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Abstract: The influences of pretreatments and acid hydrolysis conditions in bioethanol production from Napier grass 

were investigated. The alkaline and acid pretreatments removed 6.63 % and 5.71 % of lignin more than the untreated 

grass. The recommended acid concentration in hydrolysis was 35% sulphuric acid for duration of 20 to 40 min. 

Fermentation of samples from acid and alkaline pretreatments for 48 h produced the highest ethanol concentration 

of 13 %v/v. However, when the sustainability was considered, these chemical pretreatments used chemical and 

required sample’ neutralization prior to fermentation thus an additional chemical cost occurred and released more 

chemical to environments in comparison to steam pretreatments which produced slightly lower ethanol of 11 %v/v. 
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1. Introduction 

The potential of energy shortages motivates the search for alternative energy sources. Bioethanol production from 

lignocellulose biomass has been extensively researched, examples of lignocellulose biomass used for bioethanol 

production include sweet sorghum bagasse, grasses, cotton stalk, and even agro-industrial wastes such as that from 

sugarcane [1-5]. Napier grass is abundant and can be found in many areas. It can be grown even at low nutrient conditions 

and is typically used as animal feed [6]. 

So far, technological performance has been the important selection criteria but recent studies have shifted interest to 

sustainable bioethanol production [7, 8]. R.H.W. Boyer et al. [9] described many sustainability models and each model 

consisted of economic, environmental and social sustainability. According to Scown et al. [8], the greenhouse gas 

emission scope for bioethanol life cycle analysis started from biomass production, feedstock transportation, biorefining, 

ethanol transportation and fuel combustion. This model is similar to system described by T. Hattori and S. Morita [10] 

who estimated the net energy balance of many cellulosic energy crops. Hattori and Morita [10] estimated the ethanol 

conversion efficiency to be 380 L t-1 of dried weight and the estimated net energy balance ratio of switchgrass to be 3.92 

– 6.31. Both works from Scown et al. 

[8] and T. Hattori and S. Morita [10] investigated the overall system so the technical bioethanol production data were 

taken from literatures. In contrast to this work, we focused on the influence of parameters on the sustainability of 

lignocellulosic crops. 

http://penerbit.uthm.edu.my/ojs/index.php/ijie
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Napier grass was reported to contain 30.40% lignin, 36.34% cellulose, and 34.12% hemicellulose [11]. Bioethanol 

production of Napier grass consists of 4 necessary steps; delignification in pretreatment [12], hydrolysis, fermentation 

and ethanol purification [13]. B. Wen et al. [14] investigated the biological pretreatment of Napier grass by three 

microbial consortia. K.O. Reddy et al. 

[15] studied the effects of a dilute alkali treatment (2% sodium hydroxide solution) on the chemical composition and 

structural characteristics of Napier grass fibers. Alkali pretreatment with a base is commonly used with other 

lignocellulose materials such as empty oil palm fruit bunches [16]. A. de Araújo Morandim-Giannetti et al. [11] compared 

delignification of Napier grass by calcium oxide and hydrogen peroxide. Apart from the chemical pretreatment, physical 

treatments such as steam explosion and ultrasound have also been applied in biomass pretreatments [2, 17]. However, 

results in the available literatures cannot be directly compared to identify the most effective pretreatment being due to 

different experimental parameters. 

In the first stage of, this research aimed to find the optimum experimental parameters in 4 types of pretreatments; a 

distilled water and steam explosion pretreatment (W); an acid and steam explosion pretreatment (A); a base (alkali) and 

steam explosion pretreatment (B); and a control samples (C) were used as the baseline for comparisons. In the second 

stage, the technical and sustainability analysis based on the conditions of each pretreatment were carried out. 

 

2. Materials and Methods 

2.1 Materials and Chemicals 

Napier grass (Pennisetum purpureum) was obtained from Sai Chai Field, Surat Thani province, Thailand. This 

grass is also known as elephant grass. The grass was chopped into small pieces, air-dried for 2 days, and milled to 0.5 

grade. All experiments were performed in triplicate. 

 

2.2 Pretreatments 

There were 3 pretreatments (W, A and B) and 3 replications were carried out of each procedure. Lignin content was 

determined by the method developed by NREL, which is described in the determination of structural carbohydrates and 

lignin in biomass [18]. 15 g of milled and dried Napier grass powder was soaked in 750 mL of distilled water at room 

temperature for 6 h. The mixture was autoclaved at 121 ℃, 15 psi for 15 min, and cooled. The mixture was vacuum 

filtered and the remaining solids were washed thoroughly. The grass powder was dried at 60 ℃ before storage, and was 

later used in the acid hydrolysis. 15 g of the milled and dried Napier grass powder was soaked in 750 mL of 2% H2SO4 

at room temperature for 6 h. The acidic suspension was vacuum filtered and the remaining solids were washed with 

distilled water, then 750 mL of distilled water was added. 

The water/grass suspension was autoclaved at ℃, 15 psi for 15 min, and cooled. The suspension was vacuum filtered 

and the remaining solids were washed thoroughly to pH 7. The grass powder was dried at 60 ℃ before storage, and was 

later used in the acid hydrolysis. 15 g of the milled and dried Napier grass powder was soaked in 750 mL of 2% NaOH 

at room temperature for 6 h. The basic (alkaline) suspension was vacuum filtered and the remaining solids were washed 

with distilled water, then 750 mL of distilled water was added. The suspension was autoclaved at 121 ℃, 15 psi for 15 

min, and cooled. It was then vacuum filtered and the remaining solids were washed thoroughly to pH 7. The grass powder 

was dried at 60 ℃ before storage, and was later used in the acid hydrolysis 

 

2.3 Acid Hydrolysis 

The variables in acid hydrolysis were the sulphuric acid concentration and the hydrolysis duration. The sulphuric 

acid concentrations tested were 10, 20, and 35%. The hydrolysis durations were 10, 20, 40, and 60 min. Concentration 

of reducing sugar in hydrolysate was determined using the 3,5–dinitrosalicylic acid (DNS) method developed by G.L. 

Miller [19]. The highest sugar condensate from each pretreatment was neutralized to pH 5.0-5.5 and then fermented. 

 

2.4 Fermentation 

The preparation of the yeast inoculum was carried out aseptically in an Erlenmeyer flask containing 15 %w/v sucrose, 

1% peptone, and 10% extract of Saccharomyces cerevisiae yeast, at room temperature for 48 h. The medium was stirred 

at 8,000 rpm for 10 min before the liquid medium was removed, and the yeast inoculum was washed thoroughly with 

distilled water. The obtained inoculum was stirred for another 10 min and washed again to remove the residual medium 

from the inoculum. The fermentation substrate after hydrolysis was fermented with the prepared inoculum of 

Saccharomyces cerevisiae (10% inoculum in the fermentation media) in an Erlenmeyer flask. The experiments were 

carried out at room temperature for various fermentation times (24, 48, 72, and 96 h). Aliquots were extracted after the 

filtration of fermentation broth and the centrifuge of filtrate at 8,000 rpm for 10 min to remove solid particles from broth. 

Ethanol percentages were measured by using an alcohol refractometer. 
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2.5 Technical and Sustainability Analysis 

The technical and sustainability analysis covered the economic, environmental, social impacts [9] and technical 

performance of the pretreatment procedures. The bioethanol procedures giving the highest ethanol content from W, A, B 

and C procedures were marked as W*, A*, B* and C*, respectively. The technical and sustainability impacts of the 

selected W*, A*, B* and C* procedures were analyzed here. The impacts of W*, A*, B* and C* procedures were 

analyzed, discussed and later evaluated their suitable scores. The analysis was scaled from 1 to 5; 1 indicates strong 

negative impact, 2 indicates mild negative impact and 3 indicates neutral, 4 indicates mild positive impact and 5 indicates 

strong positive impact. 

 

3. Results and Discussion 

3.1 Lignin Removal 

The measured lignin contents were compared and analyzed by using the statistical program SPSS, One-Way 

ANOVA (Tukey) at 𝛼𝛼 = 0.05. The control sample (C) contained 29.75% lignin, which is significantly higher than the 

lignin content in A, B, or W pretreated grass. The W did not significantly reduce lignin, but the cell structure was 

damaged, which exposed cellulose to the chemical reactions in hydrolysis and fermentation. Although the non-chemical 

pretreatment could not significantly remove lignin, its advantage is the absent of toxic chemical derivatives such as 

carboxylic acid, phenolic acid, and furan acid, which inhibit fermentation by the yeast [20]. 

 
Table 1 - Lignin contents in the control and the treated Napier grass samples 

 

  % remained lignin  

Samples 
Acid soluble Non-acid soluble Total 

“C” 12.97±0.26c
 16.78±0.26c

 29.75±0.52c
 

“W” 12.44±0.45c
 16.14±0.05b

 28.58±0.50b
 

“A” 7.47±0.33a
 16.57±0.33bc

 24.04±0.64a
 

“B” 9.57±0.15b
 13.55±0.15a

 23.12±0.30a
 

 

The “A” and “B” pretreatments dissolved acid soluble lignin by 5.5% and 6.63%, respectively, more than the control 

“C”. This dissolved lignin exposed cellulose/hemicellulose [21] to acid hydrolysis. R. Gupta and Y.Y. Lee [6] also found 

that sodium hydroxide pretreatment removed a great portion of the lignin in biomass. Sodium hydroxide reacted with 

ester functional groups of lignin chains, cellulose swelling and partially solubilized of hemicelluloses [2, 22]. Once the 

lignin was removed, hemicellulose and cellulose were in direct contact with sodium hydroxide, which caused them to 

swell and split away from the covering lignin layer [21]. 

 

3.2 Reducing Sugar Production 

From Fig. 1, the maximum (denoted by *) concentrations of reducing sugar prepared from “A” and “B” pretreated 

hydrolysates were the top values while the “C” hydrolysate gave the minimum sugar concentration. Without pretreatment, 

the hemicelluloses and lignin would cover cellulose, which then cannot be hydrolyzed to sugars. The steam pretreatment 

gave a moderate sugar concentration of 0.8% because although steam could not dissolve hemicelluloses/lignin but steam 

could effectively fractionated cellulose, hemicellulose, and lignin [23] so a portion of cellulose would still be uncovered 

from lignin. These data showed that chemical pretreatment was necessary for bioethanol production from cellulosic 

biomass and the statement agreed well with work from Suthkamol Suttikul et al. [5] who successfully pretreated the 

sugarcane trash with a dilute alkaline method. 

Referring to Fig. 1, the average reducing sugar concentration increased with acid concentration: 35% sulphuric acid 

produced the highest reducing sugar concentration. Similar conclusions were reported by E. Palmqvist and B. Hahn- 

Hägerdal [24] who hydrolyzed spruce wood. Hemicellulose was hydrolysed to xylose [25, 26] and the hydrogen bonds 

between hemicellulose and cellulose were destroyed, so the cellulose chains became free to react with sulphuric acid. 

Sulphuric acid broke chemical bonds in the cellulose chains and produced short-chained molecules. These C5 and C6 

short chains were reducing sugars, such as glucose [25], and can be fermented by S.cerevisiae to ethanol [27]. 

From Fig. 1, the optimum time were observed to be 20 and 40 min depending on hydrolysate’s pretreatment and acid 

concentrations. When the hydrolysis period was as short as 10 min, the reaction did not reach its full extent. In contrast, 

if the grass were hydrolyzed for too long (i.e. 60 min), the acid reacted with the produced reducing sugar and undesirably 

created yeast inhibiting derivatives such as furfural. The adverse effects of excessive hydrolysis period are also reported 

by E. Takata et al. [28]. They hydrolyzed Napier grass with phosphoric acid and when hydrolysis period was changed 

from 4 min to 8 min, they observed increased furfural and decreased xylose. In conclusion, acid hydrolysis for 20-40 min 

was recommended in our study. 
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3.3 Ethanol Production 

The W*, A*, B* and C* solutions were then fermented by Saccharomyces cerevisiae. The measured ethanol 

concentrations at select fermentation durations are reported in the following table. 

 
Table 2 - The measured ethanol concentrations during fermentation 

 

Samples 
  Ethanol contents (% v/v) after   

24 h 48 h 72 h 96 h 

“C*” 8.1 ±0.8a 11.1 ±0.1a 10.7 ±0.1a 10.0 ±0.2a 

“W*” 11.4 ±0.2bc 13.0 ±0.3b 12.2 ±0.1b 12.0 ±0.1b 

“A*” 10.6 ±0.2b 13.2 ±0.1b 12.8 ±0.1c 12.4 ±0.1c 

“B*” 12.0 ±0.0c 13.4 ±0.2b 12.8 ±0.1c 12.4 ±0.1c 

 

Fig. 1 - Concentration of reducing sugar 

 

The ethanol contents were analyzed by using the statistical program SPSS, One-Way ANOVA (Tukey) at 𝛼𝛼 = 0.05. 

The ethanol concentration in all broths initially increased, reached its maximum in 48 hours, and then declined towards 

the end of fermentation. At 48 h, ethanol concentrations from “B” and “A” were similar with values of 13.4 and 13.2 

%v/v. These samples had similar lignin content, so it was reasonable to produce the similar ethanol concentrations. 

However, “A” gave slightly lower ethanol concentration than “B” being due to the yeast inhibitors created during “A” 

pretreatment. 

 

3.4 Technical and Sustainability Evaluations 

The technical evaluation based on the bioethanol production performance of the procedure W*, A*, B* and C*. The 

procedures W*, A* and B* gave the highest bioethanol contents of approximately 13 %v/v so their scores were 5. The 

procedure C* produced a lower content (11.1 %v/v) so it received score of 4. In economic aspect; C* involved no 

pretreatment cost thus its economic score was 5 and W* used water and electricity to autoclave solution thus its economic 

score was 4. The pretreatment A* and B* used electricity during autoclave, chemicals in pretreatment and chemical in 

neutralization steps so they received the economic scores as 2. The social impacts of all procedures were determined to 

be neutral because the bioethanol production from Napier grass could increase product value from agricultural crops such 
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as Napier grass and could be beneficial to farmers. The social scores of 3 were determined to be appropriate for all 

procedures. Lastly, the environmental scores of all procedures were low being due to the hydrolyzation of grass with 

concentrated acid and due to the chemical neutralization of processing solutions before discharging it to environment. 

The non- chemical pretreatments (C* and W*) received environmental score of 2 while the chemical pretreatments (A* 

and B*) received environmental score of 1 due to the use of chemical in pretreatment processes. In overall, the chemical 

treatments (A* and B*) gave the highest technical performance but the procedures had negative impacts on economic 

and environmental aspects. Replacing of chemical pretreatment with steam pretreatment reduced the potential ethanol 

content from 13 %v/v to 11 %v/v but effectively improved the economic and environmental impacts. 
 

Fig. 2 - Sustainability evaluation of bioethanol productions from selected pretreatments 

 

4. Conclusions 

The acid (A) and alkaline (B) pretreatments satisfactorily dissolve lignin from Napier grass by 5.71% and 6.63%, 

respectively. The distilled water and steam explosion pretreatment (W) damaged the cell walls and exposed 

cellulose/hemicellulose to acid hydrolysis. The optimum hydrolysis conditions used 35% sulphuric acid for 20 to 40 min. 

Fermentation with Saccharomyces cerevisiae for 48 h was suitable for all selected pretreatments. The Acid and alkaline 

pretreated samples gave approximately 13 %v/v. The combined technical and sustainability evaluation shows that the 

chemical pretreatments had negative impacts on environmental and economic aspects. The steam pretreatment had 

slightly lower technical performance but gave better influence on environmental and economic aspects. 
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