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1. Introduction

Continuous improvement in manufacturing industries especially in machining processes are really needed and

highly demands [1]. Efficiency in machining process versus high quality product, cost saving in manufacturing process, 

and an environmentally friendly. Sustainable manufacturing is a part of research studies for continuous improvement in 

manufacturing activities [2]. Comparison the performance of dry, MQL and cryogenic cooling techniques is most 

popular research works. Near-dry machining or minimum quantity lubrication (MQL) and cryogenic coolant have 

shown a good performance especially in terms of pro-long the cutting tool life and improve surface integrity. For dry 

burnishing, rising the temperature at the burnishing tool and workpiece contact point always gave the highest value [3].  

One of advanced manufacturing method is burnishing process. The burnishing process can be classified into seven 

categories, namely ball burnishing, roller burnishing, eccentric ball burnishing, electrical discharge machining (EDM) 

with ball burnishing, laser assisted ball burnishing, low plasticity burnishing (LPB) and frictional stir burnishing (FSB) 

process. The researchers [4] have studied the mechanics of the ball burnishing process using 3D numerical models and 

affects the mechanics of the ball burnishing process is done in their research works. The findings, by numerical models 

of roller burnishing are based on the assumption of equivalence between burnishing and normal indentation contact are 

too weak to provide a solid estimation of the geometrical and mechanical characteristics of a roller-burnished surface. 

[5-6] successfully studied the effects of burnishing tool size and coolant techniques on burnishing performance. Roller 

Abstract: Environmental concerns has contributed towards higher demands for green products. Therefore, various 

machining conditions, such as dry and near dry machining have been introduced to resolve the cutting fluid 

problem. However, the application of cryogenic cooling still not well understood especially for burnishing process. 

It is essential to initiate a study on the effect of cryogenic cooling technique to substitute other techniques to 

improvement burnishing process. Carbon dioxide is used as the cryogenic gas under supercritical state, and 

compare with dry and minimal quantity lubricant. Solid carbide burnishing tool is used with a diameter and corner 

radius of 16 mm and 1 mm, respectively. The result shows that burnishing process under cryogenic condition 

recorded less burn mark and better tool wear than dry and MQL conditions. In addition, cryogenic condition 

exhibits significant grain refinement and surface hardness. In conclusion, the performance of carbon dioxide gas 

under supercritical state outperformed other coolant conditions. 
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burnishing proved to be a more appropriate finishing process, improves the surface finish and increases the micro 

hardness. With a few parameters such as burnishing force, speed, feed, roller width, and number of pass. [7] studied on 

the effect of cryogenic burnishing and compare it with dry and MQL conditions. They found that cryogenic cooling 

recorded the lowest burnishing force and temperature when compared to dry and MQL conditions. The surface quality 

was improved significantly under cryogenic burnishing. 

[8] investigates on the effect of number of burnishing passes on the integrity of the burnished surface. They 

summarized that the damage on the burnished surface is significant when multiple passes of burnishing process were 

applied. Multiple passes cause over hardening on the burnished surface, consequently flaking of the surface layers. 

Laser-assisted burnishing (LAB) was studied by [9] and it was compared with conventional burnishing in terms of 

surface finish, surface hardness and residual stress. It is shown that LAB exhibits excellent surface finish, higher 

surface hardness and similar compressive residual stress compared to its conventional burnishing. 

[10] studies on the effects of sequential turning and burnishing process on surface integrity of Cr–Ni-based 

stainless steel. It was found that surface integrity such as surface roughness, microhardness and residual stress are 

improved when the sequential turning and burnishing process is employed. [11] focus on to development of frictional 

stir burnishing and study its effect on 0.45% C steel. They reported that smaller tool tip radius produces thinner 

hardened layer but the surface roughness value becomes worst. 

Burnishing is a cleaner process and capable to eliminate slower and costlier finishing processes and secondary 

operations such as grinding, honing or lapping [12]. It is the post machining activities that improves dimensional 

accuracy, surface hardness and residual stresses [13]. Generally, burnishing process is operated under dry condition 

without using any lubricant. However, it impairs the quality of the burnished surface [14]. This issue can be solved by 

applying near-dry coolant or cryogenic burnishing. Under near-dry condition, the lubricant was sprayed with very 

minimum quantities and it was formed as a mist [15-16]. The most essential criteria to select cryogenic gases are clean, 

safe and environmentally friendly [17]. Cryogenic burnishing uses liquid nitrogen as a coolant but this gas is tough to 

handle and maintain. Recently, carbon dioxide gas has been introduced in the pipe line to replace liquid nitrogen 

[18,19, 20]. In this study, various coolant condition such as dry, MQL, and cryogenic cooling techniques are compared 

in term of workpiece surface integrity and burnishing tool wear. 

Table 1 – Burnishing parameters 

Parameters Value(s) 

Spindle speed, (rpm) 

Indentation force (N) 

Number of tool passes 

Feed rate (mm/min) 

Burnishing tool material 

Burnishing tool diameter (mm) 

Corner radius of tool (mm) 

Cooling Techniques 

Workpiece material 

10,000 

750 

1 

200 

Carbide (Grade K10) 

16 

1 

Dry, MQL, SCCO2 + MQL 

Carbon steel (SS400) 

 

 

2. Experimental Setup 

In this experiment, carbon steel (SS400) was used as a workpiece material for Frictional Stir Burnishing (FSB) 

process. The configuration of FSB tool is shown in Fig. 1. CNC vertical machining center (MAZAK Nexus 410A) was 

used to perform the burnishing experiment. The testing material was mounted on the piezoelectric force sensor 

dynamometer (Kistler Dynamometer 9254) as shown in Figure 2. The multichannel amplifier 5070A is transferred and 

translate the signals from the dynamometer. A cylindrical tungsten carbide grade K10 with diameter and corner radius 

of 16 mm and 1 mm, respectively was used as a burnishing tool. It was inserted into the tool holder at the constant 

overhang of 20 mm. There is a spring with a stiffness of 157 N/m, installed inside the tool holder for a purpose to 

control the burnishing tool preload. The burnishing tool is rotating and moves linearly on the workpiece surface. The 

experimental setup for FSB process and parameters is shown in Fig. 2 and Table 1, respectively. The parameters for 

both MQL and SCCO2 + MQL is shown in Table 2. The carbon dioxide gas was compressed until it reaches to 

supercritical state. 

The tool maker microscope as shown in Fig. 3 was used to capture and analyses the worn burnishing tools. This 

equipment outfitted with a camera and software which capable to capture the image of the tools under high 

magnification. Lens with high magnifying of 10- and 30-times magnification were used to capture the image of 

burnishing tool wear. Vickers hardness tester was used to measure the value of micro-hardness of workpiece as shown 

in Fig. 4. The indentation force and the time interval were set at 0.2 kgf and 10 seconds, respectively. The diamond 

shape that form from the indenter then measured and converted to a hardness value by using HVM software. The 
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workpiece samples were prepared to identify and analyze the heat affected zone (HAZ) region along the burnished 

surface. HAZ was determined by observing the changes of microstructure as shown in Fig. 5. The samples were 

mounted as a cold mounting using EpoxiCure 2 epoxy resin and hardener with the sample was placed on the top 

surface. 

 

Table 2 – Coolant parameters 

Cooling technique Parameters Values 

MQL 

Input pressure (MPa) 

Nozzle distance (mm) 

Nozzle angle (º) 

Lubricant type 
Lubricant flow rate (1/hr) 

0.4 

8 

45 

Synthetic Ester 
0.16 

SCCO2 + MQL 

Input pressure (MPa) 

Nozzle distance (mm) 

Nozzle angle (º) 

Lubricant type 
Lubricant flow rate (1/hr) 

10.4 

8 

45 

Synthetic Ester 
2.61 

 

 
 

Fig. 1 - Frictional Stir Burnishing (FSB) 

 

 
 

Fig. 2 - Experimental set up for burnishing process 
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Fig. 3 - Set up for analysis tool wear 

 

 
Fig. 4 - Set up for measurement of microhardness 

 

 
Fig. 5 - Set up for changes of microstructure 

 

 

3. Results and Discussion 

3.1 Tool Wear 
Fig. 6 shows the photograph of tool surface after undergone burnishing process at 100 mm in length. The process 

takes approximately 50 seconds to finish at a constant spindle speed and feed rate. The formation of burnishing tool 

wear was captured using tool maker microscope at a magnification of 10 and 30 times. The contact area is differing 

according to the cooling technique. 
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Tool wear progression such as chipping, tool breakage, tool worn and burn marked can be seen on the tool surface. 

This is due to the generation of high temperature and friction during the burnishing process. These wear characteristics 

occurred due to the sliding contact between tool and workpiece interface during burnishing process [11,19]. This is due 

to the depth of indentation depending on the tool diameter. In addition, the depth of indentation could affect the 

burnishing process. The depth of indentation increases when using smaller burnishing tool diameter. Smaller diameter 

reduces the tool contact area on the workpiece surface, thus high friction was produced and caused the tool wear. 

The progression of tool wear under dry condition shows more aggressive compared with MQL and cryogenic 

condition. However, MQL gives a significant to reduce the tool wear progression. The existence of mist lubricant from 

the MQL reduces the cutting force and heat generated from the burnishing and other machining processes [24, 26]. 

Therefore, it decelerates the tool wear progression compared to dry condition. The lowest tool wear progression was 

obtained when applying SCCO2 + MQL. At the highest of cooling rate and lubricant flow rate, this condition 

effectively helped in reduced the heat generation and the burnishing force during the burnishing process. As stated by 

[18], the higher quantity of lubricant from the SCCO2 + MQL condition helps to reduce the friction and decreasing the 

cutting temperature, subsequently lowering the progression of tool wear as well as extending the tool life. 

 

Dry MQL SCCO2 + MQL
 

Fig. 6 - Result for tool diameter 16.00mm, corner radius 1.0mm 

 

3.2 Microhardness 
Fig. 7 shows the results of the tool diameter of 16 mm respectively. It was observed that by applying SCCO2 + 

MQL, the value of microhardness was significantly increased by 7.4% and 46% when compared to MQL and dry 

conditions, respectively. Under dry condition, the phenomena of thermal softening are more dominant than strain 

hardening [21]. This is due to the accumulation of heat at the burnishing region, so that the annealing process was took 

place. Therefore, softer surface was obtained when compared with other cooling techniques. Both SCCO2 + MQL and 

MQL have a tendency to increase the value of microhardness, accelerating the removal of heat, so that more strain 

hardening occurred underneath the burnished surface. 

It shows that, SCCO2 + MQL significantly improves the surface hardness when compared to dry and MQL 

conditions. At this condition, the higher value of microhardness underneath the burnished surface was produced. 

Meanwhile, under dry condition, the higher value of hardness only on the surface. Cryogenic gas produces a 

temperature approximately -70ᵒC. Therefore, it is capable to removes more heat during the burnishing operation, hence 

allows the microstructure of material to be compressed at higher burnishing force [21,25]. It is also acting as a 

quenching process during the burnishing process. Thus, the effect of strain hardening is more dominant than thermal 

softening. By applying cryogenic cooling techniques, it caused the effect of cryogenic treatment on the burnished 

surface by rapid cooling, hence increases the surface hardness. Therefore, by applying SCCO2 + MQL drastically 

improves the microhardness of the workpiece. 

 

3.3 Microstructure 
Fig. 8 shows the result, it was observed under dry condition, burnishing tool with the diameter of 16 mm shows a 

formation of featureless layer with a darker appearance in which the grain boundaries were no longer visible. The 

thickness of this deformed layer is approximately 21 µm underneath the burnished surface. Severe shear deformation 

was occurred underneath the burnished surface, whereby the grains tend to elongate and then it disappeared near the 

surface. Therefore, the microstructures were modified and the region becomes thicker. 

MQL condition exhibits a significant reduction of dark layer region when compared to the dry condition. This is 

due to the lubricant supply to the burnishing zone which helps to reduce the burnishing force and temperature. During 

burnishing process, high friction was produced and more heat was accumulated on the burnishing zone. 

However, by applying SCCO2 + MQL as a cooling technique with a high cooling rate lubricant flow rate, rapid 

cooling was taken place and it easier to dissipates the heat and reduces the friction at the burnishing zone. Hence, the 

thickness of the darker appearance is less severe. It is similar to the machined surfaces of AISI 52100 steel conducted 

by [22] and nickel-based alloy IN-100 conducted [23], under cryogenic cooling technique. They found that by applying 
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cryogenic cooling technique, the featureless layer becomes white and the darker appearance is not clearly visible, 

where significant grain refinement to the nanocrystalline level was found due to dynamic recrystallization (DRX). 

 

 
Fig. 7 - Microhardness result for SCCO2 + MQL, MQL and dry conditions 

 

Dry MQL SCCO2 + MQL
 

Fig. 8 - Result for microstructure 

 

4. Conclusion 

This research works is to evaluate the burnishing performance by comparing between dry, MQL, and cryogenic 

cooling technique (SCCO2 + MQL) in terms of tool wear, microhardness and heat affected zone (HAZ). The major 

conclusions and the results can be summarized as follows: 

 

i. By visual, tool wear under dry condition shows more aggressive (rough surface) when compared with MQL 

and SCCO2 + MQL. Under MQL condition, it shows a significant reduction tool wear progression. However, 

the lowest tool wear progression was obtained when applying SCCO2 + MQL. 

ii. It was observed that by applying SCCO2 + MQL, the value of the microhardness value was significantly 

increased by 7.4% and 46% when compared to MQL and dry conditions. Under dry condition, thermal 

softening is more dominant than strain hardening. 

iii. Dry condition shows a formation of featureless layer with a darker appearance in which the grain boundaries 

were no longer visible. MQL condition exhibits a significant reduction of dark layer thickness when compared 

to dry condition. SCCO2 + MQL possess high cooling rate and lubricant flow rate, whereby rapid cooling was 

taken placed. It is easier to removes the heat and reduces the friction at the burnishing zone. 
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