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1. Introduction

Massive multiple-input–multiple-output (MIMO) is very important in fifth-generation (5G) technology, because it
allows the achievement of a high data rate, strong interference suppression, and increased multiplicity [1]. A major 
challenge in mobile broadband networks is how to support the throughput in the future 5G. A massive MIMO system, 
which exploits a huge number of antennas array at the base station (BS) is able to assist ten users equipment and this 
technique may suffer from pilot contamination due to inter-cell interference which cannot be fully eliminated. In the 
multi-cell systems, it is impossible to assign orthogonal pilot sequences for all users in all cells, due to the limitation of 
the channel coherence interval [2]. In this way, it determines the key to increase spectral efficiency (SE) in modern 
techniques [3], to provide high data rates for active users (UEs), including those located at the cell edge, without 
sacrificing the quality of service (QoS) [4].  

The estimation channel are used in both of the uplink and downlink by exploiting the channel reciprocity in time 

division duplex (TDD), where pilot contamination occurs when the pilot reuse sequences are transmitted from all users 

at the same cell and at the same time to all adjacent cells. The spatial dimensions available at the BS and large diversity 

of gain can suppress the interference that active cell edge users experienced. Meanwhile, large numbers of cell edge users 

suffer from pilot contamination when the edge area is small. Consequently, the challenges appear due to interference, at 
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the edges between the neighboring cells, affecting the signals transmitted to many users in different cells. According to 

[5], the capacity in the cell-edge could be enhanced by assigning non-overlapping pilot sub bands. Mitigation of inter-

cell interference in TDD mode required all users to send pilot signals, which were orthogonal to other users inside these 

cells as explained in [6]. In other words, UEs at the edge of the cell suffered from strict pilot contamination, which resulted 

in poor QoS. The channel state information (CSI) obtained the channel’s status by transmitting predefined pilot sequences 

to evaluate the response of the channel [7]. From the previous method in [8], the authors used coalition game theory to 

achieve high SE. The proposed coalition game theory applied pilot reused method to serve many users because every cell 

had limited number of pilots by channel coherence. The worst case of pilot contamination occurred when all UEs reused 

the same pilot sequence to all neighbouring cells at the same time [9]. In this paper, we focus on how to obtain the 

maximal SE by improving the transmission performance in cell edges: We investigated the effects of pilot contamination 

on the received SINRs of UEs by employing different pilot reuse sequence. The pilot contamination for multiple cells 

could be avoided by using the mutually orthogonal pilot sequence. 

2. System Model

The multi-cell massive MIMO system consisted of 𝐿 cells. Each BS was equipped with an array of many antennas

𝑀 and UEs  𝐾  had a single antenna, where 𝑀 ≫ 𝐾. The pilot signal was transmitted by UEs 𝑘 𝑡ℎ in cell 𝑙. Determining 

the status of the CSI required the comparison of the received pilot from every UE with the recognized pilot signal 

associated with that UE, where the pilot reuse sequence is given by 𝛽𝑗𝑙𝑘 = diag{𝛽𝑗𝑙1, 𝛽𝑗𝑙2, . . . . , 𝛽𝑗𝑙𝐾}. In addition, the

channel vector between the BS and UEs is given by ℎ𝑗𝑙𝐾 = √𝛽𝑗𝑙𝐻𝑗𝑙 . We assumed that the channel reciprocities were the

same in both uplink and downlink. The received signal 𝑦𝑗 ∈  ∁
𝑀  at BS j in the downlink is:

𝑦𝑗 = √𝑄𝑑 ∑ ℎ𝑗𝑙𝐾
𝐿
𝑙=1 𝛾𝑙𝑘𝒳𝑙𝑘 + 𝑛𝑗𝑘      (1) 

where  𝐻𝑗𝑙 = [ℎ𝑗𝑙1, ℎ𝑗𝑙2, . . . . , ℎ𝑗𝑙𝐾]
𝑇 ∈ ∁𝐾×𝑀  is the downlink channel matrix,√𝑄𝑑   is the equal power that UEs  𝐾

transmitted simultaneously;  𝑛𝑗~∁𝑁(0, 𝐼𝐾) is a vector of white, zero-mean Gaussian noise, and 𝒳𝑙𝑘 ∈  𝐶
𝑀 represents the

information vector. Then the received signal in terms of the pilot matrix is given by: 

𝑌𝛽 = √𝛽𝑗𝑙𝑄𝑑  ℎ𝑗𝑙𝐾𝛾𝑙𝑘  + 𝜂𝛽      (2) 

where 𝛾𝑙𝑘  is the precoding matrix from the BS to UEs.

2.1 Pilot Based Channel Estimation 

  The channel estimation used the training phase to reduce the interference on the pilot sequences. Pilot contamination 

occurred when all users reused the same pilot to all adjacent cells. Limited channel coherence interval required finite 

number of pilot reuse sequences. Based on the orthogonality property of MMSE channel estimation during the training 

phase and uncorrelated channel, the interference on the pilot sequences could be reduced, where the estimation error is: 

ℎ́𝑗𝑙𝑘
𝐻 = ℎ𝑗𝑙𝑘 − ℎ̃𝑗𝑙𝑘

𝐻  (3) 

Suppressing the interference between adjacent cells and obtaining the conventional pilot reuse were based on the 

relative channel estimation. The received signal from BS 𝑗 to active users (UEs) 𝑘 in cell 𝑙 can be estimated as follows:  

ℎ̃𝑗𝑙𝑘 =
√𝑄𝑡

∅𝑗𝑘
ℎ̃𝑗𝑙𝑘
𝐻           (4) 

Channel estimation depended on pilot signals 𝑖𝑙𝑘, and precoding vector ∅𝑗𝑘which allowed users to employ the same

pilot in the same direction. Due to short coherence interval the orthogonal pilot reuse sequences needed symbols 𝐾 ×𝑀 

to mitigate pilot contamination in multi-cell massive MIMO system. The CSI could obtain the channel’s status by 

transmitting predefined pilot sequences to evaluate the response of the channel. The estimation of the covariance matrix 

can be expressed as 𝐶𝑗𝑙𝑘 = 𝔼(ℎ̃𝑗𝑙𝑘
𝐻 , ℎ̃𝑗𝑙𝑘). The evaluation of a channel by the covariance matrix is expressed as

𝔼 [|ℎ̃𝑗𝑙𝑘
𝐻 ∅𝑗𝑙𝑘|

2
] = 𝑀(𝑡𝑟 (Cℎ́𝑗𝑙𝑘

𝐻 ℎ́𝑗𝑙𝑘
) + 𝐾 𝑡𝑟 (Cℎ̃𝑗𝑙𝑘

𝐻 ,ℎ̃𝑗𝑙𝑘
))   (5) 

From (5), the SE is achieved by treating the interference, ℎ̃𝑗𝑙𝑘
𝐻 ∅𝑗𝑙𝑘 as noise for an arbitrary Gaussian interference, and

also treating the uncorrelated interference. The orthogonal pilot sequences in the case of pilot reuse, the vector signal 

from UEs in cell 𝑙  is 𝒳𝑙𝑘 = ứ𝑖𝑗𝑘
𝐻 ứ𝑖𝑙𝑚 = 𝐵, where 1 ≤  𝐵 ≤ 𝑆 and 𝐵 ≅ 𝐾(𝛽𝑗𝑙 + (1 − 𝛽𝑗𝑙) 𝛽𝑗𝑙). The pilot sequence in the

cell centre and cell edge can be determined as follows: 
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∑ ∑ Ӻ𝑗𝑙
𝛺   ứ𝑖𝑗𝑘ứ𝑖𝑗𝑘

𝐻𝐾
𝑚=1 = ∑ ∑ Ӻ𝑗,ℓ𝑙

𝛺   ứ𝑖𝑙𝑚ứ𝑖𝑗𝑘
𝐻𝐾

𝑚=ℓ𝑙
+ 𝑙𝜖𝐿 ∑ ∑ Ӻ𝑗,𝜀𝑗

𝛺   ứ𝑖𝑙𝑚ứ𝑖𝑗𝑘
𝐻𝐾

𝑚=𝜀𝑗𝑙𝜖𝐿  𝑙𝜖𝐿                      (6) 

 

= 𝐵 (𝛽𝑗𝑙𝐾∑ Ӻ𝑗,ℓ𝑙
𝛺

𝑙𝜖𝐿 + (1 − 𝛽𝑗𝑙𝐾)∑ Ӻ𝑗,𝜀𝑗
𝛺𝐾

𝑙=𝑙𝑗
)                                                   (7) 

where 𝛺 = 1, 2  and  Ӻ𝑗𝑙
𝛺 , the propagation parameters, are equal to 1 for 𝑗 = l and 2 for  𝑗 ≠ l. The ratio Ӻ𝑗𝑙

𝛺 = 𝜗𝑗𝑙𝑚 𝜗𝑙𝑙𝑚⁄  

expresses the relative strength of the interference experienced at the BS 𝑗 due to user 𝐾 in the cell 𝑙. The covariance matrix 

channel is given by 

𝐶ℎ̃𝑗𝑙𝑘
𝐻 ,ℎ̃𝑗𝑙𝑘

= (∑ 𝑄𝑡  𝛽𝑗𝑙𝑘 𝑖=𝑙 𝐾2 +∑ 𝑄𝑡  𝐾𝑖≠𝑙 +  𝐾)𝐼𝑀𝑄𝑡𝐾𝛽𝑗𝑙𝑘  𝐼𝑀                                         (8) 

ℎ̃𝑗𝑙𝑘
𝐻 = ∑ √𝑄𝑡  𝛽𝑗𝑙𝑘 𝑖∈𝑙 𝐾ℎ𝑖𝑗𝑘 + ∑ ∑ √𝑄𝑡𝛽𝑘

𝐾
𝑘=1𝑖≠𝑙 ∅𝑖𝑗𝑘𝛾𝑖𝑙𝑘 + 𝑛𝑗                                           (9) 

The precoding vectors from BS in cell 𝑗,for UEs 𝑘 𝑡ℎ in cell 𝑙  becomes 

∅𝑗𝑙𝑘 = ∑ 𝑄𝑡  𝛽𝑗𝑘 𝑖∈𝑙 𝐾 + ∑ ∑
𝑄𝑡

𝐾

𝐾
𝑘=1𝑖≠𝑙 (1 +

𝑄𝑡

𝐾
(𝑄𝑡 (1 − 

1

𝑀
)))                                         (10) 

Pilot contamination was mitigated by determining the location of users  𝜗𝑗𝑙𝑘 = [𝜗𝑗𝑙1. . . . . 𝜗𝑗𝑙𝐾 ]
𝑇~∁𝑁(0, 𝐼𝐾) inside the 

cells. The vector signal from UEs in cell 𝑙 was normally the pilot reuse sequences 𝛽𝑗𝑙 > 1; however, a lesser fraction of 

the cell used similar pilot symbols. The vector signal in cells’ channel estimation is given as: 

ℎ̃𝑗𝑙𝑘 = √𝑄𝑙𝑘𝑑𝑗(𝜗𝑙𝑘)Ĥ𝑣ℰ𝑖𝑙𝑘                                                                               (11) 

where, ℰ𝑖𝑙𝑘 denotes the 𝑖𝑡ℎ column of the identity matrix 𝐼𝐵. According to (11) the MMSE channel estimation depended 

only on users 𝐾 which used the same pilot reuse in cell 𝑙. To determine the number of pilot reuse sequence in both the 

cell center and the cell edge, where 𝛽𝑗𝑙 = ℓℓ𝑙 𝐾⁄  or  𝛽𝑗𝑙 = 𝜀𝑗 𝐾⁄  , 𝐼ℓ𝑙(𝑘) is defined as: 

𝐼ℓ,ℓ𝑙(𝑘)
= {

1       𝑖𝑓 𝐾 ∈ ℓℓ𝑙            𝑐𝑒𝑛𝑡𝑒𝑟 𝑐𝑒𝑙𝑙𝑠  

 0       𝑖𝑓  𝐾 ∈ 𝜀𝑗           𝑒𝑑𝑔𝑒 𝑐𝑒𝑙𝑙𝑠    
                                                (12) 

where ℓℓ𝑙, 𝜀𝑗 represents the number of users in both of  cell center and cell edges respectively. 

 

2.2 Achievable SE for DL Transmission   

The achievable SE for users were uniformly distributed within the cell 𝑗, and the total SE in cell  j is given by: 

𝑆𝐸𝑗𝐾 = ∑ ((1 −
𝐵

𝑆
) log2(1 + Г𝑗𝑘))

𝐾
𝑘=1                                                 (13) 

The relative strength of the interference received signal at BS 𝑗 from user 𝐾 in cell 𝑙 depended on the propagation 

environment and the number of the schedule users of channel covariance matrix 𝐶ℎ̃𝑗𝑙𝑘
𝐻 ,ℎ̃𝑗𝑙𝑘

with orthogonal pilot. To 

simplify (14) and ease its derivation.  The signal –to-noise ratio (SNR) is defined as:  

Г𝑗𝑘
𝑑𝑙 = 

ứ𝑖𝑗𝑘
𝐻  𝐶

ℎ̃𝑗𝑙𝑘
𝐻 ,ℎ̃𝑗𝑙𝑘

ứ𝑖𝑗𝑘

∑ ∑ (
𝑑𝑗(ϑ𝑙𝑚))

𝑑𝑙(ϑ𝑙𝑚))

1

𝑀
+(

𝑑𝑗(ϑ𝑙𝑚))

𝑑𝑙(ϑ𝑙𝑚))
)

2

ứ𝑖𝑗𝑘
𝐻 ứ𝑖𝑗𝑘𝐶ℎ̃𝑗𝑙𝑘

𝐻 ,ℎ̃𝑗𝑙𝑘
)−ứ𝑖𝑗𝑘

𝐻 𝐶
ℎ̃𝑗𝑙𝑘
𝐻 ,ℎ̃𝑗𝑙𝑘

ứ𝑖𝑗𝑘+
𝜎2

𝑀𝜌
𝐾
𝑚=1𝑗𝜖𝐿

                                             (14) 

where ứ𝑖𝑗𝑘
𝐻  is the  linear receive combining vector, 𝜎𝑑𝑙/𝜌  represents covariance matrix for SINR and 𝜗𝑗𝑙𝑚 𝜗𝑙𝑙𝑚⁄  is the 

location of users. 

In reducing the effect of interference between neighboring cells due to the movement of UEs, one should update the 

CSI and training channel coherence linearly from BS 𝑀 to all UEs 𝐾. Where, employing orthogonal pilot subsets in 

adjacent cells, optimizing the number of required subsets and the number of scheduled users per cell that maximizes the 

overall SE for both uplink and downlink [10], [11], [12] and [13]. The cell-edge aware used spatial dimensions to mitigate 

interference between adjacent cells. The three linear precoders MRT, ZF, and R-ZF, are:   
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𝐴 =

{
 

 
ĥ𝑗𝑗𝑘                                                           𝑀𝑅𝑇  

Ĥ𝑣𝑗𝐸𝑗(𝐸𝑗
𝐻Ĥ𝑣𝑗

𝐻 Ĥ𝑣𝑗𝐸𝑗)
−1
                    𝑍𝐹

Ĥ𝑣𝑗(Ĥ𝑣𝑗
𝐻 Ĥ𝑣𝑗 + 𝑍𝑗

𝑑𝑙 +𝑀𝜑𝑗
𝑑𝑙𝐼𝐵)

−1
   𝑅 − 𝑍𝐹

                                         (15) 

where, 𝜌𝑑𝑙  is the effective training SNR,  𝜑𝑗
𝑑𝑙 = 1 𝑀𝜌𝑑𝑙⁄   represents the design parameter and 𝑍𝑗  = 𝔼(Ĥ𝑗Ĥ𝑗

𝐻
+

∑ Ĥ𝑗Ĥ𝑗
𝐻

𝑙≠𝑗 ) is the inter-cell interference matrix for channel estimation. The interference Г𝑙∈ℓ𝑙
𝑚𝑟𝑡   depended on the linear 

precoding MRT. We derived the expectations in terms of Г𝑗𝑘
𝑑𝑙   based on (12), where the Г𝑙∈ℓ𝑙

𝑚𝑟𝑡   in the cell centre with 

respect to the channel realization for MRT  can be obtained as follows: 

    Г𝑙∈ℓ𝑙
𝑚𝑟𝑡 = 

[Ӻ𝑗 ,ℓ𝑙

(2)
−(Ӻ𝑗,ℓ𝑙

(1)
)
2
]𝐵

𝐵 ∑ (Ӻ𝑗,ℓ𝑙
2 +

Ӻ𝑗,ℓ𝑙
2 −(Ӻ𝑗,ℓ𝑙

2 )
2

𝑀
)+(∑ Ӻ𝑗,ℓ𝑙

1 𝐾

𝑀
+
𝜎2

𝑀𝜌
) 𝑙∈𝑙𝑗\{𝑗}
)(𝐵∑ Ӻ𝑗,ℓ𝑙

1 +
𝜎2

𝜌𝑙∈𝑙𝑗\{𝑗}
)𝑙∈𝑙𝑗\{𝑗}

                                    (16)                                                                                  

To reduce the interference at the cell edge, the positions of the users were moved according to the denominator (17). 

We used the reuse pilot sequence at cell edge  𝛽𝑗𝑙 = 𝜀𝑗 𝐾⁄ , 𝑙 ∈ 𝑙𝑗 the MRT was independent in the other users in the same 

cell, which is written as follows: 

Г𝑙∈𝜀𝑗
𝑚𝑟𝑡 ≜

[Ӻ𝑗 ,𝜀𝑗

(2)
−(Ӻ𝑗,𝜀𝑗

(1)
)
2
]𝑀−𝐵

𝐵∑

(

 
 
Ӻ𝑗,𝜀𝑗
2 +

Ӻ𝑗,𝜀𝑗
2 −(Ӻ𝑗,𝜀𝑗

2 )

2

𝑀

)

 
 
+(∑ Ӻ𝑗,𝜀𝑗

1 𝐾

𝑀
+
𝜎2

𝑀𝜌
) 𝑙∈𝜀𝑗\{𝑗}
)(𝐵∑ Ӻ𝑗,𝜀𝑗

1 +
𝜎2

𝜌𝑙∈𝜀𝑗\{𝑗}
)𝑙∈𝑙𝑗\{𝑗}

                                       (17) 

If all users inside the cell had the same distributed   Ӻ𝑗,𝜀𝑗
𝛺 , in this case the distributed loses Ӻ𝑗,𝜀𝑗

𝛺  depended on 𝐾. 

Moreover, when all available pilot reuse 𝛽 had been estimated and  𝛽 > 𝐾 the BS  𝑗 was able to suppress parts of the 

interference between the neighboring cells. In multi-cell, the ZF precoding exploits and orthogonalizes all available 

directions in order to mitigate the inter-cell interference [13], [14], and [15]. The SINR  ( Г𝑙∈𝑙𝑙
𝑧𝑓

) at the cell centres, is 

given as:  

Г𝑙∈ℓ𝑙
𝑧𝑓

≜
[Ӻ𝑗 ,ℓ𝑙

(2)
−(Ӻ𝑗,ℓ𝑙

(1)
)
2
]𝐵

𝐵 ∑ (Ӻ𝑗,ℓ𝑙

(2)
+
Ӻ
𝑗,ℓ𝑙

(2)
−(Ӻ

𝑗,ℓ𝑙

(1)
)
2

𝑀−𝐾
)+
𝛽𝑗𝑙𝐾𝑀

√𝑀−𝐾
(∑ Ӻ𝑗,ℓ𝑙

(1)
(1−

Ӻ
𝑗,ℓ𝑙

(1)

∑ Ӻ
𝑗,ℓ𝑙

(1)
+
𝜎2

𝐵𝜌) 𝑙∈𝐿𝑗

)𝑙∈𝑙𝑗
)(𝐵∑ Ӻ𝑗,ℓ𝑙

(1)
+
𝜎2

𝜌𝑙∈𝐿𝑗
)𝑙∈𝑙𝑗\{𝑗}

                            (18)            

To reduce the interference due to multi-user signals, we used ZF to cancel the interference by scheduled UEs per cell 

completely, using the SINR ( Г𝑙∈𝑙𝑙
𝑧𝑓
)  at cell edges, when  𝛽𝑗𝑙 = 𝜀𝑗 𝐾⁄ , given by: 

Г𝑙∈𝜀𝑗
𝑧𝑓

≜
[Ӻ𝑗 ,𝜀𝑗

(2)
−(Ӻ𝑗,𝜀𝑗

(1)
)
2
]𝑀−𝐵

𝐵∑ (Ӻ𝑗,𝜀𝑗

(2)
+

Ӻ
𝑗,𝜀𝑗

(2)
−( Ӻ

𝑗,ℓ𝜀𝑗𝑙

(1)
)2

𝑀−𝐾
)+
(1−𝛽𝑗𝑙)𝐾𝑀

√𝑀−𝐾
(∑ Ӻ𝑗,𝜀𝑗

(1)
(1−

Ӻ
𝑗,𝜀𝑗

(1)

∑ Ӻ
𝑗,𝜀𝑗

(1)
+
𝜎2

𝐵𝜌) 𝑙∈𝜀𝑗

)𝑙∈𝜀𝑗
)(𝐵∑ Ӻ𝑗,𝜀𝑗

(1)
+
𝜎2

𝜌𝑙∈𝜀𝑗
)𝑙∈𝑙𝑗\{𝑗}

                  (19) 

Cancelling the multiuser interference for every user at the cell edge required the use of linear precoding R-ZF, which 

exploited all orthogonalized estimated channels at BS. The SINR ( Г𝑙∈𝑙\{𝑗}
𝑅−𝑧𝑓

) at the cell centres are given by: 

Г𝑙∈ ℓ𝑙
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≜
[Ӻ𝑗 ,ℓ𝑙

(2)
−(Ӻ𝑗,ℓ𝑙

(1)
)
2
]𝐵

𝐵∑ (Ӻ𝑗,ℓ𝑙

(2)
+
Ӻ
𝑗 ,ℓ𝑙

(2)
−(Ӻ

𝑗,ℓ𝑙

(1)
)
2

𝑀−𝐵
)+

(𝛽𝑗𝑙)𝐾𝑀

√𝑀−𝐾
( ∑ Ӻ𝑗,ℓ𝑙

(1)
(1−

Ӻ
𝑗, ℓ𝑙

(1)

∑ Ӻ
𝑗, ℓ𝑙

(1)
+
𝜎2

𝐵𝜌) 𝑙∈𝐿𝑗

)) (𝐵 ∑ Ӻ𝑗,ℓ𝑙

(1)
+
𝜎2

𝜌
) 𝑙∈𝐿𝑗𝑙∈𝑙𝑗𝑙∈𝑙𝑗\{𝑗}

                    (20) 

According to the derivation in (19), the respective channel realization in terms of R-ZF, in the denominator (𝑀 − 𝐵), 
we used (21) to obtain the number of pilot reuse sequences at the cell edges when 𝛽𝑗𝑙 = 𝜀𝑗 𝐾⁄  
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Г𝑙∈𝜀𝑗
𝑅−𝑧𝑓

≜
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(1)
+
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𝜌
) 𝑙∈𝜀𝑗𝑙∈𝜀𝑗𝑙∈𝜀𝑗\{𝑗}

                        (21) 

The first term in each of (16), (17), (18), (19), (20), and (21), describes that the interference (same pilot reuse) was 

caused by pilot contamination. The second term was caused by the other users with orthogonal pilot sequences, which 

required used correlated received pilot reuse and channel estimation. The pilot signal at BS, the average received power, 

depended on the transmitted power and path loss of the edge UEs to obtain the better    Г𝑅−𝑍𝐹 from non-orthogonal pilot 

transmissions in the neighboring cells [16, 17]. 

Minimizing SINR saturation due to inter-user interference and the reuse of the same pilot in different cells required 

the  number of UEs to be proportional to the pilot symbols when 𝑀 → ∞ for all MRT, ZF and R-ZF. The closed form 

equation to achieve SE in cell 𝑗 was derived according to (22), if the subset of cells used the same pilots as the cell in the 

downlink. The maximized SE was achieved when the  𝑀 → ∞ for all cells were based on the distributed number of users 

according to the pre-log factor in (22) when 𝐾 = (𝑆 𝛽𝑗𝑙⁄ ). Therefore, the maximum numbers of pilot reuse sequences 

that could be accomplished depended on channel coherence interval 𝑆. From all the equations above, we added the 

difference (relative strength) of the interference received at the BS for cells with the same pilots, as in the origin, but 

different reuse sequences. Therefore, these techniques had a very encouraging sum of SE gains over conventional multi-

cell ZF for a large number of orthogonal pilot reuses and numbers of users. We obtained the maximum SE by combining 

schemes such as ZF, MRT, and R-ZF as follows: 

𝑆𝐸𝑗
𝑀𝑅𝑇,𝑍𝐹 ,𝑅−𝑍𝐹 =      ∑ (1 −

𝛽𝑗𝑙𝐾

𝑆
) log2(1 +  Г

𝑀𝑅𝑇,𝑍𝐹 ,𝑅−𝑍𝐹
𝑗𝑘)

𝐾
𝑘=1                               (22) 

where ( 1 − 
𝛽𝑗𝑙𝐾

𝑆
) represents the loss of pilot signaling for the pre-log factor, and 𝑆 represents the coherence block 

interval. 

 

 

3. Numerical Results  

From Fig. 1, it is noted that, with the increase in the number of antenna arrays at the BS, the achievable SE increase 

per cell depended on the employment of different pilot reuse sequences. Consequently, the large pilot reuse value 

between neighboring cells 𝛽 = 7 increased the gain, avoided the interference between adjacent cells, and gave a high SE 

performance because this pilot returned different frequency reuse to many neighboring cells in the same cluster. The 

high achievable SE was dependent on the increasing value of  𝛽 = {7 , 4, 3, 1}. Furthermore, when employing the same 

pilot reuse between neighboring cells, the pilot contamination increased. This is because pilot reuse utilized the same 

pilot between adjacent cells and it could not avoid the interference between adjacent cells in the same cluster accurately. 

Employing more pilot reuse sequences decreased the pilot contamination at the cost of time-consuming training period.  

 

     Fig. 1 Achievable SE with number of antennas M, for 𝜷 = {1, 3, 4, 7}. 
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Hence, from Fig. 2, the number of UEs is proportional to the pilot symbols. Reducing the SINR required the selection 

of the optimum number of antennas because an increase in the number of antennas directly increased the SINR. The 

linear precoding R-ZF scheme, which could generate the identified user capacity and satisfy the SINR requirements, 

showed that the R-ZF was more efficent where it was able to mitigate pilot contamination in both intra- and inter-user 

interference. This depended on  using the  same users 𝐾 in each cell and the same distance in km from the BS to the cells.  

Consequently, the R-ZF was better than ZF and MRT because it was able to suppress the SINR.  

 

 
                  Fig. 2 SINR achieved when using many antennas M with different pilot symbols. 

 

 

 
            Fig. 3 The effects of the SE per cell with the coherence block length for an 

                                                increasing number of antennas M. 

 

In Fig. 3, it is noted that the coherence block length S is dependent on the number of UEs per cell.  Consequently, the 

length of the coherence block affected the schedule of UEs per cell if S = 600. At a number of BS antenna M = 100, the 

ratio of M K⁄  was relatively small because the cell contained more than 1000 randomly distributed users inside the cell. 

Therefore, we could not schedule more UEs as the number of antennas M at the BS was small. Moreover, the UEs 

increased slightly in number with S. However, with the increasing number of BS antennas M = 2000, we could schedule 

more of the number of UEs. This is the purpose of using the coherence block length S to schedule the number of UEs. 

This enhanced the SE with an increase in the number of antennas M and a large number of UEs. On the other hand, we 

can conclude that, with a scheduled increase, the number of UEs reduced the inter-cell between adjacent cells. 
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From Fig. 4, the relation between achievable SE and scheduled number of UEs 𝐾, is very important. From Fig. 4, it 

shows that linear precoding schemes such as MRT, ZF, and R-ZF chose the maximum number of UEs at larger and 

smaller values for different values of SE. Where, the increase number of users in every cell depends on the number of 

propagation channel Ӻj,εj
Ω .  Consequently, a fixed number of UEs 𝐾 provided the maximal SE depending on the number 

of antennas at the BS. Otherwise, from Fig. 4, when the number of antennas M = 20, we obtained the least value of SE. 

However, with an increase in the number of antennas M = 500, we obtained the maximum SE with the optimal number 

of UEs 𝐾. Consequently, R-ZF precoding scheme produces better values of SE than ZF and MRT. In addition, the number 

of antenna arrays at the BS had the same small value in both ZF and R-ZF, while, in MRT, it had different values at M = 

20. On the other hand, with the increase in the number of antennas M = 150, every ZF and R-ZF was slightly separated. 

Based on Fig. 4, the SE started to increase when the number of K is small and the maximum SE can be achieved dependent 

on the optimal number of K. After this value, the SE starts to decrease with larger number of K. 

 

 

                                       Fig. 4 Selected number of UEs with optimal SE. 

 

 

                           Fig. 5 Relation between the number of antennas and SE of using the pilot sequences. 

From Fig. 5, to obtain the maximum SE with the rise in the number of antennas M, it was necessary to utilize a 
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Consequently, it is noted from Fig. 5 that the R-ZF technique gave better values than ZF and MRT, using β =
{1, 3,4, 7}. Consequently, using different return pilot reuse sequences at  β = 7, we obtained a maximum value of SE 

because it was able to avoid interference between adjacent cells, giving a better result than β = 4, β = 3, and β = 1.  
Otherwise, in order to employ different pilot reuses β = 7, the precoding scheme had to have the same value in both R-

ZF and ZF. In comparison, it had different values for the use of linear scheme MRT because the two techniques were 

able to suppress intra-cell interference and interference between the neighboring cells because of its low sensitivity to 

SINR. At β = 3 , the R-ZF gave a better value than the ZF and MRT.   

But when comparing the SE at pilot reuse β = 3 with that at β = 7, when the number of recall reuse pilot within the 

channel, increased, the performance of SE was weak. So we conclude that, with the increase in the number of different 

pilot sequences, the transmitted signals in the downlinks of the channels could be improved using perfect CSI and intra-

cell suppression in the same cell and interference between neighboring cells. 

4. Conclusions

The massive MIMO system supported data rate improvements in the cell edges of 5G networks, where the technique

facilitated coverage in the area and a high data rate at the edge of the cell. Avoiding the noise in the cell edge and 

guaranteeing the same performance in other cells require using large number of pilot reuse sequences.  Moreover, it 

required a large 𝛽  for higher channel estimation and the suppression of inter-cell-interference to improve SE. This 

involved the employment of different pilots, reusing them in different cells. The R-ZF technique gave better values than 

the ZF and MRT techniques at 𝛽 = {1, 3, 4, 7}, where the employment of different pilot reuse at 𝛽 = 7 resulted in 

better performance and gave the maximum value of SE. The use of 𝛽 = 7 made it possible to avoid interference between 

adjacent cells and gave better results than the use of 𝛽 = 4 and 𝛽 = 3 . This eliminated SINR through the use of R-ZF, 

ZF, and MRT. Finally, we conclude that the increase number of pilot reuse in downlink was able to provide better 

estimation quality and reduced the performance loss. 
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