29% to 34.85%. If the average accuracy from 

all coefficients is taken into consideration, it is calculated 

that frame analysis of 2000 ms gives the highest value.   

Based on the result, it is shown that maximum 

accuracy could be achieved using MFCC to classify the 

EMG signal of respiratory muscle based on different 

breathing tasks. However, it requires frame size 5000 ms 

and 10000 ms which is relatively huge. In certain 

application, the analysis frame size is required to be in 

short duration. This is necessary especially in real-time 

system where the analysis frame duration is as low as 

20ms [41]. The high accuracy of huge frame size is 

probably due to less number of frames along the 50000 

ms data. 

For example, frame size of 5000 ms will results in 19 

number of frames divided along the original data. Thus 

the number of features that corresponds to the 50000 ms 

data size is less compared to when the analysis frame size 

is shorter. This then would make the classification not to 

complex due to less number of feature samples.  

In the case of a shorter analysis frame size, 1000 ms 

for instance, it would divide the original data into 99 

frames which is more huge compare to the previous 

example on 5000 ms frame size. Therefore there would 

be more misclassified samples in the classification task. 

 

5. Summary 

Previous works related to this paper had investigated 

the EMG signal classification of respiratory muscles 

using four time and frequency domain features techniques 

which are root-mean-square, zero crossing, mean 

frequency and mean power frequency using Anova [42] 

and Feedforward Multilayer Perceptron [43]. This paper 

on the other hand, used MFFCC as feature extraction 

tool. It is concluded that MFCC technique in obtaining 

features of EMG signal could provide a good accuracy of 

signal classification. However the high classification 

accuracy is obtained at relatively long duration of data 

analysis frame size. The classification become inefficient 

at lower duration of frame size where in this work, 1000 

ms gives relatively low accuracy. This perhaps due to 

number of features that is obtained based on the analysis 

frame where larger frame size would give less number of 

feature which is then easier to classify. 

The aim of this work is to classify the EMG signal 

from respiratory muscles into different breathing tasks. 

Thus, to discriminate the EMG profile based on the 

breathing pattern, the easier way is to look at longer 

duration rather than a short period of time. With short 

period of time, there is not much information that could 

be obtained to determine the pattern of the EMG. 

Using MFCC, the emphasis is on frequency domain 

analysis. In order to obtain better representation for the 

EMG features, a longer period of analysis frame is 

needed so that the EMG frequency profile could be 

observed with more information. However, in certain 

application such as online classification and real-time 

pattern recognition, analysis in short period of time frame 

is required as the information need to be obtained in small 

time duration.   

As a future recommendation, it is proposed that the 

low classification accuracy at small size of data analysis 

frame should be overcome. For the purpose of breathing 

tasks classification based on EMG signal, analysis in 

short time duration of data frame could enable 

implementation of an online classification module that 

could be applied on an automatic rehabilitation device 

system. 
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 Table 1   K-NN Classification Accuracy Result 

Frame 
Size 
(ms) 

MFCC Classification Accuracy (%) 

1 2 3 4 5 6 7 8 9 10 11 12 

1000 34.85 34.85 31.69 27.84 27.50 29.10 28.76 28.59 27.21 26.64 26.29 27.04 
2000 99.54 98.96 98.49 97.80 98.26 97.80 97.91 97.91 98.38 97.80 99.54 98.38 
3000 80.99 85.26 81.35 76.02 77.26 73.18 67.85 65.72 65.72 65.54 65.01 63.94 
4000 99.05 96.92 99.05 97.87 99.05 99.05 95.73 96.68 96.68 97.87 96.92 96.92 
5000 98.50 100.00 100.00 95.51 97.01 95.51 97.01 98.50 97.01 98.50 97.01 95.51 
6000 91.29 91.29 83.33 82.20 82.95 77.27 75.38 70.83 66.67 67.42 66.29 65.15 
7000 92.11 95.61 89.04 94.30 88.16 82.89 77.19 74.56 68.42 70.61 62.28 66.67 
8000 90.67 95.85 89.64 91.71 85.49 85.49 84.46 75.13 81.87 77.20 80.83 75.13 
9000 93.75 95.45 90.91 92.61 89.20 84.66 77.84 67.05 56.25 64.77 64.20 64.77 
10000 97.47 94.30 97.47 91.77 100.00 97.47 94.30 92.41 91.77 97.47 92.41 91.77 
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