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1. Introduction

In many signal processing problems such as lossy 

compression of images, sounds and films, the results of 

using approximation computations and precise 

computations have no significant difference from the 

user’s point of view. JPEG, MP3 and MPEG are some 

well-known algorithms for the mentioned lossy 

compression problems. Each of these algorithms makes 

some distortion on the original file in order to achieve a 

better compression ratio. This amount of distortion of an 

image, sound or film is usually ignorable from the user’s 

viewpoint. In such problems, approximate computations 

can be used instead of precise computations to reduce the 

number of transistors, power consumption or delay. 

Approximate addition and approximate 

multiplication are some aspects of approximate 

computations. In [1-4], some approximate adders and 

approximate multipliers were studied and analyzed, 

elaboratively. In [2], in order to reduce the number of 

transistors and power consumption, an approximate 

mirror full-adder (AMA) was proposed. Then, this 

approximate full-adder was utilized in the JPEG 

algorithm. In [3], another approximate full-adder was 

proposed based on probabilistic CMOS. This technology 

consumes very low power. These approximate full-adders 

can be used to construct an approximate multiplier. In [5], 

an n-bit approximate adder named low-part-or-adder 

(LOA) was proposed. This adder computes the 

summation of each of k(<=n) least significant bits 

approximately by using only an Or-gate instead of a half 

or full-adder. This adder ignores carry propagation in its k 

least significant bits. This fast adder was then used in a 

neural network and a fuzzy system utilized in fast face 

recognition. In [6], an approximate booth multiplier was 

proposed which then was used in low-pass finite impulse 

response and then applied to digital signal processing. In 

[7], in order to reduce delay and the number of 

transistors, a truncated multiplier was proposed. In this 

approximate multiplier, the k least significant bits of 

partial products are truncated or ignored, and the 

remaining most significant bits of partial products are 

added with each other and the result then is added with a 

constant to compensate the truncation, and the final result 

is rounded to p bits. In [8], in order to increase the 

accuracy of truncated multiplier, the compensated value 

is determined based on the value of truncated bits. In 

other words, the compensated value is not constant any 

longer. Another truncated multiplier was proposed in [9] 

where the maximum absolute error is guaranteed to be no 

more than 1 unit of least position. This multiplier was 

implemented in Field Programmable Gate Array (FPGA), 

and then it was applied for image blending [10]. In [11], 

an approximate 2-bit multiplier was proposed to reduce 

power consumption, and then bigger multipliers were 

constructed based on the mentioned 2-bit multiplier. This 

multiplier then was applied to design an approximate 

Gaussian smoothing image improvement filter for noise 

reduction. In [12], an approximate signed multiplier was 

proposed which is 20% faster than a precise signed 

multiplier. In [13, 14], in order to reduce the carry 

propagation delay, an approximate adder was proposed 

that compute i-th bit of the summation of the two number 
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A and B, i.e. Si, based on only the i-th and (i-1)-th bit of 

the two numbers. Then, to reduce the error, an error 

signal is also produced based on the same two bits. If the 

error signal is added to S, the accurate value of sum of A 

and B is obtained. But, this involves using a time-

consuming Carry Propagation Adder (CPA). Therefore, 

to increase the speed, the sum of S and the error signal 

were computed approximately by using only some or-

gates instead of some half and full-adders. In each of [15] 

and [16], a 4:2 approximate compressor with the mean 

square error (MSE) of 0.25 was proposed and then each 

one was used to design a fast 8-bit Dadda multiplier. The 

delay of each of these two 4:2 approximate compressors 

is less than that of 4:2 precise compressors.  

The delay of an 8-bit approximate Dadda multiplier 

constructed by using the traditional 4:2 approximate 

compressors is also less than that of an 8-bit Dadda 

multiplier constructed by using 4:2 precise compressors 

[15]. But, our experiments show that the delay of the 

former multiplier and an 8-bit Dadda multiplier 

constructed by using only some half-adders and full-

adders (3:2 precise compressors) does not differ. 

However, the number of transistors and the power 

consumption of the former multiplier is less than the 

successor multiplier.  

In this paper, a novel 8-bit approximate multiplier is 

proposed based on three novel 4:2 approximate 

compressors which its delay and error is less than those of 

the Dadda multipliers constructed by the traditional 4:2 

approximate compressors, and its delay is less than that of 

Dadda multiplier constructed by using only some half-

adders and full-adders (3:2 precise compressors). To do 

so, the novel compressor is designed such that its output 

carry is independent of the output carry of its previous 

compressor in the multiplier. Therefore, the problem of 

carry propagation delay is eliminated and a fast multiplier 

is constructed. Using each of the proposed compressors at 

each column of partial products has different effect on the 

multiplier error and also affects the next column of partial 

products, because the output carry of each compressor is 

connected to the next compressor input. To obtain the 

most accurate multiplier, the best compressor of the three 

proposed compressors for each column of partial products 

is determined using the genetic algorithm. Moreover, one 

can use the approximate compressors only at k least 

significant columns of partial products for more error 

reduction. Therefore, for each k, a different multiplier is 

constructed. 

The proposed 8-bit multiplier is applied for image 

blending and image compression. Simulations show that 

the delays and also the errors of the multipliers 

constructed by the traditional 4:2 approximate 

compressors are more than those of the proposed 

multipliers for some k. For example, the error and the 

delay of the proposed method for k=12 is at-least 32.52% 

and 33.10% less than those of the traditional 4:2 

approximate compressor based multipliers, respectively. 

The innovations of this paper are as follows:  

 Introducing a novel 4:2 approximate compressor 

where its output carry is independent of some of 

its inputs. 

 Introducing a novel approximate 8-bit multiplier 

based on the proposed compressor. 

 Using genetic algorithm to decrease the 

proposed multiplier error. 

 

In continue, in section 2, traditional compressor-

based multipliers are introduced. Then, in section 3, our 

novel compressors and multipliers are proposed. In 

section 4, by using some simulations, the proposed 

multipliers are compared with some other multipliers. 

Then, our proposed approximate multipliers are applied 

for image blending and image compression in section 5. 

Finally, the paper is concluded in section 6. 

 

2. Traditional 4:2 compressor-based 

multipliers 

A compressor computes the sum of some 1-bit 

numbers. Fig. 1.a shows the general form of a 4:2 

compressor, and Fig. 2 depicts an especial 

implementation of a 4:2 compressor based-on full-adder. 

Fig. 3 shows a low delay implementation [17]. Similar 

implementations can be found in [18-23]. 

 
(a) 

 

 
(b) 

Fig. 1. The general form of a 4:2 compressor (a) with 

input carry, (b) without input carry [15]. 
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Fig. 1. The Full-adder-based implementation of 4:2 

precise compressor [15]. 

 

 
Fig. 2. A low delay implementation of 4:2 precise 

compressor [17]. 

 
In each of the 4:2 approximate compressors proposed 

in [15] and [16], the input carry was supposed to be zero. 

Therefore, the input carries were removed from their 

input list. Fig. 1.b shows the general form of a 4:2 

compressor without input carry. Fig. 4 depicts two special 

implementations of the mentioned approximate 

compressors [15,16]. Table 1 shows the truth tables of 

these two circuits. According to these tables, the MSE of 

each of these two compressors is 0.25. 

 
(a) 

 
(b) 

Fig. 3. The 4:2 approximate compressors without input 

carry proposed in (a) [15], and (b) [16]. 

 

Table 1. The Truth tables of 4:2 approximate compressors 

proposed in (a) [15], and (b) [16]. The difference column 

indicates the difference between the output of 

approximate and precise compressors. 

 (a)  (b) 
difference sum carry x1 x2 x3 x4 

0 0 0 0 0 0 0 
0 1 0 1 0 0 0 
0 1 0 0 1 0 0 
0 0 1 1 1 0 0 
0 1 0 0 0 1 0 
0 0 1 1 0 1 0 
0 0 1 0 1 1 0 
0 1 1 1 1 1 0 
0 1 0 0 0 0 1 
0 0 1 1 0 0 1 
0 0 1 0 1 0 1 
0 1 1 1 1 0 1 
0 0 1 0 0 1 1 
0 1 1 1 0 1 1 
0 1 1 0 1 1 1 
-2 0 1 1 1 1 1  

difference sum carry x1 x2 x3 x4 

1 1 0 0 0 0 0 
0 1 0 1 0 0 0 
0 1 0 0 1 0 0 
-1 1 0 1 1 0 0 
0 1 0 0 0 1 0 
0 0 1 1 0 1 0 
0 0 1 0 1 1 0 
0 1 1 1 1 1 0 
0 1 0 0 0 0 1 
0 0 1 1 0 0 1 
0 0 1 0 1 0 1 
0 1 1 1 1 0 1 
-1 1 0 0 0 1 1 
0 1 1 1 0 1 1 
0 1 1 0 1 1 1 
-1 1 1 1 1 1 1  

 

The second stage of Fig. 5 shows partial product 

matrix of an 8-bit multiplier using the dot notation. Each 

dot is an unspecified bit. Each partial product is computed 

using an AND gate. Partial products may be rearranged in 

a tree-like format as the first stage of Fig. 6. Each 

multiplier must compute the summation of the partial 

products. In other words, each multiplier must reduce 

these eight rows of partial products to two rows, then, the 

final results is produced by the summation of these two 

binary numbers using a CPA. 
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Fig. 4. Partial product matrix of an 8-bit multiplier 

 

Fig. 6 shows an 8-bit Dadda multiplier constructed 

by only some half and full-adders, and Fig. 7 depicts an 

8-bit Dadda multiplier constructed by some half and full-

adders and some 4:2 compressors. Each rectangle 

represents a half adder, full adder or 4:2 compressor. 

Each of half adder, full adder and 4:2 compressor output 

a summation and a carry shown with two dots in the same 

column and the next column of the next stage, 

respectively.  

As it can be seen, the former multiplier is performed 

in five stages while the successor multiplier is performed 

in three stages. In the two first stages of the successor 

multiplier shown in Fig. 7, Carry Save Adders (CSA) are 

used to decrease the eight rows of partial products to two 

rows, and then a CPA is used to compute the final result. 

In [15] and [16], in order to decrease the power 

consumption and delay of multiplier shown in Fig. 7, 4:2 

approximate compressor was used instead of precise 

compressor. The delay of an 8-bit approximate Dadda 

multiplier constructed by using the traditional 4:2 

approximate compressors [15, 16] is less than that of an 

8-bit Dadda multiplier constructed by using 4:2 precise 

compressors. But, our experiments show that the delay of 

the former and 8-bit Dadda multiplier constructed by 

using only some half-adders and full-adders (3:2 precise 

compressors) does not differ. However, the number of 

transistors and the power consumption of the former 

multiplier is less than the successor multiplier.  

In this paper, a novel 8-bit approximate multiplier is 

proposed based on three novel 4:2 approximate 

compressors which its delay and error is less than those of 

the Dadda multipliers constructed by the traditional 4:2 

approximate compressors, and its delay is also less than 

that of the Dadda multiplier constructed by using only 

some half-adders and full-adders (3:2 precise 

compressors). To do so, each novel compressor is 

designed such that its output carry is independent of the 

output carry of its previous compressor in the multiplier. 

Therefore, the problem of carry propagation delay is 

eliminated and a fast multiplier is constructed. 

 

 
Fig. 5. An 8-bit Dadda multiplier constructed by only 

some half and full-adders (each rectangle represents a 

half adder or full adder) [18]. 
 

 
Fig. 6. Using 4:2 compressors to construct an 8-bit 

multiplier (each rectangle represents a half adder, full 

adder or 4:2 compressor) [15]. 

 

3. Our proposed multipliers 

Before proposing our novel multipliers, its novel 

components, i.e. the novel compressors, must be 

introduced. 

 

3.1 Our Proposed Compressors 

Fig. 8 shows the circuits of the proposed approximate 

compressors and Table 2 shows their truth tables. As it 

can be seen, the output of each of these approximate 

compressors differs from the output of precise 

compressor for four truth table states. Therefore, the MSE 

of each of these approximate compressors is equal to 0.25 

which is the same as that of the compressors proposed in 

[15] and [16]. The advantage of each proposed 

approximate compressor with respect to the traditional 

approximate 4:2 compressors is that its output carry is 

independent of its two inputs. For example, the output 
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carry of the first proposed approximate compressor, 

shown in Fig. 8.a, is independent of x3 and x4 (third and 

fourth input). Therefore, if the output carry of an instance 

of this compressor is connected to the input x3 or x4 of 

another instance of this compressor, then the output carry 

of the successor can be produced even if the output carry 

of the former is not ready. Therefore, if the components 

of a CPA are such compressors, then this CPA does not 

have the carry propagation delay problem and 

consequently is very rapid. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. The three proposed 4:2 compressors. 

 

Table 2. Truth tables of the three proposed compressors. 
3st compresor 2st compresor 1st compresor Input 

differ. sum carry differ. sum carry differ. sum carry x1 x2 x3 x4 

0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 1 0 1 1 0 0 0 
0 1 0 1 0 1 1 0 1 0 1 0 0 
0 0 1 0 0 1 0 0 1 1 1 0 0 
1 0 1 1 0 1 0 1 0 0 0 1 0 
0 0 1 0 0 1 0 0 1 1 0 1 0 
0 0 1 0 0 1 0 0 1 0 1 1 0 
0 1 1 0 1 1 0 1 1 1 1 1 0 
0 1 0 0 1 0 0 1 0 0 0 0 1 
0 0 1 1 1 0 0 0 1 1 0 0 1 
1 1 0 0 0 1 0 0 1 0 1 0 1 
0 1 1 0 1 1 0 1 1 1 1 0 1 
0 0 1 0 0 1 1 1 0 0 0 1 1 
0 1 1 0 1 1 0 1 1 1 0 1 1 
0 1 1 0 1 1 0 1 1 0 1 1 1 
-1 1 1 -1 1 1 -1 1 1 1 1 1 1 

 

3.2 Our Proposed CPA 

Each of Fig. 9, Fig. 10 and Fig. 11 depicts a CPA 

which computes the sum of three 3-bit numbers, i.e. the 

numbers A, B and C, by using different 4:2 approximate 

compressors, i.e. the compressors proposed in [15] and 

[16], and our proposed approximate compressors, 

respectively. In the CPA constructed by using our 

proposed compressors, the output carry of each of 

proposed compressor was connected to the fourth input 

(x4) of its successor compressor. Since the output carry of 

the proposed compressors is independent of the fourth 

input, the proposed CPA does not have the carry 

propagation delay problem. In the mentioned figures, the 

longest path of each CPA was shown with a thick line. As 

can be seen, the longest path of each CPA constructed by 

the compressors proposed in [15] or [16] is the path from 

input carry of CPA to the output carry of the last 

compressor, while the longest path of the CPA 

constructed by our proposed compressor is the path from 

an input of a compressor to the sum pin of its successor 

compressor. Meanwhile, the longest path to the output 

carry of the proposed CPA is the path from an input of its 

last compressor to that compressor output carry which is 

too short. This path was also depicted in Fig. 11 by a 

thick line. 

Fig. 12 depicts the longest path in an 8-bit CPA 

constructed by the compressors proposed in [15] or [16], 

and Fig. 13 depicts the longest path in an 8-bit CPA 

constructed by the proposed compressors. As can be seen, 

the longest path of a CPA constructed by the compressors 

proposed in [15] and [16] becomes too longer for the 

bigger CPA, while the longest path of a CPA constructed 

by the proposed compressors is constant. Strictly 

speaking, regardless of the CPA length, the longest path 

of the CPA constructed by our proposed compressor is 

the path from an input of a compressor to the sum pin of 

its successor compressor. 

Now, we determine the upper bound error of the 

proposed CPA. Consider the proposed CPA of the length 

t. If only t-th compressor of this CPA is approximate 

compressor, the MSE of CPA becomes 
1 4

2
16

t  , 

because the MSE of the proposed compressor is 

4
0.25

16
 . Therefore, an upper bound MSE for the 

proposed CPA is 
1 24

2 2 1
16

t t  
   

 
when all 

compressors are approximate compressors, because the 

value of t-1 least significant bits of CPA is no more than  
22 1t  . To obtain this upper bound, we suppose that 

the value of t-1 least significant bits of CPA is always 
22 1t  more than or less than its real value, while 

according to the truth table of our proposed compressor, 

the error probability of the proposed compressor is 0.25. 

Therefore, a tighter upper bound MSE for the proposed 

CPA is  1 24
2 0.25 2 1

16

t t  
    

 
. 
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Fig. 8. A CPA constructed by using the 4:2 approximate compressor proposed in [15] to compute the sum of three 3-bit 

numbers. The thick line shows its longest path. 

 
Fig. 9. A CPA constructed by using the 4:2 approximate compressor proposed in [16] to compute the sum of three 3-bit 

numbers. The thick line shows its longest path. 

 

 
Fig. 10. A CPA constructed by using our proposed 4:2 approximate compressor.  

The thick lines show its overall longest path and the longest path to S4. 
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Fig. 11. A CPA constructed by using the 4:2 approximate compressor proposed in [15] or [16] to compute the sum of 

three 8-bit numbers. The thick line shows its longest path. 

 

 
Fig. 12. A CPA constructed by using our proposed 4:2 approximate compressor to compute the sum of three 8-bit 

numbers. Each thick line can be the longest path. 

 

3.3 Our First Proposed Approximate 

Multiplier 

The approximate compressor shown in Fig. 8.a is 

used to construct our first approximate multiplier. Fig. 14 

depicts this multiplier which is similar to the Dadda 

multiplier shown in Fig. 6. The number of stages of the 

proposed multiplier is one stage less than that of the 

former. At the last stage of the proposed multiplier, in 

order to obtain the summation of the three remaining 

rows of partial product, an especial CPA is used which 

was constructed by some half adders and some proposed 

approximate compressors. In each of the columns 2 and 

15 of this CPA, a half adder is used, and in each of the 

columns 3 to 14, the first proposed compressor is used. 

Indeed, columns 3-14 of this CPA is our proposed CPA 

introduced in the previous sub-section which does not 

have the carry propagate delay problem. Meanwhile, one 

can use the approximate compressors only in the k least 

significant bits of the CPA to decrease its error. Fig. 15 

shows this multiplier for k=8. 

 
Fig. 13. The proposed multiplier. Each rectangle 

represents a half adder or a full adder. Sum of the last 

stage’s columns are computed using a CPA which is 

constructed by some half-adders, full-adders, and 

proposed 4:2 compressors. 
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Fig. 14. The proposed multiplier for k=8. Each rectangle 

represents a half adder or a full adder. Sum of the last 

stage’s columns are computed using a CPA which is 

constructed by some half-adders, full-adders, and 

proposed 4:2 compressors. 

 

3.4 Our Second Proposed Approximate 

Multiplier 

Consider the three proposed approximate 

compressors shown in Fig. 8. The only difference 

between these three compressors is the sequence of their 

inputs. For example, if the second input of compressor 

shown in Fig. 8.b is swapped with the third, the resulting 

circuit is the third compressor. Notice that changing the 

sequence of input of a precise compressor does not alter 

its output because a precise compressor computes the sum 

of its inputs, and its output is independent of the inputs 

sequence. But, this is not true for the approximate 

compressors.  

As it can be seen in the truth Table 2, the output 

carry of each of the three proposed approximate 

compressors is independent of its fourth input. Therefore, 

if each of these three approximate compressors is used in 

the last stage of the proposed approximate multiplier to 

construct the CPA, the carry propagation delay problem 

is eliminated as long as the output carry of each of these 

compressors is connected to the fourth input of its next 

compressor. But, using each of the proposed compressors 

at each columns of CPA has different effect on the 

multiplier error and also affects the next column of CPA, 

because the output carry of each proposed compressor is 

connected to the next proposed compressor input. The 

proposed multiplier for an especial k was shown in the 

Fig. 15. To determine the type of approximate 

compressors for each columns 3 to k of CPA of multiplier 

to construct a multiplier with the least possible error, the 

following problem must be solved: 

2 1 2 1

0 0

min ( ( , )

k k

i j

MSE preciseMultiplication i j
 

 

 
2( , ))approximateMultiplication i j  

Subject to: types of compressors of i-th column of CPA 

of approximate multiplier {1,2,3}, 3,4,..., .i k   

(1) 

 

To solve the problem (1), each time a different 

combination of the three proposed compressors was used 

at the columns of CPA of multiplier, and the MSE of the 

constructed multiplier was calculated. Then, the best 

multiplier with the least MSE and the types of 

compressors used in it was registered in Table 3. 

 

Table 3. The best compressor type of each columns of 

CPA of multiplier for different value of k obtained by 

solving the problem (1). 
Column number 

14 13 12 11 10 9 8 7 6 5 4 3 

           2 3 

k 

          1 3 4 

         1 1 3 5 

        1 1 1 1 6 

       2 3 1 1 1 7 

      2 2 1 1 2 2 8 

     2 2 3 1 3 3 3 9 

    2 2 3 3 3 2 3 3 10 

   2 2 3 3 3 1 3 2 3 11 

  2 2 3 3 1 3 1 2 1 3 12 

 2 2 1 1 1 3 2 2 2 3 2 13 

1 2 3 1 3 1 1 3 2 3 1 1 14 

 

If the k in the problem (1) is a big number, the 

number of combinations of compressors types for the  

columns 3 to k of CPA of an 8-bit multiplier becomes a 

big number. For example, the number of combinations of 

compressors types for k=14 is equal to 3(14-2)=531,441. 

The number of combinations of compressors types for a 

bigger k in a 16-bit multiplier increases exponentially and 

it isn’t possible to compare all of combinations of 

compressors types in a reasonable time. To obtain the 

best types of compressors, an integer mathematical 

programming (Problem 1) must be solved. One can use 

the genetic algorithm to solve it instead of comparing all 

possible combinations of compressors types. In this 

paper, the basic genetic algorithm was used to solve the 

problem (1) only for k=13 and k=14 and the result was 

registered in Table 3. The length of chromosomes in the 

genetic algorithm is equal to the number of compressors 

in the CPA of multiplier. The i-th gene of chromosome is 

a number between 1 to 3 which denotes compressor type. 

The fitness function of the genetic algorithm for solving 

the problem (1) is the negative of multiplier MSE for a 

combination of compressors types in the CPA of 

multiplier. 
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4. Simulations 

In this section the proposed multipliers are compared 

with ten other multipliers: truncated1 [7], truncated2 [8], 

truncated3 [9], LOA [5], Momeni [15], Ma [16], Liu 

[13,14], Kulkani [11], Accurate3:2 (the Dadda multiplier 

constructed by 3:2 precise compressors), and Accurate4:2 

(the Dadda multiplier constructed by 4:2 precise 

compressors).  

Table 4 shows the MSE, the delay, the number of 

transistors, and the product of delay and the number of 

transistors (PDT) of each multiplier. This table also 

shows the percentages of delay improvement, the 

percentages of the number of transistors improvement, 

the percentages of PDT improvement for each multiplier 

with respect to the multiplier Accurate3:2. According to 

this table, for each k, the MSE of the second approximate 

proposed multiplier is less than that of the first 

approximate proposed multiplier. To compute the MSE, 

each multiplier was simulated in MATLAB, and for 

computing the delay and the number of transistors needed 

to construct each multiplier, each multiplier was 

simulated in HSPICE at 16 nm CMOS technology based 

on the best gates of [21] (See Fig. 16). Working voltage 

and the temperature were supposed to be 3.3v and 27 

degrees centigrade.  

According to Table 4, when the multiplication 

operands are supposed to be selected from a uniform 

distribution,  

• For each k, the MSE of the second approximate 

proposed multiplier is less than that of the first 

approximate proposed multiplier. 

For k=3,4,…,12, the error and the delay of the 

second proposed method are less than those of the 

traditional 4:2 approximate compressor-based multipliers. 

Table 5(a)   (b) 

• Table 1 shows the least error and delay 

improvement of the second proposed method with respect 

to the traditional 4:2 approximate compressor-based 

multipliers.  

• The second proposed multiplier has less delay 

than that of the other multipliers with the same MSE 

level, except the LOA for some k, or the second proposed 

multiplier has less MSE than that of the other multipliers 

with the same delay level, except the LOA for some k. 

The second proposed multiplier for k=8,9,…,14 has also 

less delay than that of the LOA with the same MSE level. 
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Table 4. Comparison of different multipliers. 

Multiplier Log(MSE) #Transistors 

#Transistors  

impr. with 

respect to Acc3:2 

Delay 
(ns) 

Delay improvement 

with respect to 

Accurate3:2 

PDT 
PDT impr. with 

respect to Acc3:2 

truncated1 [7] ,P=11,K=4 24.2 14.2 22422 1427 1848. 2478428 34422 

truncated2 [8] ,P=11,K=4 2423 1722 12422 1474 1.422 2278422 24427 

truncated3 [2] ,P=8,k=4 .411 1382 2844. 1443 24441 2121437 .2477 

LOA [4] , k=3 2417 1222 1474 1421 7412 3233474 8482 

LOA [4] , k=4 244. 187. 3412 148. 12421 3.41472 13432 

LOA [4] , k=5 14.2 18.. .424 1472 1.4.3 3241442 184.1 

LOA [4] , k=6 2421 1822 4472 1422 17484 328.422 22421 

LOA [4] , k=7 2472 1722 7413 1421 21422 2822412 27424 

LOA [4] , k=8 34.2 1772 84.7 144. 24422 2732417 314.. 

LOA [4] , k=9 24..  17.. 2482 14.. 32428 2412474 32424 

LOA [4] , k=10 .422 1718 11412 .1 32 34424 2278422 .2483 

LOA [4] , k=11 4424 1222 12441 2.1  32442 212742. .7413 

LOA [4] , k=12 4482 1222 13484 .1 14 ..444 1223447 42423 

LOA [4] , k=13 2432 12.2 14422 2422 41472 1222417 42412 

LOA [4] , k=14 2484 121. 1244. 248. 42422 1322472 24482 

LOA [4] , k=15 7438 4881  17482 2422 22422 1123481 72432 

Momeni  [14]  7421 1442 12484 22.2  2 312.428 12484 

Ma  [12]  2427 1282 12482 22.2  2 3.7.43. 12482 

Liu [13,14] 2412 222. -.424  1412 .44.2 227.477 .2422 

Kulkani [11] 2481 1412 21482 2432 -12477  3413488 11483 
Proposed1,k=3 2422 1228 143. 1421 7414 3242447 84.2 
Proposed1, k=4 1412 1882 2428 1472 13423 3372473 14437 
Proposed1, k=5 1472 1842 .423 1473 14422 3227422 12422 
Proposed1, k=6 2431 1832 4437 1424 12442 3232412 23421 
Proposed1, k=7 3423 182. 2472 1422 22422 2822417 274.3 
Proposed1, k=8 3422 1778 8422 41.1  22422 2284422 32421 

Proposed1, k=9 .412 1742 24.1 37.1  33412 2.14432 32432 

Proposed1, k=10 .483 1722 12474 31.1  32418 2222422 .342. 

Proposed1, k=11 44.2 1722 12422 21.1  .1417 2222421 .8428 

Proposed1, k=12 2423 127. 134.. 22.1  .84.1 1772422 4443. 

Proposed1, k=13 2442 12.8 1.478 21.2  4442. 1422427 22422 
Proposed1, k=14 7418 1222 12413 2424 2841. 122.428 73428 
Proposed2, k=3 2424 1228 143. 1421 7414 3242447 84.2 
Proposed2, k=4 1412 1882 2428 1472 13423 3372473 1443727 
Proposed2, k=5 1471 1842 .423 1473 14422 3227422 12422 
Proposed2, k=6 2431 1832 4437 1424 21244  3232412 23421 
Proposed2, k=7 2424 182. 2472 1422 22422 2822417 274.3 
Proposed2, k=8 3442 1778 8422 41.1  22422 2284422 32421 

Proposed2, k=9 .422 1742 24.1 37.1  33412 2.14432 32432 

Proposed2,k=10 .422 1722 12474 31.1  32418 2222422 .342. 

Proposed2, k=11 4428 1722 12422 21.1  .1417 2222421 .8428 

Proposed2, k=12 4482 127. 134.. 22.1  .84.1 1772422 4443. 

Proposed2, k=13 24.8 12.8 1.478 21.2  4442. 1422427 22422 
Proposed2, k=14 742. 1222 12413 2424 2841. 122.428 73428 

Accurate3:2 - 123. 2 22.2  2 3284432 2 

Accurate4:2 - 1242 -2482  .2 36 -1.472  .222421 -14424  
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Table 5. The least error and delay improvement of the 

second proposed method with respect to the traditional 

4:2 approximate compressor-based multipliers (%). 
 The least error improvement 

(%) 
The least delay improvement 
(%) 

K=3 89.25 7.15 

K=4 80.89 13.03 

K=5 71.83 15.63 

K=6 61.95 19.60 

K=7 51.35 22.20 

K=8 42.00 26.70 

K=9 32.52 33.10 

K=10 22.65 36.19 

K=11 13.06 41.17 

K=12 2.96 48.41 

 

Fig. 17 shows the delay of each multiplier versus its 

MSE. There is a trade off between the delay and the MSE 

of a multiplier. The less the delay of a multiplier, the 

more its MSE. But, according to this Fig., the second 

proposed multiplier has less delay than that of the other 

multipliers with the same MSE level, except the LOA for 

some k, or the second proposed multiplier has less MSE 

than that of the other multipliers with the same delay 

level, except the LOA for some k. The second proposed 

multiplier for k=8,9,…,14 has also less delay than that of 

the LOA with the same MSE level. 

Fig. 18 shows the PDT of each multiplier versus its 

MSE. According to this Fig., the second proposed 

multiplier has less PDT than that of the other multipliers 

with the same MSE level, except LOA for some k and the 

truncated multipliers, or the second proposed multiplier 

has less MSE than that of the other multipliers with the 

same PDT level, except LOA for some k and the 

truncated multipliers. The second proposed multiplier for 

k=8,9,11,…,14 has also less PDT than that of LOA with 

the same MSE level. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

Fig. 15. The gates used for simulation: (a) XOR-XNOR 

[17], (b) MUX [17], (c) NOR, (d) NAND, (e) NOT. 
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Fig. 16. The delay of each multiplier versus its MSE. 

 

 
Fig. 17. The PDT of each multiplier versus its MSE. 

 

5. Applications 

5.1 Image Blending 

Fig. 19 shows an application of multiplication in 

image processing. The right blended 8-bit image in this 

Fig. was obtained by peer-to-peer pixel multiplication of 

the two left 8-bit images using a precise multiplier and 

truncation of the 16-bit result to 8-bit. In this sub-section, 

the approximate multipliers are used to blend the two 

right images. Table 6 shows the PSNR of the blended 

images for each multiplier. The PSNR formulation is as 

follows: 

 
2

1010log

Peak Signal Value

MSE

PSNR

 
 
 
 
    (2) 

The blended images obtained by different 

approximate multipliers were shown in Fig. 21. As it can 

be seen, the most of the blended images obtained by 

approximate multipliers do not differ significantly from 

that of obtained by precise multiplier. 
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(a) 

 
(b) 

 
(c) 

Fig. 18. Blended images using precise multiplier (a) the 

first image, (b) the second image, (c) Blended image. 
 

Fig. 20 shows the delay of each multiplier versus the 

negative of its PSNR for the image blending. There is a 

trade off between the delay and the -PSNR of a 

multiplier. The less the delay of a multiplier, the more its 

-PSNR. But, according to this Fig., the second proposed 

multiplier has less delay than that of the other multipliers 

with the same PSNR level, except LOA for some k, or the 

second proposed multiplier has less -PSNR than that of 

the other multipliers with the same delay level, except 

LOA for some k. The second proposed multiplier for 

k=8,9,…,14 has also less delay than that of LOA with the 

same PSNR level. 
 

Table 6. PSNR of blended images for different 

approximate multipliers. 
Multiplier PSNR Multiplier PSNR 

truncated1 [7] , 

p=11,k=4 
71432 Proposed1, k=5 72422 

truncated2 [8] , 

p=11,k=4 
74481 Proposed1, k=6 72423 

truncated3 [2] , 

p=8,k=4 
44434 Proposed1, k=7 24478 

LOA [4] , k=3 2.4.. Proposed1, k=8 42423 

LOA [4] , k=4 22428 Proposed1, k=9 4.432 

LOA [4] , k=5 82418 
Proposed1, 

k=10 
.7482 

LOA [4] , k=6 72412 
Proposed1, 

k=11 
.1427 

LOA [4] , k=7 22442 
Proposed1, 

k=12 
34423 

LOA [4] , k=8 21442 
Proposed1, 

k=13 
22421 

LOA [4] , k=9 444.. 
Proposed1, 

k=14 
2.422 

LOA [4] , k=10 .243. Proposed2, k=3 82472 

LOA [4] , k=11 .3412 Proposed2,k=4 83473 

LOA [4] , k=12 37412 Proposed2,k=5 77472 

LOA [4] , k=13 33422 Proposed2,k=6 7242. 

LOA [4] , k=14 2.422 Proposed2,k=7 43.22  

LOA [4] , k=15 1242. Proposed2,k=8 21422 

Momeni  [14]  27482 Proposed2,k=9 444.. 

Ma  [12]  .2428 Proposed2,k=10 .24.. 
Liu [13,14] 3342. Proposed2,k=11 .3478 

Kulkani [11] 22432 Proposed2,k=12 37422 
Proposed1, k=3 82423 Proposed2,k=13 31428 
Proposed1, k=4 8.432 Proposed2,k=14 28423 
 

 
Fig. 19. The delay of each multiplier versus the negative of its PSNR for the image blending. 
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Truncated1 [7]  

 

Truncated2 [8]  
 

Truncated3 [2]  

 
LOA [4] ,k=3 

 

LOA [4] ,k=4 
 

LOA [4] ,k=5 

 
LOA [4] ,k=6 

 

LOA [4] ,k=7 
 

LOA [4] ,k=8 

 
LOA [4] ,k=9 

 

LOA [4] ,k=10 
 

LOA [4] ,k=11 

 
LOA [4] ,k=12 

 

LOA [4] ,k=13 
 

LOA [4] ,k=14 

 
LOA [4] , k=15 

 

Momeni [14]  
 

Ma [12]  

 
Liu [13,14] 

 
Kulkani [11] 

 
Proposed1, k=3 

 
Proposed1,k=4 

 
Proposed1,k=5 

 
Proposed1,k=6 

 
Proposed1,k=7 

 
Proposed1,k=8 

 
Proposed1,k=9 

   

Proposed1,k=10 Proposed1,k=11 Proposed1,k=12 

 
Proposed1,k=13 

 
Proposed1,k=14 

 
Proposed2,k=3 

 
Proposed2,k=4 

 
Proposed2,k=5 

 
Proposed2,k=6 

 
Proposed2,k=7 

 
Proposed2,k=8 

 
Proposed2,k=9 

 
Proposed2,k=10 

 
Proposed2,k=11 

 
Proposed2,k=12 

 
Proposed2,k=13 

 
Proposed2,k=14 

 
Accurate3:2 

 

Fig. 20. The blended images obtained by different 

approximate multipliers. 

 

Fig. 22 shows the PDT of each multiplier versus the 

negative of its PSNR for the image blending. According 

to this Fig., the second proposed multiplier has less PDT 

than that of the other multipliers with the same PSNR 

level, except LOA for some k and truncated1 and 

truncated2, or the second proposed multiplier has less -

PSNR than that of the other multipliers with the same 

PDT level, except LOA for some k and truncated1 and 

truncated2. The second proposed multiplier for 

k=8,9,…,14 has also less PDT than that of LOA with the 

same PSNR level. 
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Fig. 21. The PDT of each multiplier versus the negative of its PSNR for the image blending. 

 

 

5.2 Image Compression 

In this section, the proposed multiplier is used in the 

JPEG algorithm for lossy image compression. The block 

diagram of JPEG algorithm was shown in Fig. 23. In this 

algorithm, first, the image is encoded to the color coding 

YUV. Then, their 8×8 blocks of each channel Y, U and V 

shown by f is transformed from the time domain into the 

frequency domain using Discrete Cosine Transform 

(DCT) [24] to obtain a new 8×8 blocks named F. the 

DCT formulation is as follows: 

 
( ) ( )

,
4

C u C v
F u v    

   7 7

0 0

2 1 2 1
cos cos ( , )

16 16i j

i u j u
f i j

 

 

    
   
   

  

  (3) 

where 

2
0,

( ) 2

1 .

if u
c u

otherwise




 



 

 
 In this paper, integer value version of this 

transformation [25] is used which is as follows: 
7 7

0 0

1
( , ) ( , ) ( , ),

1024 i j

F u v z i j f i j
 

    (4) 

where 
( ) ( )

( , ) (1024
4

C u C v
z i j round  

 

   2 1 2 1
cos cos )

16 16

i u j u     
   
   

is an 8-bit 

integer value. 

z(i,j) for each i and j is calculated one time, and is 

stored in a table to be used in the compression phase of 

each images [26]. Therefore, since f(i,j) is considered to 

be an 8-bit value, F(u,v) can be computed using some 8-

bit multiplications and 8-bit additions, and then by 

dividing the result to 1024 or right shifting it 10 times. In 

this paper, the additions are calculated using a precise 

adder and only the multiplications were calculated using 

an approximate multiplier. Each times, each of the six 

standard images shown in Fig. 24 was compressed using 

an approximate multiplier and then decompressed. Then, 

the similarity amount of the original image and the 

decompressed image was calculated using the PSNR, and 

was registered then in Table 7. In this table, the mean of 

the PSNR of the six decompressed images for each 

approximate multiplier, and also the percentages of 

improvement of these mean with respect to the mean 

PSNR of decompressed images obtained by Accurate3:2 

were registered.  One series of the decompressed images 

each one obtained by using a different multiplier was 

shown in Fig. 25. As it can be seen, the original image 

and the decompressed images often do not differ 

significantly. 
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Fig. 22. Block diagram of JPEG algorithm [24]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 23. Six benchmark images. 

 

 

 

Truncated1 [7]  
 

Truncated2 [8]  
 

Truncated3 [2]  

 

LOA [4] ,k=3 
 

LOA [4] ,k=4 
 

LOA [4] ,k=5 

 

LOA [4] ,k=6 
 

LOA [4] ,k=7 
 

LOA [4] ,k=8 

 

LOA [4] ,k=9 
 

LOA [4] ,k=10 
 

LOA [4] ,k=11 

 

LOA [4] ,k=12 
 

LOA [4] ,k=13 
 

LOA [4] ,k=14 

 

LOA [4] ,k=15 
 

Momeni [14]  
 

Ma [12]  

 
Liu [13,14] 

 
Kulkani [11] 

 
Proposed1,k=3 

 
Proposed1,  k=4 

 
Proposed1,k=5 

 
Proposed1, k=6 

 
Proposed1,k=7 

 
Proposed1, k=8 

 
Proposed1, k=9 

 
Proposed1, k=10 

 
Proposed1,k=11 

 
Proposed1, k=12 

 
Proposed1, k=13 

 
Proposed1,k=14 

 
Proposed2,k=3 

 
Proposed2, k=4 

 
Proposed2,k=5 

 
Proposed2, k=6 

 
Proposed2, k=7 

 
Proposed2,k=8 

 
Proposed2, k=9 

 
Proposed2,k=10 

 
Proposed2,k=11 

 
Proposed2,k=12 

 
Proposed2, k=13 

 
Proposed2, k=14 

 
Accurate3:2 

 

Fig. 24. Decompressed images for different multipliers.
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Table 7. PSNR or similarity amount of the original images and the corresponding decompressed images for different 

multipliers. 

Multiplier 
PSNR of each image type  

Mean of 

PSNR 

PSNR mean improvement 
with respect to 

Accurate3:2 a b c d e f 

truncated1 [7] , P=11,K=4 24422 24422 2442. 24432 24424 24433 24432    1.4.777  

truncated2 [8] , P=11,K=4 72423 34227  72412 7347. 73421 73448 73444     342722  

truncated3 [2] , P=8,k=4 4.4.2 44472 .2421 .2488 .2422 44432    .2487     3.428  

LOA [4] , k=3 7.422 744.8 83424 724.1 74418 72428    72422      2412  

LOA [4] , k=4 7342. 744.1 82422 72432 74412 72422    72417      242.  

LOA [4] , k=5 734.1 7.47. 72421 744.2 7.4.2 74412    74432      1434  

LOA [4] , k=6 71487 72442 744.2 73422 72482 72422    73414      .422  

LOA [4] , k=7 27423 28414 22444 2847. 28414 28422    28484      2483  

LOA [4] , k=8 214.. 21472 22412 22412 214.8 21481    2242.     17422  

LOA [4] , k=9 44473 44428 42418 44471 4242. 44724     42441     24428  

LOA [4] , k=10 .2442 .2471 .2488 .2472 42422 .2442    42422     33421  

LOA [4] , k=11 .3473 ..4.8 ..412 ..42. ..441 ..422    .4422     .2472  

LOA [4] , k=12 38428 32432 32473 32474 32444 32418    32483     .7483  

LOA [4] , k=13 3.42. 32414 34411 32418 34478 34442    32438     4243.  

LOA [4] , k=14 22487 32444 3142. 31481 31422 324.3    31441     48473  

LOA [4] , k=15 22424 284.2 28442 32427 284.3 27427    224.2     214.2  

Momeni [14]  234.. 23422 22437 22437 2247. 23422    22424     2242.  

Ma [12]  .2422 .8422 .2422 41428 .2471 .8427    .2422     3444.  

Liu [13,14] .1482 .242. .3414 .3424 .2422 .2423    .3422     .3427  

Kulkani [11] 32428 .2414 ..4.. .3442 .2427 .2478    .2422     1.348  

Proposed1, k=3 73422 744.2 82482 72432 74413 74422    72417      242.  

Proposed1, k=4 73472 74422 81434 74421 7.482 74423    74472      2482  

Proposed1, k=5 72477 73484 77427 7.4.2 73422 7.433    7.422      247.  

Proposed1, k=6 72432 72421 7342. 71421 .7142  71433    714.3      24..  

Proposed1, k=7 2242. 22434 27427 22432 22482 22433    22444     1248.  

Proposed1, k=8 47417 47421 474.3 47432 47423 47427    4743.     2.422  

Proposed1, k=9 414.2 41442 4142. 414.2 41447 41441    41472     32428  

Proposed1, k=10 33..4  .44.2 .4423 .4442 .44.. .4443    .4472     .2414  

Proposed1, k=11 32442 32442 32482 32422 32482 32442    32423     .8412  

Proposed1, k=12 37434 374.2 38421 37488 38412 37432    37473     42448  

Proposed1, k=13 32442 33423 3.414 33422 3.418 33414    33472     44473  

Proposed1, k=14 22448 22474 214.2 24412 22422 214.3    21421     71432  

Proposed2, k=3 73427 744.. 83422 72434 74412 72422    72421      2418  

Proposed2, k=4 73472 74418 81442 72423 7.422 74471    74482      2472  

Proposed2, k=5 73411 7.428 78442 21.7.  7.422 7.427    7.422      2418  

Proposed2, k=6 71432 72428 73482 724.. 71428 72423    72431      4422  

Proposed2, k=7 27422 28422 28482 28442 28423 28428    28424     12421  

Proposed2, k=8 48422 48414 48432 48412 48421 48422    48412     23488  

Proposed2, k=9 42424 42432 424.2 424.3 424.2 42432    424.2     31424  

Proposed2, k=10 .2417 .2431 .244. .24.1 .242. .2438    .24.8     32412  

Proposed2, k=11 .2421 .241. .2442 .2434 .2443 .2427    .242.     .7422  

Proposed2, k=12 3.422 3.414 3.44. 3347. 3.473 3.421    .4233     44417  

Proposed2, k=13 27422 2842. 22423 28447 274.. 2843.    28424     23422  

Proposed2, k=14 21422 21432 214.3 24412 22423 22442 22421    72422  

Accurate3:2 7.422 7444. 83424 .72 49 7442. 72412 72432 2 

 

 

Fig. 26 shows the delay of each multiplier versus the 

negative of its PSNR for the image compression. There is 

a trade off between the delay and the -PSNR of a 

multiplier. The less the delay of a multiplier, the more its 

-PSNR. But, according to this Fig., the second proposed 

multiplier has less delay than that of the other multipliers 

with the same PSNR level, except LOA for some k, or the 

second proposed multiplier has less -PSNR than that of 

the other multipliers with the same delay level, except 

LOA for some k. The second proposed multiplier for 

k=4,5,6,7 has also less delay than that of LOA with the 

same PSNR level. The obtained result is different from 

the results obtained in section IV. The reason is that in 
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section IV the MSE was calculated based on the all of 8-

bit multiplier truth table states and thus multiplication 

operands were supposed to be from a uniform 

distribution, while in this section the PSNR (which 

related directly to MSE) was computed based on some of 

multiplier truth table states. These states depend on 

multiplication operands, pixels values, histogram, or data 

distribution of each image. Therefore, one can obtain 

different result for some other images probably. If it is 

supposed that the multiplication operands in the JPEG 

compression have a uniform distribution, then the result 

will be the same as what were shown in Table 4 not what 

where shown in Table 7. 

Fig. 27 shows the PDT of each multiplier versus the 

negative of its PSNR. According to this Fig., the second 

proposed multiplier has less PDT than that of the other 

multipliers with the same PSNR level, except LOA for 

some k and the truncated multipliers, or the second 

proposed multiplier has less -PSNR than that of the other 

multipliers with the same PDT level, except LOA for 

some k and the truncated multipliers. The second 

proposed multiplier for k=4,6,7 has also less PDT than 

that of LOA with the same PSNR level. 

 

6. Conclusion 

In this paper, a novel 8-bit approximate multiplier 

based on three novel 4:2 approximate compressors was 

proposed which its delay and error was less than those of 

the multipliers constructed by traditional 4:2 approximate 

compressors, and its delay is also less than that of an 8-bit 

multiplier constructed by using 3:2 precise compressors. 

To do so, each novel compressor was designed such that 

its output carry was independent of some of its inputs. 

One of these inputs was connected to the output carry of 

its previous compressor in the CPA of multiplier. 

Therefore, the problem of carry propagation delay of 

multiplier’s CPA was eliminated and a fast multiplier was 

constructed. This was the first proposed multiplier. To 

obtain the most accurate multiplier, the best compressor 

of the three proposed compressors for each multiplier’s 

columns is determined using the genetic algorithm. The 

constructed multiplier called the second proposed 

multiplier. Meanwhile, for more error reduction, the 

approximate compressors were used only at the k least 

significant columns of multiplier. The proposed 

multipliers were used for image blending and image 

compression.  

According to the simulations results (Table 4), when 

the multiplication operands are supposed to be selected 

from a uniform distribution, for each k, the MSE of the 

second approximate proposed multiplier is less than that 

of the first approximate proposed multiplier. For 

k=3,4,…,12, the error and the delay of the second 

proposed method are less than those of the traditional 4:2 

approximate compressor-based multipliers (See Table 5 

for detail). Meanwhile, the second proposed multiplier 

has less delay than that of the other multipliers with the 

same MSE level, except the LOA for some k, or the 

second proposed multiplier has less MSE than that of the 

other multipliers with the same delay level, except the 

LOA for some k. The second proposed multiplier for 

k=8,9,…,14 has also less delay than that of the LOA with 

the same MSE level. 

 

 

 

 
Fig. 25. The delay of each multiplier versus the negative of its PSNR for the image compression. 
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Fig. 26. The PDT of each multiplier versus the negative of its PSNR for the images compression. 
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