
International Journal of Integrated Engineering, Vol. 10 No. 1 (2018) p. 114-133

© Penerbit UTHM

DOI: https://doi.org/10.30880/ijie.2018.10.01.018

*Corresponding author: yahyafor2000@yahoo.com
2018 UTHM Publisher. All right reserved.

penerbit.uthm.edu.my/ojs/index.php/ijie

114

High performance 8-bit approximate multiplier using novel

4:2 approximate compressors for fast image processing

Fatemeh Ranjbar1, Yahya Forghani1*, Davoud Bahrepour1

1Department of Computer

 Islamic Azad University, Mashhad Branch, Mashhad, IRAN.

Received 24 February 2018; accepted 9 April 2018, available online 30 April 2018

1. Introduction

In many signal processing problems such as lossy

compression of images, sounds and films, the results of

using approximation computations and precise

computations have no significant difference from the

user’s point of view. JPEG, MP3 and MPEG are some

well-known algorithms for the mentioned lossy

compression problems. Each of these algorithms makes

some distortion on the original file in order to achieve a

better compression ratio. This amount of distortion of an

image, sound or film is usually ignorable from the user’s

viewpoint. In such problems, approximate computations

can be used instead of precise computations to reduce the

number of transistors, power consumption or delay.

Approximate addition and approximate

multiplication are some aspects of approximate

computations. In [1-4], some approximate adders and

approximate multipliers were studied and analyzed,

elaboratively. In [2], in order to reduce the number of

transistors and power consumption, an approximate

mirror full-adder (AMA) was proposed. Then, this

approximate full-adder was utilized in the JPEG

algorithm. In [3], another approximate full-adder was

proposed based on probabilistic CMOS. This technology

consumes very low power. These approximate full-adders

can be used to construct an approximate multiplier. In [5],

an n-bit approximate adder named low-part-or-adder

(LOA) was proposed. This adder computes the

summation of each of k(<=n) least significant bits

approximately by using only an Or-gate instead of a half

or full-adder. This adder ignores carry propagation in its k

least significant bits. This fast adder was then used in a

neural network and a fuzzy system utilized in fast face

recognition. In [6], an approximate booth multiplier was

proposed which then was used in low-pass finite impulse

response and then applied to digital signal processing. In

[7], in order to reduce delay and the number of

transistors, a truncated multiplier was proposed. In this

approximate multiplier, the k least significant bits of

partial products are truncated or ignored, and the

remaining most significant bits of partial products are

added with each other and the result then is added with a

constant to compensate the truncation, and the final result

is rounded to p bits. In [8], in order to increase the

accuracy of truncated multiplier, the compensated value

is determined based on the value of truncated bits. In

other words, the compensated value is not constant any

longer. Another truncated multiplier was proposed in [9]

where the maximum absolute error is guaranteed to be no

more than 1 unit of least position. This multiplier was

implemented in Field Programmable Gate Array (FPGA),

and then it was applied for image blending [10]. In [11],

an approximate 2-bit multiplier was proposed to reduce

power consumption, and then bigger multipliers were

constructed based on the mentioned 2-bit multiplier. This

multiplier then was applied to design an approximate

Gaussian smoothing image improvement filter for noise

reduction. In [12], an approximate signed multiplier was

proposed which is 20% faster than a precise signed

multiplier. In [13, 14], in order to reduce the carry

propagation delay, an approximate adder was proposed

that compute i-th bit of the summation of the two number

Abstract: In this paper, a novel 8-bit approximate multiplier is proposed based on three novel 4:2 approximate

compressors which its delay and error is less than those of the multipliers constructed by traditional 4:2

approximate compressors, and its delay is also less than that of an 8-bit multiplier constructed by using 3:2 precise

compressors. To do so, each novel compressor is designed such that its output carry is independent of the output

carry of its previous compressor in the multiplier. Therefore, the problem of carry propagation delay is eliminated

and a fast multiplier is constructed. To obtain the most accurate multiplier, the best compressor of the three

proposed compressors for each multiplier’s column is determined using the genetic algorithm. Moreover, one can

use the approximate compressors only at the k least significant multiplier’s columns for more error reduction. The

proposed multiplier is used for image blending and image compression. Our simulations show that for example the

error and the delay of the proposed method for k=9 is at-least 32.52% and 33.10% less than those of traditional 4:2

approximate compressor based multipliers, respectively.

Keywords: Approximate Compressors, Dadda Multiplier, Genetic Algorithm, Image Blending, Compression

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 115

A and B, i.e. Si, based on only the i-th and (i-1)-th bit of

the two numbers. Then, to reduce the error, an error

signal is also produced based on the same two bits. If the

error signal is added to S, the accurate value of sum of A

and B is obtained. But, this involves using a time-

consuming Carry Propagation Adder (CPA). Therefore,

to increase the speed, the sum of S and the error signal

were computed approximately by using only some or-

gates instead of some half and full-adders. In each of [15]

and [16], a 4:2 approximate compressor with the mean

square error (MSE) of 0.25 was proposed and then each

one was used to design a fast 8-bit Dadda multiplier. The

delay of each of these two 4:2 approximate compressors

is less than that of 4:2 precise compressors.

The delay of an 8-bit approximate Dadda multiplier

constructed by using the traditional 4:2 approximate

compressors is also less than that of an 8-bit Dadda

multiplier constructed by using 4:2 precise compressors

[15]. But, our experiments show that the delay of the

former multiplier and an 8-bit Dadda multiplier

constructed by using only some half-adders and full-

adders (3:2 precise compressors) does not differ.

However, the number of transistors and the power

consumption of the former multiplier is less than the

successor multiplier.

In this paper, a novel 8-bit approximate multiplier is

proposed based on three novel 4:2 approximate

compressors which its delay and error is less than those of

the Dadda multipliers constructed by the traditional 4:2

approximate compressors, and its delay is less than that of

Dadda multiplier constructed by using only some half-

adders and full-adders (3:2 precise compressors). To do

so, the novel compressor is designed such that its output

carry is independent of the output carry of its previous

compressor in the multiplier. Therefore, the problem of

carry propagation delay is eliminated and a fast multiplier

is constructed. Using each of the proposed compressors at

each column of partial products has different effect on the

multiplier error and also affects the next column of partial

products, because the output carry of each compressor is

connected to the next compressor input. To obtain the

most accurate multiplier, the best compressor of the three

proposed compressors for each column of partial products

is determined using the genetic algorithm. Moreover, one

can use the approximate compressors only at k least

significant columns of partial products for more error

reduction. Therefore, for each k, a different multiplier is

constructed.

The proposed 8-bit multiplier is applied for image

blending and image compression. Simulations show that

the delays and also the errors of the multipliers

constructed by the traditional 4:2 approximate

compressors are more than those of the proposed

multipliers for some k. For example, the error and the

delay of the proposed method for k=12 is at-least 32.52%

and 33.10% less than those of the traditional 4:2

approximate compressor based multipliers, respectively.

The innovations of this paper are as follows:

 Introducing a novel 4:2 approximate compressor

where its output carry is independent of some of

its inputs.

 Introducing a novel approximate 8-bit multiplier

based on the proposed compressor.

 Using genetic algorithm to decrease the

proposed multiplier error.

In continue, in section 2, traditional compressor-

based multipliers are introduced. Then, in section 3, our

novel compressors and multipliers are proposed. In

section 4, by using some simulations, the proposed

multipliers are compared with some other multipliers.

Then, our proposed approximate multipliers are applied

for image blending and image compression in section 5.

Finally, the paper is concluded in section 6.

2. Traditional 4:2 compressor-based

multipliers

A compressor computes the sum of some 1-bit

numbers. Fig. 1.a shows the general form of a 4:2

compressor, and Fig. 2 depicts an especial

implementation of a 4:2 compressor based-on full-adder.

Fig. 3 shows a low delay implementation [17]. Similar

implementations can be found in [18-23].

(a)

(b)

Fig. 1. The general form of a 4:2 compressor (a) with

input carry, (b) without input carry [15].

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 116

Fig. 1. The Full-adder-based implementation of 4:2

precise compressor [15].

Fig. 2. A low delay implementation of 4:2 precise

compressor [17].

In each of the 4:2 approximate compressors proposed

in [15] and [16], the input carry was supposed to be zero.

Therefore, the input carries were removed from their

input list. Fig. 1.b shows the general form of a 4:2

compressor without input carry. Fig. 4 depicts two special

implementations of the mentioned approximate

compressors [15,16]. Table 1 shows the truth tables of

these two circuits. According to these tables, the MSE of

each of these two compressors is 0.25.

(a)

(b)

Fig. 3. The 4:2 approximate compressors without input

carry proposed in (a) [15], and (b) [16].

Table 1. The Truth tables of 4:2 approximate compressors

proposed in (a) [15], and (b) [16]. The difference column

indicates the difference between the output of

approximate and precise compressors.

 (a) (b)
difference sum carry x1 x2 x3 x4

0 0 0 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 1 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 1 0
0 0 1 0 1 1 0
0 1 1 1 1 1 0
0 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 1 1 1 1 0 1
0 0 1 0 0 1 1
0 1 1 1 0 1 1
0 1 1 0 1 1 1
-2 0 1 1 1 1 1

difference sum carry x1 x2 x3 x4

1 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
-1 1 0 1 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 1 0
0 0 1 0 1 1 0
0 1 1 1 1 1 0
0 1 0 0 0 0 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 1 1 1 1 0 1
-1 1 0 0 0 1 1
0 1 1 1 0 1 1
0 1 1 0 1 1 1
-1 1 1 1 1 1 1

The second stage of Fig. 5 shows partial product

matrix of an 8-bit multiplier using the dot notation. Each

dot is an unspecified bit. Each partial product is computed

using an AND gate. Partial products may be rearranged in

a tree-like format as the first stage of Fig. 6. Each

multiplier must compute the summation of the partial

products. In other words, each multiplier must reduce

these eight rows of partial products to two rows, then, the

final results is produced by the summation of these two

binary numbers using a CPA.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 117

Fig. 4. Partial product matrix of an 8-bit multiplier

Fig. 6 shows an 8-bit Dadda multiplier constructed

by only some half and full-adders, and Fig. 7 depicts an

8-bit Dadda multiplier constructed by some half and full-

adders and some 4:2 compressors. Each rectangle

represents a half adder, full adder or 4:2 compressor.

Each of half adder, full adder and 4:2 compressor output

a summation and a carry shown with two dots in the same

column and the next column of the next stage,

respectively.

As it can be seen, the former multiplier is performed

in five stages while the successor multiplier is performed

in three stages. In the two first stages of the successor

multiplier shown in Fig. 7, Carry Save Adders (CSA) are

used to decrease the eight rows of partial products to two

rows, and then a CPA is used to compute the final result.

In [15] and [16], in order to decrease the power

consumption and delay of multiplier shown in Fig. 7, 4:2

approximate compressor was used instead of precise

compressor. The delay of an 8-bit approximate Dadda

multiplier constructed by using the traditional 4:2

approximate compressors [15, 16] is less than that of an

8-bit Dadda multiplier constructed by using 4:2 precise

compressors. But, our experiments show that the delay of

the former and 8-bit Dadda multiplier constructed by

using only some half-adders and full-adders (3:2 precise

compressors) does not differ. However, the number of

transistors and the power consumption of the former

multiplier is less than the successor multiplier.

In this paper, a novel 8-bit approximate multiplier is

proposed based on three novel 4:2 approximate

compressors which its delay and error is less than those of

the Dadda multipliers constructed by the traditional 4:2

approximate compressors, and its delay is also less than

that of the Dadda multiplier constructed by using only

some half-adders and full-adders (3:2 precise

compressors). To do so, each novel compressor is

designed such that its output carry is independent of the

output carry of its previous compressor in the multiplier.

Therefore, the problem of carry propagation delay is

eliminated and a fast multiplier is constructed.

Fig. 5. An 8-bit Dadda multiplier constructed by only

some half and full-adders (each rectangle represents a

half adder or full adder) [18].

Fig. 6. Using 4:2 compressors to construct an 8-bit

multiplier (each rectangle represents a half adder, full

adder or 4:2 compressor) [15].

3. Our proposed multipliers

Before proposing our novel multipliers, its novel

components, i.e. the novel compressors, must be

introduced.

3.1 Our Proposed Compressors

Fig. 8 shows the circuits of the proposed approximate

compressors and Table 2 shows their truth tables. As it

can be seen, the output of each of these approximate

compressors differs from the output of precise

compressor for four truth table states. Therefore, the MSE

of each of these approximate compressors is equal to 0.25

which is the same as that of the compressors proposed in

[15] and [16]. The advantage of each proposed

approximate compressor with respect to the traditional

approximate 4:2 compressors is that its output carry is

independent of its two inputs. For example, the output

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 118

carry of the first proposed approximate compressor,

shown in Fig. 8.a, is independent of x3 and x4 (third and

fourth input). Therefore, if the output carry of an instance

of this compressor is connected to the input x3 or x4 of

another instance of this compressor, then the output carry

of the successor can be produced even if the output carry

of the former is not ready. Therefore, if the components

of a CPA are such compressors, then this CPA does not

have the carry propagation delay problem and

consequently is very rapid.

(a)

(b)

(c)

Fig. 7. The three proposed 4:2 compressors.

Table 2. Truth tables of the three proposed compressors.
3st compresor 2st compresor 1st compresor Input

differ. sum carry differ. sum carry differ. sum carry x1 x2 x3 x4

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1 0 0 0
0 1 0 1 0 1 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1 1 1 0 0
1 0 1 1 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 1 0 1 0
0 0 1 0 0 1 0 0 1 0 1 1 0
0 1 1 0 1 1 0 1 1 1 1 1 0
0 1 0 0 1 0 0 1 0 0 0 0 1
0 0 1 1 1 0 0 0 1 1 0 0 1
1 1 0 0 0 1 0 0 1 0 1 0 1
0 1 1 0 1 1 0 1 1 1 1 0 1
0 0 1 0 0 1 1 1 0 0 0 1 1
0 1 1 0 1 1 0 1 1 1 0 1 1
0 1 1 0 1 1 0 1 1 0 1 1 1
-1 1 1 -1 1 1 -1 1 1 1 1 1 1

3.2 Our Proposed CPA

Each of Fig. 9, Fig. 10 and Fig. 11 depicts a CPA

which computes the sum of three 3-bit numbers, i.e. the

numbers A, B and C, by using different 4:2 approximate

compressors, i.e. the compressors proposed in [15] and

[16], and our proposed approximate compressors,

respectively. In the CPA constructed by using our

proposed compressors, the output carry of each of

proposed compressor was connected to the fourth input

(x4) of its successor compressor. Since the output carry of

the proposed compressors is independent of the fourth

input, the proposed CPA does not have the carry

propagation delay problem. In the mentioned figures, the

longest path of each CPA was shown with a thick line. As

can be seen, the longest path of each CPA constructed by

the compressors proposed in [15] or [16] is the path from

input carry of CPA to the output carry of the last

compressor, while the longest path of the CPA

constructed by our proposed compressor is the path from

an input of a compressor to the sum pin of its successor

compressor. Meanwhile, the longest path to the output

carry of the proposed CPA is the path from an input of its

last compressor to that compressor output carry which is

too short. This path was also depicted in Fig. 11 by a

thick line.

Fig. 12 depicts the longest path in an 8-bit CPA

constructed by the compressors proposed in [15] or [16],

and Fig. 13 depicts the longest path in an 8-bit CPA

constructed by the proposed compressors. As can be seen,

the longest path of a CPA constructed by the compressors

proposed in [15] and [16] becomes too longer for the

bigger CPA, while the longest path of a CPA constructed

by the proposed compressors is constant. Strictly

speaking, regardless of the CPA length, the longest path

of the CPA constructed by our proposed compressor is

the path from an input of a compressor to the sum pin of

its successor compressor.

Now, we determine the upper bound error of the

proposed CPA. Consider the proposed CPA of the length

t. If only t-th compressor of this CPA is approximate

compressor, the MSE of CPA becomes
1 4

2
16

t  ,

because the MSE of the proposed compressor is

4
0.25

16
 . Therefore, an upper bound MSE for the

proposed CPA is
1 24

2 2 1
16

t t  
   

 
when all

compressors are approximate compressors, because the

value of t-1 least significant bits of CPA is no more than
22 1t  . To obtain this upper bound, we suppose that

the value of t-1 least significant bits of CPA is always
22 1t  more than or less than its real value, while

according to the truth table of our proposed compressor,

the error probability of the proposed compressor is 0.25.

Therefore, a tighter upper bound MSE for the proposed

CPA is  1 24
2 0.25 2 1

16

t t  
    

 
.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 119

Fig. 8. A CPA constructed by using the 4:2 approximate compressor proposed in [15] to compute the sum of three 3-bit

numbers. The thick line shows its longest path.

Fig. 9. A CPA constructed by using the 4:2 approximate compressor proposed in [16] to compute the sum of three 3-bit

numbers. The thick line shows its longest path.

Fig. 10. A CPA constructed by using our proposed 4:2 approximate compressor.

The thick lines show its overall longest path and the longest path to S4.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 120

Fig. 11. A CPA constructed by using the 4:2 approximate compressor proposed in [15] or [16] to compute the sum of

three 8-bit numbers. The thick line shows its longest path.

Fig. 12. A CPA constructed by using our proposed 4:2 approximate compressor to compute the sum of three 8-bit

numbers. Each thick line can be the longest path.

3.3 Our First Proposed Approximate

Multiplier

The approximate compressor shown in Fig. 8.a is

used to construct our first approximate multiplier. Fig. 14

depicts this multiplier which is similar to the Dadda

multiplier shown in Fig. 6. The number of stages of the

proposed multiplier is one stage less than that of the

former. At the last stage of the proposed multiplier, in

order to obtain the summation of the three remaining

rows of partial product, an especial CPA is used which

was constructed by some half adders and some proposed

approximate compressors. In each of the columns 2 and

15 of this CPA, a half adder is used, and in each of the

columns 3 to 14, the first proposed compressor is used.

Indeed, columns 3-14 of this CPA is our proposed CPA

introduced in the previous sub-section which does not

have the carry propagate delay problem. Meanwhile, one

can use the approximate compressors only in the k least

significant bits of the CPA to decrease its error. Fig. 15

shows this multiplier for k=8.

Fig. 13. The proposed multiplier. Each rectangle

represents a half adder or a full adder. Sum of the last

stage’s columns are computed using a CPA which is

constructed by some half-adders, full-adders, and

proposed 4:2 compressors.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 121

Fig. 14. The proposed multiplier for k=8. Each rectangle

represents a half adder or a full adder. Sum of the last

stage’s columns are computed using a CPA which is

constructed by some half-adders, full-adders, and

proposed 4:2 compressors.

3.4 Our Second Proposed Approximate

Multiplier

Consider the three proposed approximate

compressors shown in Fig. 8. The only difference

between these three compressors is the sequence of their

inputs. For example, if the second input of compressor

shown in Fig. 8.b is swapped with the third, the resulting

circuit is the third compressor. Notice that changing the

sequence of input of a precise compressor does not alter

its output because a precise compressor computes the sum

of its inputs, and its output is independent of the inputs

sequence. But, this is not true for the approximate

compressors.

As it can be seen in the truth Table 2, the output

carry of each of the three proposed approximate

compressors is independent of its fourth input. Therefore,

if each of these three approximate compressors is used in

the last stage of the proposed approximate multiplier to

construct the CPA, the carry propagation delay problem

is eliminated as long as the output carry of each of these

compressors is connected to the fourth input of its next

compressor. But, using each of the proposed compressors

at each columns of CPA has different effect on the

multiplier error and also affects the next column of CPA,

because the output carry of each proposed compressor is

connected to the next proposed compressor input. The

proposed multiplier for an especial k was shown in the

Fig. 15. To determine the type of approximate

compressors for each columns 3 to k of CPA of multiplier

to construct a multiplier with the least possible error, the

following problem must be solved:

2 1 2 1

0 0

min ((,)

k k

i j

MSE preciseMultiplication i j
 

 

 
2(,))approximateMultiplication i j

Subject to: types of compressors of i-th column of CPA

of approximate multiplier {1,2,3}, 3,4,..., .i k 

(1)

To solve the problem (1), each time a different

combination of the three proposed compressors was used

at the columns of CPA of multiplier, and the MSE of the

constructed multiplier was calculated. Then, the best

multiplier with the least MSE and the types of

compressors used in it was registered in Table 3.

Table 3. The best compressor type of each columns of

CPA of multiplier for different value of k obtained by

solving the problem (1).
Column number

14 13 12 11 10 9 8 7 6 5 4 3

 2 3

k

 1 3 4

 1 1 3 5

 1 1 1 1 6

 2 3 1 1 1 7

 2 2 1 1 2 2 8

 2 2 3 1 3 3 3 9

 2 2 3 3 3 2 3 3 10

 2 2 3 3 3 1 3 2 3 11

 2 2 3 3 1 3 1 2 1 3 12

 2 2 1 1 1 3 2 2 2 3 2 13

1 2 3 1 3 1 1 3 2 3 1 1 14

If the k in the problem (1) is a big number, the

number of combinations of compressors types for the

columns 3 to k of CPA of an 8-bit multiplier becomes a

big number. For example, the number of combinations of

compressors types for k=14 is equal to 3(14-2)=531,441.

The number of combinations of compressors types for a

bigger k in a 16-bit multiplier increases exponentially and

it isn’t possible to compare all of combinations of

compressors types in a reasonable time. To obtain the

best types of compressors, an integer mathematical

programming (Problem 1) must be solved. One can use

the genetic algorithm to solve it instead of comparing all

possible combinations of compressors types. In this

paper, the basic genetic algorithm was used to solve the

problem (1) only for k=13 and k=14 and the result was

registered in Table 3. The length of chromosomes in the

genetic algorithm is equal to the number of compressors

in the CPA of multiplier. The i-th gene of chromosome is

a number between 1 to 3 which denotes compressor type.

The fitness function of the genetic algorithm for solving

the problem (1) is the negative of multiplier MSE for a

combination of compressors types in the CPA of

multiplier.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 122

4. Simulations

In this section the proposed multipliers are compared

with ten other multipliers: truncated1 [7], truncated2 [8],

truncated3 [9], LOA [5], Momeni [15], Ma [16], Liu

[13,14], Kulkani [11], Accurate3:2 (the Dadda multiplier

constructed by 3:2 precise compressors), and Accurate4:2

(the Dadda multiplier constructed by 4:2 precise

compressors).

Table 4 shows the MSE, the delay, the number of

transistors, and the product of delay and the number of

transistors (PDT) of each multiplier. This table also

shows the percentages of delay improvement, the

percentages of the number of transistors improvement,

the percentages of PDT improvement for each multiplier

with respect to the multiplier Accurate3:2. According to

this table, for each k, the MSE of the second approximate

proposed multiplier is less than that of the first

approximate proposed multiplier. To compute the MSE,

each multiplier was simulated in MATLAB, and for

computing the delay and the number of transistors needed

to construct each multiplier, each multiplier was

simulated in HSPICE at 16 nm CMOS technology based

on the best gates of [21] (See Fig. 16). Working voltage

and the temperature were supposed to be 3.3v and 27

degrees centigrade.

According to Table 4, when the multiplication

operands are supposed to be selected from a uniform

distribution,

• For each k, the MSE of the second approximate

proposed multiplier is less than that of the first

approximate proposed multiplier.

For k=3,4,…,12, the error and the delay of the

second proposed method are less than those of the

traditional 4:2 approximate compressor-based multipliers.

Table 5(a) (b)

• Table 1 shows the least error and delay

improvement of the second proposed method with respect

to the traditional 4:2 approximate compressor-based

multipliers.

• The second proposed multiplier has less delay

than that of the other multipliers with the same MSE

level, except the LOA for some k, or the second proposed

multiplier has less MSE than that of the other multipliers

with the same delay level, except the LOA for some k.

The second proposed multiplier for k=8,9,…,14 has also

less delay than that of the LOA with the same MSE level.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 123

Table 4. Comparison of different multipliers.

Multiplier Log(MSE) #Transistors

#Transistors

impr. with

respect to Acc3:2

Delay
(ns)

Delay improvement

with respect to

Accurate3:2

PDT
PDT impr. with

respect to Acc3:2

truncated1 [7] ,P=11,K=4 24.2 14.2 22422 1427 1848. 2478428 34422

truncated2 [8] ,P=11,K=4 2423 1722 12422 1474 1.422 2278422 24427

truncated3 [2] ,P=8,k=4 .411 1382 2844. 1443 24441 2121437 .2477

LOA [4] , k=3 2417 1222 1474 1421 7412 3233474 8482

LOA [4] , k=4 244. 187. 3412 148. 12421 3.41472 13432

LOA [4] , k=5 14.2 18.. .424 1472 1.4.3 3241442 184.1

LOA [4] , k=6 2421 1822 4472 1422 17484 328.422 22421

LOA [4] , k=7 2472 1722 7413 1421 21422 2822412 27424

LOA [4] , k=8 34.2 1772 84.7 144. 24422 2732417 314..

LOA [4] , k=9 24.. 17.. 2482 14.. 32428 2412474 32424

LOA [4] , k=10 .422 1718 11412 .1 32 34424 2278422 .2483

LOA [4] , k=11 4424 1222 12441 2.1 32442 212742. .7413

LOA [4] , k=12 4482 1222 13484 .1 14 ..444 1223447 42423

LOA [4] , k=13 2432 12.2 14422 2422 41472 1222417 42412

LOA [4] , k=14 2484 121. 1244. 248. 42422 1322472 24482

LOA [4] , k=15 7438 4881 17482 2422 22422 1123481 72432

Momeni [14] 7421 1442 12484 22.2 2 312.428 12484

Ma [12] 2427 1282 12482 22.2 2 3.7.43. 12482

Liu [13,14] 2412 222. -.424 1412 .44.2 227.477 .2422

Kulkani [11] 2481 1412 21482 2432 -12477 3413488 11483
Proposed1,k=3 2422 1228 143. 1421 7414 3242447 84.2
Proposed1, k=4 1412 1882 2428 1472 13423 3372473 14437
Proposed1, k=5 1472 1842 .423 1473 14422 3227422 12422
Proposed1, k=6 2431 1832 4437 1424 12442 3232412 23421
Proposed1, k=7 3423 182. 2472 1422 22422 2822417 274.3
Proposed1, k=8 3422 1778 8422 41.1 22422 2284422 32421

Proposed1, k=9 .412 1742 24.1 37.1 33412 2.14432 32432

Proposed1, k=10 .483 1722 12474 31.1 32418 2222422 .342.

Proposed1, k=11 44.2 1722 12422 21.1 .1417 2222421 .8428

Proposed1, k=12 2423 127. 134.. 22.1 .84.1 1772422 4443.

Proposed1, k=13 2442 12.8 1.478 21.2 4442. 1422427 22422
Proposed1, k=14 7418 1222 12413 2424 2841. 122.428 73428
Proposed2, k=3 2424 1228 143. 1421 7414 3242447 84.2
Proposed2, k=4 1412 1882 2428 1472 13423 3372473 1443727
Proposed2, k=5 1471 1842 .423 1473 14422 3227422 12422
Proposed2, k=6 2431 1832 4437 1424 21244 3232412 23421
Proposed2, k=7 2424 182. 2472 1422 22422 2822417 274.3
Proposed2, k=8 3442 1778 8422 41.1 22422 2284422 32421

Proposed2, k=9 .422 1742 24.1 37.1 33412 2.14432 32432

Proposed2,k=10 .422 1722 12474 31.1 32418 2222422 .342.

Proposed2, k=11 4428 1722 12422 21.1 .1417 2222421 .8428

Proposed2, k=12 4482 127. 134.. 22.1 .84.1 1772422 4443.

Proposed2, k=13 24.8 12.8 1.478 21.2 4442. 1422427 22422
Proposed2, k=14 742. 1222 12413 2424 2841. 122.428 73428

Accurate3:2 - 123. 2 22.2 2 3284432 2

Accurate4:2 - 1242 -2482 .2 36 -1.472 .222421 -14424

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 124

Table 5. The least error and delay improvement of the

second proposed method with respect to the traditional

4:2 approximate compressor-based multipliers (%).
 The least error improvement

(%)
The least delay improvement
(%)

K=3 89.25 7.15

K=4 80.89 13.03

K=5 71.83 15.63

K=6 61.95 19.60

K=7 51.35 22.20

K=8 42.00 26.70

K=9 32.52 33.10

K=10 22.65 36.19

K=11 13.06 41.17

K=12 2.96 48.41

Fig. 17 shows the delay of each multiplier versus its

MSE. There is a trade off between the delay and the MSE

of a multiplier. The less the delay of a multiplier, the

more its MSE. But, according to this Fig., the second

proposed multiplier has less delay than that of the other

multipliers with the same MSE level, except the LOA for

some k, or the second proposed multiplier has less MSE

than that of the other multipliers with the same delay

level, except the LOA for some k. The second proposed

multiplier for k=8,9,…,14 has also less delay than that of

the LOA with the same MSE level.

Fig. 18 shows the PDT of each multiplier versus its

MSE. According to this Fig., the second proposed

multiplier has less PDT than that of the other multipliers

with the same MSE level, except LOA for some k and the

truncated multipliers, or the second proposed multiplier

has less MSE than that of the other multipliers with the

same PDT level, except LOA for some k and the

truncated multipliers. The second proposed multiplier for

k=8,9,11,…,14 has also less PDT than that of LOA with

the same MSE level.

(a)

(b)

(c)

(d)

(e)

Fig. 15. The gates used for simulation: (a) XOR-XNOR

[17], (b) MUX [17], (c) NOR, (d) NAND, (e) NOT.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 125

Fig. 16. The delay of each multiplier versus its MSE.

Fig. 17. The PDT of each multiplier versus its MSE.

5. Applications

5.1 Image Blending

Fig. 19 shows an application of multiplication in

image processing. The right blended 8-bit image in this

Fig. was obtained by peer-to-peer pixel multiplication of

the two left 8-bit images using a precise multiplier and

truncation of the 16-bit result to 8-bit. In this sub-section,

the approximate multipliers are used to blend the two

right images. Table 6 shows the PSNR of the blended

images for each multiplier. The PSNR formulation is as

follows:

 
2

1010log

Peak Signal Value

MSE

PSNR

 
 
 
 
  (2)

The blended images obtained by different

approximate multipliers were shown in Fig. 21. As it can

be seen, the most of the blended images obtained by

approximate multipliers do not differ significantly from

that of obtained by precise multiplier.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 126

(a)

(b)

(c)

Fig. 18. Blended images using precise multiplier (a) the

first image, (b) the second image, (c) Blended image.

Fig. 20 shows the delay of each multiplier versus the

negative of its PSNR for the image blending. There is a

trade off between the delay and the -PSNR of a

multiplier. The less the delay of a multiplier, the more its

-PSNR. But, according to this Fig., the second proposed

multiplier has less delay than that of the other multipliers

with the same PSNR level, except LOA for some k, or the

second proposed multiplier has less -PSNR than that of

the other multipliers with the same delay level, except

LOA for some k. The second proposed multiplier for

k=8,9,…,14 has also less delay than that of LOA with the

same PSNR level.

Table 6. PSNR of blended images for different

approximate multipliers.
Multiplier PSNR Multiplier PSNR

truncated1 [7] ,

p=11,k=4
71432 Proposed1, k=5 72422

truncated2 [8] ,

p=11,k=4
74481 Proposed1, k=6 72423

truncated3 [2] ,

p=8,k=4
44434 Proposed1, k=7 24478

LOA [4] , k=3 2.4.. Proposed1, k=8 42423

LOA [4] , k=4 22428 Proposed1, k=9 4.432

LOA [4] , k=5 82418
Proposed1,

k=10
.7482

LOA [4] , k=6 72412
Proposed1,

k=11
.1427

LOA [4] , k=7 22442
Proposed1,

k=12
34423

LOA [4] , k=8 21442
Proposed1,

k=13
22421

LOA [4] , k=9 444..
Proposed1,

k=14
2.422

LOA [4] , k=10 .243. Proposed2, k=3 82472

LOA [4] , k=11 .3412 Proposed2,k=4 83473

LOA [4] , k=12 37412 Proposed2,k=5 77472

LOA [4] , k=13 33422 Proposed2,k=6 7242.

LOA [4] , k=14 2.422 Proposed2,k=7 43.22

LOA [4] , k=15 1242. Proposed2,k=8 21422

Momeni [14] 27482 Proposed2,k=9 444..

Ma [12] .2428 Proposed2,k=10 .24..
Liu [13,14] 3342. Proposed2,k=11 .3478

Kulkani [11] 22432 Proposed2,k=12 37422
Proposed1, k=3 82423 Proposed2,k=13 31428
Proposed1, k=4 8.432 Proposed2,k=14 28423

Fig. 19. The delay of each multiplier versus the negative of its PSNR for the image blending.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 127

Truncated1 [7]

Truncated2 [8]

Truncated3 [2]

LOA [4] ,k=3

LOA [4] ,k=4

LOA [4] ,k=5

LOA [4] ,k=6

LOA [4] ,k=7

LOA [4] ,k=8

LOA [4] ,k=9

LOA [4] ,k=10

LOA [4] ,k=11

LOA [4] ,k=12

LOA [4] ,k=13

LOA [4] ,k=14

LOA [4] , k=15

Momeni [14]

Ma [12]

Liu [13,14]

Kulkani [11]

Proposed1, k=3

Proposed1,k=4

Proposed1,k=5

Proposed1,k=6

Proposed1,k=7

Proposed1,k=8

Proposed1,k=9

Proposed1,k=10 Proposed1,k=11 Proposed1,k=12

Proposed1,k=13

Proposed1,k=14

Proposed2,k=3

Proposed2,k=4

Proposed2,k=5

Proposed2,k=6

Proposed2,k=7

Proposed2,k=8

Proposed2,k=9

Proposed2,k=10

Proposed2,k=11

Proposed2,k=12

Proposed2,k=13

Proposed2,k=14

Accurate3:2

Fig. 20. The blended images obtained by different

approximate multipliers.

Fig. 22 shows the PDT of each multiplier versus the

negative of its PSNR for the image blending. According

to this Fig., the second proposed multiplier has less PDT

than that of the other multipliers with the same PSNR

level, except LOA for some k and truncated1 and

truncated2, or the second proposed multiplier has less -

PSNR than that of the other multipliers with the same

PDT level, except LOA for some k and truncated1 and

truncated2. The second proposed multiplier for

k=8,9,…,14 has also less PDT than that of LOA with the

same PSNR level.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 128

Fig. 21. The PDT of each multiplier versus the negative of its PSNR for the image blending.

5.2 Image Compression

In this section, the proposed multiplier is used in the

JPEG algorithm for lossy image compression. The block

diagram of JPEG algorithm was shown in Fig. 23. In this

algorithm, first, the image is encoded to the color coding

YUV. Then, their 8×8 blocks of each channel Y, U and V

shown by f is transformed from the time domain into the

frequency domain using Discrete Cosine Transform

(DCT) [24] to obtain a new 8×8 blocks named F. the

DCT formulation is as follows:

 
() ()

,
4

C u C v
F u v  

   7 7

0 0

2 1 2 1
cos cos (,)

16 16i j

i u j u
f i j

 

 

    
   
   



 (3)

where

2
0,

() 2

1 .

if u
c u

otherwise




 



 In this paper, integer value version of this

transformation [25] is used which is as follows:
7 7

0 0

1
(,) (,) (,),

1024 i j

F u v z i j f i j
 

  (4)

where
() ()

(,) (1024
4

C u C v
z i j round  

   2 1 2 1
cos cos)

16 16

i u j u     
   
   

is an 8-bit

integer value.

z(i,j) for each i and j is calculated one time, and is

stored in a table to be used in the compression phase of

each images [26]. Therefore, since f(i,j) is considered to

be an 8-bit value, F(u,v) can be computed using some 8-

bit multiplications and 8-bit additions, and then by

dividing the result to 1024 or right shifting it 10 times. In

this paper, the additions are calculated using a precise

adder and only the multiplications were calculated using

an approximate multiplier. Each times, each of the six

standard images shown in Fig. 24 was compressed using

an approximate multiplier and then decompressed. Then,

the similarity amount of the original image and the

decompressed image was calculated using the PSNR, and

was registered then in Table 7. In this table, the mean of

the PSNR of the six decompressed images for each

approximate multiplier, and also the percentages of

improvement of these mean with respect to the mean

PSNR of decompressed images obtained by Accurate3:2

were registered. One series of the decompressed images

each one obtained by using a different multiplier was

shown in Fig. 25. As it can be seen, the original image

and the decompressed images often do not differ

significantly.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 129

Fig. 22. Block diagram of JPEG algorithm [24].

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 23. Six benchmark images.

Truncated1 [7]

Truncated2 [8]

Truncated3 [2]

LOA [4] ,k=3

LOA [4] ,k=4

LOA [4] ,k=5

LOA [4] ,k=6

LOA [4] ,k=7

LOA [4] ,k=8

LOA [4] ,k=9

LOA [4] ,k=10

LOA [4] ,k=11

LOA [4] ,k=12

LOA [4] ,k=13

LOA [4] ,k=14

LOA [4] ,k=15

Momeni [14]

Ma [12]

Liu [13,14]

Kulkani [11]

Proposed1,k=3

Proposed1, k=4

Proposed1,k=5

Proposed1, k=6

Proposed1,k=7

Proposed1, k=8

Proposed1, k=9

Proposed1, k=10

Proposed1,k=11

Proposed1, k=12

Proposed1, k=13

Proposed1,k=14

Proposed2,k=3

Proposed2, k=4

Proposed2,k=5

Proposed2, k=6

Proposed2, k=7

Proposed2,k=8

Proposed2, k=9

Proposed2,k=10

Proposed2,k=11

Proposed2,k=12

Proposed2, k=13

Proposed2, k=14

Accurate3:2

Fig. 24. Decompressed images for different multipliers.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 130

Table 7. PSNR or similarity amount of the original images and the corresponding decompressed images for different

multipliers.

Multiplier
PSNR of each image type

Mean of

PSNR

PSNR mean improvement
with respect to

Accurate3:2 a b c d e f

truncated1 [7] , P=11,K=4 24422 24422 2442. 24432 24424 24433 24432 1.4.777

truncated2 [8] , P=11,K=4 72423 34227 72412 7347. 73421 73448 73444 342722

truncated3 [2] , P=8,k=4 4.4.2 44472 .2421 .2488 .2422 44432 .2487 3.428

LOA [4] , k=3 7.422 744.8 83424 724.1 74418 72428 72422 2412

LOA [4] , k=4 7342. 744.1 82422 72432 74412 72422 72417 242.

LOA [4] , k=5 734.1 7.47. 72421 744.2 7.4.2 74412 74432 1434

LOA [4] , k=6 71487 72442 744.2 73422 72482 72422 73414 .422

LOA [4] , k=7 27423 28414 22444 2847. 28414 28422 28484 2483

LOA [4] , k=8 214.. 21472 22412 22412 214.8 21481 2242. 17422

LOA [4] , k=9 44473 44428 42418 44471 4242. 44724 42441 24428

LOA [4] , k=10 .2442 .2471 .2488 .2472 42422 .2442 42422 33421

LOA [4] , k=11 .3473 ..4.8 ..412 ..42. ..441 ..422 .4422 .2472

LOA [4] , k=12 38428 32432 32473 32474 32444 32418 32483 .7483

LOA [4] , k=13 3.42. 32414 34411 32418 34478 34442 32438 4243.

LOA [4] , k=14 22487 32444 3142. 31481 31422 324.3 31441 48473

LOA [4] , k=15 22424 284.2 28442 32427 284.3 27427 224.2 214.2

Momeni [14] 234.. 23422 22437 22437 2247. 23422 22424 2242.

Ma [12] .2422 .8422 .2422 41428 .2471 .8427 .2422 3444.

Liu [13,14] .1482 .242. .3414 .3424 .2422 .2423 .3422 .3427

Kulkani [11] 32428 .2414 ..4.. .3442 .2427 .2478 .2422 1.348

Proposed1, k=3 73422 744.2 82482 72432 74413 74422 72417 242.

Proposed1, k=4 73472 74422 81434 74421 7.482 74423 74472 2482

Proposed1, k=5 72477 73484 77427 7.4.2 73422 7.433 7.422 247.

Proposed1, k=6 72432 72421 7342. 71421 .7142 71433 714.3 24..

Proposed1, k=7 2242. 22434 27427 22432 22482 22433 22444 1248.

Proposed1, k=8 47417 47421 474.3 47432 47423 47427 4743. 2.422

Proposed1, k=9 414.2 41442 4142. 414.2 41447 41441 41472 32428

Proposed1, k=10 33..4 .44.2 .4423 .4442 .44.. .4443 .4472 .2414

Proposed1, k=11 32442 32442 32482 32422 32482 32442 32423 .8412

Proposed1, k=12 37434 374.2 38421 37488 38412 37432 37473 42448

Proposed1, k=13 32442 33423 3.414 33422 3.418 33414 33472 44473

Proposed1, k=14 22448 22474 214.2 24412 22422 214.3 21421 71432

Proposed2, k=3 73427 744.. 83422 72434 74412 72422 72421 2418

Proposed2, k=4 73472 74418 81442 72423 7.422 74471 74482 2472

Proposed2, k=5 73411 7.428 78442 21.7. 7.422 7.427 7.422 2418

Proposed2, k=6 71432 72428 73482 724.. 71428 72423 72431 4422

Proposed2, k=7 27422 28422 28482 28442 28423 28428 28424 12421

Proposed2, k=8 48422 48414 48432 48412 48421 48422 48412 23488

Proposed2, k=9 42424 42432 424.2 424.3 424.2 42432 424.2 31424

Proposed2, k=10 .2417 .2431 .244. .24.1 .242. .2438 .24.8 32412

Proposed2, k=11 .2421 .241. .2442 .2434 .2443 .2427 .242. .7422

Proposed2, k=12 3.422 3.414 3.44. 3347. 3.473 3.421 .4233 44417

Proposed2, k=13 27422 2842. 22423 28447 274.. 2843. 28424 23422

Proposed2, k=14 21422 21432 214.3 24412 22423 22442 22421 72422

Accurate3:2 7.422 7444. 83424 .72 49 7442. 72412 72432 2

Fig. 26 shows the delay of each multiplier versus the

negative of its PSNR for the image compression. There is

a trade off between the delay and the -PSNR of a

multiplier. The less the delay of a multiplier, the more its

-PSNR. But, according to this Fig., the second proposed

multiplier has less delay than that of the other multipliers

with the same PSNR level, except LOA for some k, or the

second proposed multiplier has less -PSNR than that of

the other multipliers with the same delay level, except

LOA for some k. The second proposed multiplier for

k=4,5,6,7 has also less delay than that of LOA with the

same PSNR level. The obtained result is different from

the results obtained in section IV. The reason is that in

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 131

section IV the MSE was calculated based on the all of 8-

bit multiplier truth table states and thus multiplication

operands were supposed to be from a uniform

distribution, while in this section the PSNR (which

related directly to MSE) was computed based on some of

multiplier truth table states. These states depend on

multiplication operands, pixels values, histogram, or data

distribution of each image. Therefore, one can obtain

different result for some other images probably. If it is

supposed that the multiplication operands in the JPEG

compression have a uniform distribution, then the result

will be the same as what were shown in Table 4 not what

where shown in Table 7.

Fig. 27 shows the PDT of each multiplier versus the

negative of its PSNR. According to this Fig., the second

proposed multiplier has less PDT than that of the other

multipliers with the same PSNR level, except LOA for

some k and the truncated multipliers, or the second

proposed multiplier has less -PSNR than that of the other

multipliers with the same PDT level, except LOA for

some k and the truncated multipliers. The second

proposed multiplier for k=4,6,7 has also less PDT than

that of LOA with the same PSNR level.

6. Conclusion

In this paper, a novel 8-bit approximate multiplier

based on three novel 4:2 approximate compressors was

proposed which its delay and error was less than those of

the multipliers constructed by traditional 4:2 approximate

compressors, and its delay is also less than that of an 8-bit

multiplier constructed by using 3:2 precise compressors.

To do so, each novel compressor was designed such that

its output carry was independent of some of its inputs.

One of these inputs was connected to the output carry of

its previous compressor in the CPA of multiplier.

Therefore, the problem of carry propagation delay of

multiplier’s CPA was eliminated and a fast multiplier was

constructed. This was the first proposed multiplier. To

obtain the most accurate multiplier, the best compressor

of the three proposed compressors for each multiplier’s

columns is determined using the genetic algorithm. The

constructed multiplier called the second proposed

multiplier. Meanwhile, for more error reduction, the

approximate compressors were used only at the k least

significant columns of multiplier. The proposed

multipliers were used for image blending and image

compression.

According to the simulations results (Table 4), when

the multiplication operands are supposed to be selected

from a uniform distribution, for each k, the MSE of the

second approximate proposed multiplier is less than that

of the first approximate proposed multiplier. For

k=3,4,…,12, the error and the delay of the second

proposed method are less than those of the traditional 4:2

approximate compressor-based multipliers (See Table 5

for detail). Meanwhile, the second proposed multiplier

has less delay than that of the other multipliers with the

same MSE level, except the LOA for some k, or the

second proposed multiplier has less MSE than that of the

other multipliers with the same delay level, except the

LOA for some k. The second proposed multiplier for

k=8,9,…,14 has also less delay than that of the LOA with

the same MSE level.

Fig. 25. The delay of each multiplier versus the negative of its PSNR for the image compression.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 132

Fig. 26. The PDT of each multiplier versus the negative of its PSNR for the images compression.

References

[1] J. Liang, J. Han, and F. Lombardi, "New metrics for

the reliability of approximate and probabilistic

adders," IEEE Transactions on Computers, vol. 62,

pp. 1760-1771, 2013.

[2] V. Gupta, D. Mohapatra, S. P. Park, A.

Raghunathan, and K. Roy, "IMPACT: imprecise

adders for low-power approximate computing," in

Proceedings of the 17th IEEE/ACM international

symposium on Low-power electronics and design,

2011, pp. 409-414.

[3] S. Cheemalavagu, P. Korkmaz, K. V. Palem, B. E.

Akgul, and L. N. Chakrapani, "A probabilistic

CMOS switch and its realization by exploiting

noise," in IFIP International Conference on VLSI,

2005, pp. 535-541.

[4] A. B. Kahng and S. Kang, "Accuracy-configurable

adder for approximate arithmetic designs," in

Proceedings of the 49th Annual Design Automation

Conference, 2012, pp. 820-825.

[5] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C.

Lucas, "Bio-Inspired Imprecise Computational

Blocks for Efficient VLSI Implementation of Soft-

Computing Applications," IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS, vol. 57, pp. 850-

862, 2011.

[6] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi,

"Design of low-error fixed-width modified booth

multiplier," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 12, pp. 522-531,

2004.

[7] M. J. Schulte and E. E. Swartzlander, "Truncated

multiplication with correction constant [for DSP],"

in VLSI Signal Processing, VI, 1993., [Workshop

on], 1993, pp. 388-396.

[8] E. J. King and E. E. Swartzlander, "Data-dependent

truncation scheme for parallel multipliers," in

Signals, Systems & Computers, 1997.

Conference Record of the Thirty-First Asilomar

Conference on, 1997, pp. 1178-1182 vol.2.

[9] H.-J. Ko and S.-F. Hsiao, "Design and Application

of Faithfully Rounded and Truncated Multipliers

With Combined Deletion, Reduction, Truncation,

and Rounding," IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS, vol. 58, pp. 304-308,

2011.

[10] Harish Rao. B and R. K. V, "IMPLEMENTATION

OF 8X8 DADDA MULTIPLIER USING

APPROXIMATE COMPRESSION FOR IMAGE

ENHANCEMENT," International Journal of

Advances in Engineering Research, vol. 10, pp. 70-

81, 015.

[11] P. Kulkarni, P. Gupta, and M. Ercegovac, "Trading

accuracy for power with an underdesigned

multiplier architecture," in VLSI Design (VLSI

Design), 2011 24th International Conference on,

2011, pp. 346-351.

[12] D. Kelly, B. Phillips, and S. Al-Sarawi,

"Approximate signed binary integer multipliers for

arithmetic data value speculation," 2009.

[13] C. Liu, "Design and analysis of approximate adders

and multipliers," 2014.

[14] C. Liu, J. Han, and F. Lombardi, "A low-power,

high-performance approximate multiplier with

configurable partial error recovery," in Proceedings

of the conference on Design, Automation & Test in

Europe, 2014, p. 95.

F. Ranjbar et al., Int. J. of Integrated Engineering Vol. 10 No. 1 (2018) p. 114-133

 133

[15] A. Momeni, H. Jie, P. Montuschi, and F. Lombardi,

"Design and Analysis of Approximate Compressors

for Multiplication," Computers, IEEE Transactions

on, vol. 64, pp. 984-994, 2015.

[16] J. Ma, K. Man, T. Krilavicius, S. Guan, and T.

Jeong, "Implementation of High Performance

Multipliers Based on Approximate Compressor

Design," presented at the International Conference

on Electrical and Control Technologies Yichang,

China, 2011.

[17] C.-H. Chang, J. Gu, and M. Zhang, "Ultra low-

voltage low-power CMOS 4-2 and 5-2 compressors

for fast arithmetic circuits," IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 51, pp.

1985-1997, 2004.

[18] P. Behrooz, "Computer arithmetic: Algorithms and

hardware designs," Oxford University Press, vol. 19,

pp. 512583-512585, 2000.

[19] J. Gu and C.-H. Chang, "Ultra low voltage, low

power 4-2 compressor for high speed

multiplications," in Circuits and Systems, 2003.

ISCAS'03. Proceedings of the 2003 International

Symposium on, 2003, pp. V-V.

[20] M. Margala and N. G. Durdle, "Low-power low-

voltage 4-2 compressors for VLSI applications," in

Low-Power Design, 1999. Proceedings. IEEE

Alessandro Volta Memorial Workshop on, 1999, pp.

84-90.

[21] K. Prasad and K. K. Parhi, "Low-power 4-2 and 5-2

compressors," in Signals, Systems and Computers,

2001. Conference Record of the Thirty-Fifth

Asilomar Conference on, 2001, pp. 129-133.

[22] M. D. Ercegovac and T. Lang, Digital arithmetic:

Elsevier, 2004.

[23] D. Baran, M. Aktan, and V. G. Oklobdzija, "Energy

efficient implementation of parallel CMOS

multipliers with improved compressors," in Low-

Power Electronics and Design (ISLPED), 2010

ACM/IEEE International Symposium on, 2010, pp.

147-152.

[24] G. K. Wallace, "The JPEG still picture compression

standard," IEEE transactions on consumer

electronics, vol. 38, pp. xviii-xxxiv, 1992.

[25] K. K. Parhi, VLSI digital signal processing systems:

design and implementation: John Wiley & Sons,

2007.

[26] N. Banerjee, G. Karakonstantis, and K. Roy,

"Process variation tolerant low power DCT

architecture," in Proceedings of the conference on

Design, automation and test in Europe, 2007, pp.

630-635.

