
International Journal of Integrated Engineering:
Special Issue 2018: Data Information Engineering, Vol. 10 No. 6 (2018) p. 203-208.
© Penerbit UTHM DOI: https://doi.org/10.30880/ijie.2018.10.06.029

Understanding the Root of Attack in Android Malware
Rahiwan Nazar Romli1*, Mohamad Fadli Zolkipli1, Ahmad Al-Ma’arif2,
Muhamad Ramiza Ramli1, Mohamad Aizi Salamat3

1Faculty of Computer System & Software Engineering, University of Malaysia Pahang, 26200 Gambang, MALAYSIA.
2School of Industrial Engineering, Telkom University, 40257 Bandung, West Java, Indonesia
3Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,
Batu Pahat, Johor, Malaysia.

Received 28 June 2018; accepted 5 August 2018, available online 24 August 2018

1. Introduction
The rise of cheaper mobile devices and internet

connection has become a contributing factor to the
increase of mobile user. Among all, Android is the most
popular and also known as the most wanted OS by user
[1][2][3]. Due to this development, the security of
Android OS becomes a major challenge. With the device
always connected to internet, it becomes vulnerable to
malware attack through the applications installed in the
device. A report by [4] concluded that over 100 billion
malwares were detected, and from that, nearly100 million
were in Android platform. In an attempt to evaluate the
progress of these studies within specific areas, this article
is sectioned as the following:

• The first section presents Android overview and
its architecture. It describes about Android
operating system and its importance in order to
provide better understanding about mobile
malware. Most of the previous studies focus on
malware techniques and have ignored the basic
part in malware analysis.

• The second section presents an inclusive study
about the type of malware in Android
environment. This part presents a brief review
about top malwares in android, the way they
attack, the after-effect of the attack and the
medium used to inject these malwares in android
platform.

• The third section presents the comparative
analysis on existing work. Similar studies are
reviewed in order to identify the methods used in
malware analysis; the techniques applied in
malware detection; and also the advantages and

disadvantages of each. This section is meant to
provide insight into the progress of this study in
the areas mentioned.

2. Android Overview
For a simple definition, Android is a mobile

operating system for mobile phones and tablets that is
open source. Android was introduced by Google in 2008.
It was designed based on Linux Kernel.

The long written history of the working framework
for portable Android applications started with Android
beta in November 5, 2007. Later on, Android 1.0 was
released worldwide in September 2008.This version of
Android was developed through the cooperation of
Google and Open Handset Alliance. Since then, various
updates to its base working framework have been seen.

The Android versions 1.0 and 1.1 were not released
worldwide under unique names. Each Android version
has been uniquely named after dessert and arranged in
alphabetical sequence since 2009's Android 1.5 Cupcake.
The most recent one is Android 8.1 Oreo that was
released worldwide in December 2017. The following
Table 1 demonstrates the historical background of
Android forms.

Table 1 : Android Version history
Code Name Android

Version
Year
Release

API
Level

Security

NoCode Name 1.0 2008 1 Unsupported
Petit Four 1.1 2009 2 Unsupported
Cupcake 1.5 2009 3 Unsupported
Donut 1.6 2009 4 Unsupported
Éclair 2.0 - 2.1 2009 5-7 Unsupported

Abstract: With the rapid pace of development and change in mobile device technology and Android versions,
Android malware has emerged and become a focus in current research. Subsequently, security and privacy have
become one of the main issues in android malware. Therefore, it is essential to understand the behavior of Android
malware in order to conceive an effective technique in malware detection and analysis. This article presents a
comprehensive study regarding Android platform, its features in android malware code and also discusses the
result from previous studies in order to support forward-looking in Android study.

Keywords: Android, Malware, Malware Detection and Analysis

*Corresponding author: rahiwan@ump.edu.my
2018 UTHM Publisher. All right reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

203

https://doi.org/10.30880/ijie.xx.xx.xxxx.xx.xxxx

R.N. Romli et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 203-208

Froyo 2.2 -
2.2.3

2010 8 Unsupported

Gingerbread 2.3 -
2.37

2010 9-10 Unsupported

Honeycomb 3.0 –
3.2.6

2011 11-13 Unsupported

Ice Cream
Sandwich

4.0 –
4.0.4

2011 14-15 Unsupported

Jelly Bean 4.1 -
4.3.1

2012 16 -18 Unsupported

KitKat 4.4 –
4.4.4

2013 19 -20 Unsupported

Lollipop 5.0 -
5.1.1

2014 21 -22 Supported

Marshmallow 6.0 –
6.0.1

2015 23 Supported

Nougat 7.0 –
7.1.2

2016 25 –
25

Supported

Oreo 8.0 – 8.1 2017 26 -27 Supported

2.1 Android Architecture

Android operating system’s basic design is based on
Linux kernel and it runs all Java written applications in
isolation [5][6]. There are two principles in android, one
being, Android could not kill the running application if
user switch to other application at the same time, another
one is, Android will kill applications when the memory
usage is high but it will save the app state for when the
phone restarts at other time. Android architecture as
shown in Fig. 1 can be classified into four layers which
are Application, Application Framework, Libraries +
Runtime and Linux Kernel.

Fig. 1 Android Architecture

Each layer in Android has different task thus
provides consistence in the service. Application layer is
developed with the help of APIs from core libraries and
Android framework. Most mobile device contains basic
applications such as Calendar, Contacts, SMS, browser
and other applications that can be downloaded from
android store.

Application Framework supply the more elevated
amount of administration to Application. This layer gives
abnormal state APIs to android application empowering
them to execute custom highlights. On the highest point
of Linux Kernel is an arrangement of libraries. These
libraries are utilized to empower different highlights in
the Android OS. All these are composed in C++. Inside
this layer comes the most essential part in Android
Architecture which is Android Runtime. Android
Runtime essentially has two parts which are Dalvik
Virtual Machine (DVM) and Core Libraries.

Dalvik Virtual Machine is considered as the most
critical segment in Android OS design. Everything over
this level of the design is composed in Java. Thus,
essentially it contains an arrangement of .class records.
Running those .class records on a little portable processor
however, is an issue. Hence, Dalvik Virtual machine
changes these .class records into .dex documents which
would make preparing substantially quicker. These
records keep running with least memory impression.
Presently it has numerous occasions of this VM running
i.e. performing various tasks. Dalvik Virtual Machine is
like JVM except it is outlined and streamlined for
Android stage.

The base of the Android design is Linux. This part is
focal module of an OS. It is in charge of memory
administration, process administration, and plate
administration. Essentially it associates the framework
equipment to the application programming.

 Android needs a part and instead of composing its
own particular, they pick Linux. As Linux is open source
operating system, Android developers could alter the
Linux part to fit their needs. Linux gives the Android
designers a pre-assembled version; officially kept up
working framework portion to begin with. This is the way
a wide range of gadgets are assembled.

2.2 Android Security Issue

Android security model is designed in multilayer in
order to provide protection for android user. The
adaptability of the stage permits designers of all
experience levels to effortlessly work with the SDK to
assemble secure applications. There are protected APIs
placed between Application and Libraries. All of the
Android programs must be given permission by Android
Permission System when accessing a particular
application.

Permission is the right that a particular application
has that enables it to play out specific activities on their
device [7]. This Permission is defined in Manifest file
AndroidManifest.xml, which is compulsory for shipping
each android app.

For example, when a user uses Camera to perform
action of taking picture, the Android system will check
whether the application file has the CAMERA
permission. Previous studies regarding the inefficiency of
Permission can be found in[8][9][10][11]. Unfortunately,
as this permission also allows anti-virus application, it
could allow malware author to inject their malicious into
Android system.

However, this Permission has a few flaws. A client
cannot choose to allow single permission, while denying
others. Numerous users, in spite of the fact that an
application may ask for a suspicious permission among
many apparently genuine consents, will even now affirm
the installation. This is called as all-or-none policy.

On the other hand, most of the time, user cannot
pass judgment on the suitability of permission for the
application being referred to. At times it might be self-
evident, for instance when a diversion application asks
for the benefit to reboot the device or to send instant
messages. By and large, in any case, user will usually be
unequipped for surveying permission propriety.

 204

R.N. Romli et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 203-208

Lastly is about circumvention in permission. Worth,

which should be executable just given the proper
permission, can at present be gotten to with less
permission or even with none by any stretch of the
imagination.

Based on aforementioned details, the security in
Android framework can be affected by malware through
abusing of permission feature in Android. However,
permission is the most conspicuous element that has been
executed by many researchers[12][13][14][15],as shown
in Table 1, the ranking of permission feature from year
2010 – 2016. Currently, the number of android malware
using INTERNET permission as full internet access
remains highest since 2010. With the update of android
versions and the growing of malware, there are a few
rising of permission feature between year 2016 and 2017
such as Bluetooth and Receive_Boot_Complete.

Table 2 Ranking of Permission feature between 2010-
2016

2010 2012 2013
1.Internet
2.Read_Phone
_state
3.Vibrate
4.Write_External
_Storage
5.Access_Networ
k_State
6.Send_SMS
7.Wake_Lock
8.Receive_Boot_
Completed
9.Access_Wifi_St
ate
10.Access_Fine_
Location

1. Internet
2.
Access_Network
_State
3. Vibrate
4.
Access_Fine_Loc
ation
5.
Read_Phone_Stat
e
6. Wake_Lock
7.
Access_Wifi_Sta
te
8.Write_External
_Storage
9.
Access_Coarse_
Location
10. Factory_Test

1. Internet
2.Access_Netw
ork_State
3.
Read_Phone_St
ate
4. Vibrate
5.
Access_Wifi_S
tate
6. Wake_Lock
7.
Access_Fine_L
ocation
8.
Write_External
_Storage
9. Factory_Test
10.
Access_Coarse
_Location

2014 2015 2016
1. Internet
2.
Access_Network
_State
3.
Read_Phone_Sta
te
4. Vibrate
5. Wake_Lock
6.
Access_Wifi_Stat
e
7.
Access_Fine_Loc
ation
8.
Write_External_
Storage
9. Factory_Test

1.Internet
2.Write_Sync_Se
tting
3.NFC
4.Read_History_
Bookmarks
5.Access_Coarse
_Location
6.Location_Hard
ware
7.Read_Call_Log
8.Add_Voicemail
9.Access_Wifi_S
tate
10.Access_Fine_
Location
11. Read_SMS
12. Send_SMS

1. Internet
2.
Access_Wifi_S
tate
3.
Modify_Phone
_State
4.
Read_Phone_St
ate
5.
Access_Fine_L
ocation
6.
Access_Coarse
_Location
7. Wake_Lock
8. Vibrate
9.Access_Netw

10.Access_Coars
e_Location

ork_State
10.
Restart_Packag
e
11.
Read_Contact
12.
Read_Phone_St
ate
13. Camera
14.
Set_Wallpaper
15.
System_Alert_
Window

Based on the comparison of previous works (as

shown in Table 2), it can be concluded that there are
some new features used by malware authors in creating
malware. The new features include
READ_HISTORY_BOOKMARKS,
CHANGE_WIFI_STATE and GET_TASKS. Fig. 2 shows
the overall android feature permission that is highly used
by malware authors.

2.3 Comparative Study on Existing Work

A considerable measure of study was done in
portable stage and distributed computing. Malware
distinguishing proof and investigation were connected in
this study. Here, we bring up the previous work by the
other researcher.

Hanling Zhang presents ScanMe Mobile for
malware investigation utilizing cloud stage [16]. The job
of this model is to give clients point by point data about
Android Application Package (APK) records before
introducing them on their gadgets. With ScanMe Mobile,
clients can transfer APK records from their gadget SD
card, filter the APK in the malware identification
framework that could be sent in the cloud, assemble a
complete report, and store or offer the report by
distributing it to the site[16].

Three-layer mixture framework with lightweight
antimalware motor proposed by [17].This examination
allows quick time in malware identification, shield client
from malware and diminish the data transmission among
customer and the cloud.

S. Zonous[18]proposed a structure named
Seacloud.It was produced for Android stage. It was
outlined for better security arrangement utilizing cloud
based. Seacloud imitates an enrolled cell phone gadget
inside an assigned cloud and keeps it synchronized by
consistently passing the gadget data sources and system
associations with the cloud. This enables Seacloud to play
out an asset concentrated security examination on the
copied imitation that would some way or another be
infeasible to keep running on the gadget itself.

While Jianlin Xu[19] created a framework named
MobSafe. The target of this framework is to distinguish
and quantifythe portable application that is benevolent.
The mix of two systems, static and dynamic examination

205

R.N. Romli et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 203-208

strategy to gauge time required in assessed all android
application on one market stage. From the consequence
of development, distributed computing and information
mining will play a job as to check the application that free
from malware.

Following the study by Osamah L Barakat[20]that
acquainted new methodology with improve malware
analyser execution in malware investigation. Utilizing
distributed processing, it opens approach to crowd source
for the administration henceforth reassuring malware
revealing and quicken malware discovery by drawing in
general clients.

Lastly, John Oberheide[21] develop a model made out
of a Windows based host specialist and an in-cloud
investigation benefit and assess it utilizing a various
dataset of 5066 one of kind malware executables. By
relating data between various location engines, our
framework gives more than 98% identification inclusion
of the malevolent executables utilizing eight antivirus
engines and two conduct motors contrasted with a 54% to
86% discovery rate utilizing the most recent commercial
antivirus items .

Based on Table 3, this study defines there are few
problems are related to mobile malware analysis. There
are:

1. Resource in mobile such as storage, memory and
processer are limited. This is shown in previous
research works in row 9 and 10 in Table 3.

2. Weakness in malware detection technique. This
is shown in previous research works in row 2 ,3
and 4 in Table 3.

3. There are thousands feature in malware code and
need to look the relevant feature in malware
analysis. This is sample of feature is shown from
previous work located at row 8 in Table 3.

Based on deduction done, this work will shift focus
towards android feature permission since malware
authors are focus more on these permissions.

3. Summary

All the objectives for this paper has been answered.
in all written sections. Existing Android architecture and
security issues has been discussed. Table 3 has shown the
comparison of existing works.

As of late, the versatile distributed computing is
turning into another hot innovation. What's more, the
security answer for it has moved toward becoming an
examination center. With the advancement of the portable
cloud processing, new security issues will happen, which
needs greater security approaches. In this study, we
compactly checked on favorable circumstances and
models of portable distributed computing, what's more,
broke down security and protection issues from three
layers, which are portable terminal, versatile system and
versatile cloud. At that point, as indicated by the issues
we gave the current methodologies, for example, hostile
to malware, security assurance, key administration and
encryption, get to control, etc. It is hope that the review of
issue can a guideline to many authors in conducting their

works such as the network issue provided by [22] that
focus on device to device communication

References
[1] S. Corporation, “Internet Security Threat

Report,” vol. 21, no. 7, p. e98790, 2016.

[2] Ericsson, “Mobility Report,” White Pap., no.
May, pp. 7–8, 2016.

[3] M. Butler, “Android: Changing the mobile
landscape,” IEEE Pervasive Comput., vol. 10,
no. 1, pp. 4–7, 2011.

[4] MalwareBytes, “State of Malware Report,” p.
11, 2017.

[5] P. Singh, P. Tiwari, and S. Singh, “Analysis of
Malicious Behavior of Android Apps,” Procedia
Comput. Sci., vol. 79, pp. 215–220, 2016.

[6] S. Brähler, “Analysis of the Android
Architecture,” Os.Ibds.Kit.Edu, p. 52, 2010.

[7] B. Chalise, “Android Permission,” 2015.

[8] K. Tam, A. L. I. Feizollah, N. O. R. B. Anuar, R.
Salleh, and L. Cavallaro, “The Evolution of
Android Malware and Android Analysis
Techniques,” vol. 49, no. 4, pp. 1–41, 2017.

[9] A. Nayak and A. Pons, “Fuzzy Logic Based
Android Malware Classification Approach,” no.
June, pp. 1–8, 2014.

[10] G. Andrejková, A. Almarimi, and A. Mahmoud,
“Approximate Pattern Matching using Fuzzy
Logic ∗,” vol. 1003, pp. 52–57, 2013.

[11] M. Zheng, M. Sun, and J. C. S. Lui,
“DroidAnalytics : A Signature Based Analytic
System to Collect , Extract , Analyze and
Associate Android Malware.”

[12] P. Wijesekera, A. Baokar, A. Hosseini, S.
Egelman, D. Wagner, and K. Beznosov,
“Android Permissions Remystified - A Field
Study on Contextual Integrity,” 24th USENIX
Secur. Symp. (USENIX Secur. 15), pp. 499--
514, 2015.

[13] M. Frank, B. Dong, A. P. Felt, and D. Song,
“Mining permission request patterns from
Android and Facebook applications,” Proc. -
IEEE Int. Conf. Data Mining, ICDM, pp. 870–
875, 2012.

[14] H. Shahriar and M. Islam, “Android Malware
Detection Using Permission Analysis,” 2017.

[15] N. Peiravian and X. Zhu, “Machine learning for
Android malware detection using permission and

 206

R.N. Romli et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 203-208

API calls,” Proc. - Int. Conf. Tools with Artif.
Intell. ICTAI, pp. 300–305, 2013.

[16] Y. Cole et al., “ScanMe Mobile: A Cloud-based
Android Malware Analysis Service,” SIGAPP
Appl. Comput. Rev., vol. 16, no. 1, pp. 36–49,
2016.

[17] S. Alam, I. Sogukpinar, I. Traore, and Y. Coady,
“In-cloud malware analysis and detection: State
of the art,” ACM Int. Conf. Proceeding Ser., vol.
2014–Septe, 2014.

[18] S. Zonouz, A. Houmansadra, R. Berthiera, N.
Borisova, and W. Sanders, “Secloud: A cloud-
based comprehensive and lightweight security
solution for smartphones,” Comput. Secur., vol.
37, pp. 215–227, 2013.

[19] J. Xu et al., “MobSafe: cloud computing based
forensic analysis for massive mobile applications

using data mining,” Tsinghua Sci. Technol., vol.
18, no. 4, pp. 418–427, 2013.

[20] O. L. Barakat et al., “Malware analysis
performance enhancement using cloud
computing,” J. Comput. Virol. Hacking Tech.,
vol. 10, no. 1, pp. 1–10, 2013.

[21] J. Oberheide, E. Cooke, and F. Jahanian,
“Rethinking antivirus: executable analysis in the
network cloud,” Proc. 2nd USENIX Work. Hot
Top. Secur., p. 5:1–5:5, 2007.

[22] M.S.M. Gismalla, M.F.L. Abdullah, "Device to
Device Communication for Internet of Things
Ecosystem: An overview", International Journal
of Integrated Engineering. vol. 9, no. 4, pp. 118-
123, 2017.

Table 3 Malware Analysis
Previous Study Year Platform Method of Malware

Analysis
Technique Disadvantage

Cloud Based Malware Detection
Technique

2017 Cloud Detection Implement the tool in
cloud to detect malware

Scan Me 2016 Android + Cloud Detection

Static Analysis

Classification

Artificial Neural
Network

Not real time basis

Using SD card to send
APK file to cloud

One-way communication

Pattern Matching Techniques
for Metamorphic Virus
Detection

2016 Detection Pattern Matching Apply to conventional
method

Deep Learning for Classification
Of Malware System Call
Sequences

2015 Neural Network Problem in malware
classification

Mobsafe 2013 Android &
Cloud

Static & Dynamic
Analysis

 No synchronization
between mobile & cloud
platform

Droidanalytics: A Signature
Based Analytic System to
Collect, Extract, Analyze and
ASSOCIATE, ANDROID
Malware

2013 Android Detection

Static analysis

Dynamic analysis

Profiling Mobile Malware
Behaviour Through Hybrid
Malware Analysis Approach

2013 Android Hybrid

Secloud: A Cloud-Based
Comprehensive and Lightweight
Security Solution for
Smartphones

2013 Android &
Cloud

Detection limitation in few aspects

1.File system consistency

2.User privacy

3.Environment resiliency

4.Encryption

Analysis of Malicious and
Benign Android Application,
2012

2012 Android Detection

Dynamic Analysis

Classification

 Limited of mobile
resources

Few malwarescan’t
beclassified

207

R.N. Romli et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 203-208

CROWDROID: A Framework
for Behaviour-Based Malware
Analysis In The Cloud

2011 Android Detection

Dynamic Analysis

K-Mean Clustering Privacy

Limited in mobile
resources

Malware Behavioral Analysis
System: Twman

2011 Dynamic Analysis

A Framework for Behavior-
Based Malware Analysis In The
Cloud

2009 Cloud Detection

Virtualized In-Cloud Security
Services for Mobile Device

2008 Other + Cloud Detection Running malware in cloud
platform

One-way communication

 208

	Android Architecture
	Android Security Issue
	Comparative Study on Existing Work

