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1. Introduction 

Groundwater is the world's largest accessible freshwater and an important resource for human daily uses. 

Groundwater can be used as drinking water supply, irrigation, industrial uses and many other uses. Approximately one-

third of the world’s population depend on groundwater for drinking purpose [1]. In fact, there are several states that use 

groundwater as their primary freshwater in Malaysia source such as Kelantan, Perak and Sabah [2]. As for Kelantan, 

groundwater is being significantly used for fresh water supply and is the largest groundwater operator in Malaysia. 

Traditionally people in Kelantan have used groundwater resource as the potable use since early civilization, before fully 
developed into industrial potable use in 1935 [2]. 

However, the groundwater cannot be readily use without prior treatment. The groundwater can be contaminated 

with both organic and inorganic materials which result it to be unsafe and unfit for human use. Several trace metals can 

be found naturally in the groundwater such as manganese and iron. However, industrial activities such as mining, 

metallurgy, and solid waste disposal can lead to severe groundwater pollution with elevated concentrations of toxic 

metals including lead, cadmium and chromium [3]. 

Contamination of groundwater can result in poor drinking water quality, loss of water supply, degraded surface 

water systems, high clean-up costs, high costs for alternative water supplies, and/or potential health problems. Drinking 

water contaminated with bacteria and viruses can result in illnesses such as hepatitis, cholera, or giardiasis [4]. 

Abstract: Manganese is one of difficult elements to remove in groundwater due to its high solubility in both acid 

and neutral condition. Thus, this study has investigated the groundwater treatment using high purity marble (>97%) 

in removing manganese. Groundwater sample was taken at USM’s Engineering Campus, Malaysia and the 

concentration of manganese is approximately 0.5 ppm exceeding the Malaysia Water Quality Standard at 0.1 ppm. 

Filtration of groundwater using pebble size marble and sand size marble column filter was done with different 

flowrate. For pebble size marble column filter, the highest percentage removal is 58.15% where the flowrate is 

0.007 L/s. On the other hand, for sand size marble column filter, the highest percentage removal is 97.26% where 
the flowrate is 0.017 L/s. Sand size marble particle shows an efficient manganese removal in groundwater 

compared to pebble size particle. 
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Manganese is commonly found in groundwater because of the weathering and leaching of manganese-bearing minerals 

and rocks into the aquifers; concentrations can vary by several orders of magnitude [5]. 

Manganese is an essential nutrient needed for human body, but in excess it can lead to neurotoxicity; dysfunctional 

of the nervous system [6]. Health-based guidelines for the maximum level of manganese in drinking water are set at 0.3 

mg/L by the U.S. Environmental Protection Agency (EPA), 0.4 mg/L by the World Health Organization (WHO) and 
0.1 mg/L by the Malaysia Water Quality Standard [7]–[9]. Neurobehavioral deficits in human have been shown to 

correspond with manganese exposure [10]. Despite of the negative effects on human health, manganese is an important 

substance in the industry. Manganese is primarily used in manufacture of steels, alloys, and as an ingredient in various 

products; batteries and fireworks [11]. 

Manganese gives greyish-black color to the water and this will arise many problems such as staining to any 

surfaces and also induce doubt in consumer towards the water quality. Removal of manganese in water can be done by 

various physical, chemical and biological processes. Characterization of manganese present (particulate or dissolved) 

and also other parameters are crucial step in determining suitable treatment process. 

Most methods, such as ion exchange, coagulation flocculation, distillation require high capital and operating costs. 

The coagulation-flocculation generates sludge, which require extra operational cost for sludge disposal. For ion 

exchange, due to high concentration of iron and manganese, there is a high risk of fouling and rapid clogging. 

Therefore, ion exchange is not recommended in treating water with high concentration of iron and manganese. 
Calcium carbonate has been proven effective in removing metals, turbidity, suspended solids and total coliform 

from water, where the removal was up to 96% [12]. Marble chips are studied for its uses in water treatment since it has 

alkali properties to act as pH regulator in acidic water just as limestone. Besides, marble has similar chemical properties 

like limestone. It is common to find limestone used by industry in water treatment process such as acid mine drainage 

treatment and neutralizing industrial wastewater. 

Different kind of limestones such as pure limestones, brecciated limestones and carbonaceous limestone carry 

different degree of effectiveness in heavy metal removal [13]. Limestone is also applied in an AMD treatment located 

at Gangneung, Korea since 1999 and it successfully maintain effective long-term treatment where physicochemical 

process of co-precipitation/adsorption with iron hydroxide in the AMD stream is a main control variable of the process 

[14]. Hence, limestone has a strong potential in treating heavy metals from water. 

The selection of CaCO3 rock type in a treatment is depending on the purpose of the water treatment. As marble, it 
has high purity of CaCO3 compared to limestone. Marble is a metamorphic rock while limestone is a sedimentary rock 

type. Limestone contains many impurities metal and heavy metal. After undergoing high pressure and high temperature 

over millions of years, those metals have been separated from CaCO3 and produce marble. This natural process is 

called metamorphism. 

Marble is harder and denser than limestone. The hardness of limestone on the Mohs scale is 3 while marble is 4. 

Thus, it is not easy to break up due to abrasion of water during filtration. The damage from the water abrasion makes 

the hardness of water increase [8]. Therefore, to reduce the damage abrasion from water, a higher hardness of CaCO3 

rock is needed such as marble. This will reduce additional of hardness in water. 

In the previous study of manganese removal using limestone, they used pebble size of marble to filter the 

manganese. However, the highest removal of manganese was 0.2 mg/l and total removal efficiency was 72% [15], [16]. 

In this research work, application of high purity marble based on different sizes by comparing marble pebble size and 

marble sand size is used to study the removal of manganese. The flow rate is also used to find the optimum in removing 
manganese. 

 

2. Methodology 

2.1 Retention Time, Flowrate Rate and Void Volume 

The retention time, flow rate and void of each sample are measured. Retention time is measured by pouring water 
above the marble filled column and allow water to flow. The retention time is taken when the water flowed out from 

the outlet. 

After that, the flow rate of each column is measured using a 1.0 L measuring cylinder. Time taken for water to fill 

up the 1.0 L measuring cylinder is recorded. 

By knowing the volume, dry mass and bulk density of marbles in column, the void volume can be calculated using 

the following formula: 
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 v sV V V= −  (3) 

 

where, ρs is bulk density of the marble in kg/m3, Ms is weight of the marble in kg, Vs is volume of the marble in the 

column in m3, Gs is the specific gravity of marble, ρw is density of water in kg/m3, Vv is void volume in m3, and V is 
total volume in m3. 

 

2.2 Porosity 

The calculation of porosity was referred using this formula: 

 100%
B

A
C

=   (4) 

 

where, A is porosity, B is volume of voids and z is volume of media. 

 

2.3 Boundary Conditions 

Groundwater sample was extracted from a tube well in USM Engineering Campus, Nibong Tebal, Pulau Pinang 

located at 5° 08’ 50.5” N and 100° 29’ 34.7” E. Groundwater was pumped out to the surface using a submersible pump.  
The groundwater was expelled for 3-4 hours to eliminate impurities before taking the sample [17]. The extraction of 

groundwater sample follows the ASTM by removing 3 times of well capacity before taking the sample. 

Groundwater sample is taken using pipette into 50ml centrifuged tube. The sample is preserved using 3% Nitric 

acid in order to prevent oxidation. All the samples are then kept in a cooler box in order to preserve the sample before 

conduction ICP-OES test. 

 

2.4 Preparation of Marble Media 

In this study, high grade marble was used as filter media for the filtration process of groundwater. The marble 

sample was obtained from a marble quarry in Ipoh, Perak. The size of marble as received was ranging from 1cm to 

10cm. In order to get various sizes consisting of fine, medium and coarse, jaw crusher and cone crusher were used. The 

filter media required are as followed Wentworth scale grain. Size reduction is required to obtain marble in pebble and 

sand size for the filter media.  

Jaw crusher was used to obtain coarse to medium size (below 20mm) while cone crusher acted as secondary 

crusher to get medium to fine sizes (below 4mm). Subsequently, the marble was sieved using sieve shaker (Gilson). 
The sample passed through 20mm, 14mm, 10mm, 6mm, 4mm, 2mm, 1mm, 600μm and 425µm, and 300µm mesh size. 

The process of crushing and sieving were repeated until sufficient amount of sample was obtained for Sieve was used 

to separate particles according to their sizes. 

After crushing, the materials were sieved using different size of mesh ranging from 14mm to 0.4mm. All the sieves 

were stacked in a sieve shaker. Sample is poured into the top sieve which has the largest mesh size. Each lower sieve in 

the column has smaller mesh size than the one above. At the base is a pan to collect sample that finer than the most 

bottom mesh size. 

 

2.5 XRF 

A portion of the marble was crushed into powder form before undergo X-ray fluorescence (XRF) to determine the 

chemical composition. In this project, 25g of sample sized below 75 microns were sent for XRF to determine its 

elemental content. 

X-Ray Fluorescence spectrometry is an elemental analysis technique which is also non-destructive. XRF works 

based on the principle that individual atoms emit X-ray photons of a characteristic wavelength or energy after excited 
by an external energy source. As the energy emitted is characteristic of a transition between specific electron orbitals in 

a particular element, the resulting fluorescent x-rays can be used to identify and quantify elements that are present in 

the sample.  

On the other side, a portion of the sample is also undergoing Loss of Ignition (LOI) test. LOI was conducted prior 

the XRF. LOI is a test used in inorganic analytical chemistry, particularly in the analysis of minerals. It consists of 

strongly heating a sample of the material at a specified temperature, allowing volatile substances to escape, until its 

mass ceases to change. This may be done in air, or in some other reactive or inert atmosphere. 

 

2.6 Filter Design 

There are 8 compartments of column tank based on different sizes starting with the coarser size at top followed by 

finer size as going down. High purity of marble is chosen as filter media. The volume of filter media is 10.4 liter. Filter 
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is arranged stair-like using concept of cascade in which the flow is subjected to gravitational force as shown in Fig. 1. 

Flowrate of filter media was tested for each size. 

 

 
 

Fig. 1 - Marble column filter arranged according to size from coarser to finer as going down 

  

The first row of four compartments at the right of the Fig. 1 contained marble in pebbles size and consisted of 
medium (10mm-14mm), medium-fine (6mm-10mm), fine (4mm-6mm) and very fine grain (2mm-4mm). Meanwhile, 

the second row from four compartments at the left of the Fig. 1 contained marble in sand size of very coarse (1mm-

2mm), coarse (0.6mm-1mm), coarse-medium (0.4mm-0.6mm) and medium grain (0.3mm-0.4mm). 

Groundwater is stored in the storage tank after collected from tube well and the experiment was carried out in the 

same day. The collected groundwater is then pumped to the roof tank and flow to the column using gravity. The 

flowrate is controlled by the valve before entering the column. The flowrate was chosen based on preliminary 

experiment result to prevent overflow occurs at the most bottom column. Finer size means more retention time and 

slower flowrate 

 

2.7 Filtration Process 

The groundwater is filtered from top column to bottom column in sequence of decreasing grain size marbles. The 

filtration process uses two sets of columns with different size range (pebble size and sand size). 1 set contains 4 filter 

columns. There are 4 flow rates used to determine optimum flow rate for contaminant removal using the marble column 

filter.  
The flow rates selected are 0.007, 0.008, 0.011, and 0.017 Ls-1, which is 60 s, 90 s, 120 s and 150 s for per liter of 

groundwater. The outlet valve of each column is adjusted to control the output flow rate. The input and output water 

samples of the marble column filter are collected for ICP-OES analysis and also analyzed using handheld 

multiparameter. 

 

2.8 ICP-OES Analysis 

Induction coupled plasma (ICP) was used to analyze the groundwater content. ICP-OES is a type of mass 

spectrometry that is capable of metal and non-metal concentration detection. In this project, marble sample was sent to 

the lab for ICP-OES testing to detect concentration of manganese in the groundwater sample. Groundwater samples are 

filtered using 0.45-micron syringe filter to separate particle remain. Afterwards, standard ranges are selected 0.1, 0.15, 

0.2, 0.75, 1.0 to be calibrated with the samples. Groundwater samples are analyzed for 23 metal elements by 

inductively coupled plasma-atomic emission spectroscopy (ICP-OES; PerkinElmer Optima 7300 DV). Then calibration 

graphs are analyzed to find best wavelength that give accurate percentage of element concentration. RHD above 5% is 

not acceptable for accurate data. 
 

3. Results and Discussion 

3.1 XRF Result for Marble 

XRF was one of the characterizations done on raw marble. XRF analysis was summarized in Table 1 which shows 

the elemental composition of CaO alongside its corresponding wt%. 
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Table 1 - XRF result for CaCO3 content 
 

Compound Weight Percentage (%) 

Calcium Oxide, CaO 54.588 

Magnesium Oxide, MgO 1.134 

Aluminium Oxide, Al2O3 0.325 

Silica, SiO2 1.521 

Phosphorus pentoxide, 
P2O5 

0.021 

Potassium oxide, K2O 0.065 

Iron oxide, Fe2O3 0.576 

Nickel Oxide, NiO 0.007 

Copper Oxide, CuO 0.008 

Manganese Oxide, MnO 0.026 

Strontium Oxide, SrO 0.028 

Loss on Ignition, LOI 41.701 

Total 100 

 

As marble primarily consists of calcium carbonate, it was expected for the CaO content to be the highest in 

concentration as shown in Table 1. The marble composed of 97.3% CaCO3 which means it is a high-grade marble 

(CaCO3 more than 95%). The impurities of other elements are in a low percentage which only about 2.7% of the 
sample.  

 

3.2 Pebble Size Marble Column Filter 

Groundwater was treated using pebble size column filters with different flow rates (0.017 Ls-1, 0.011 Ls-1, 0.008 

Ls-1 and 0.007 Ls-1) for each experiment run. To validate the accuracy of data, RSD data showed below than 5% and 

this data was accepted. 

After filtration, it was expected for the manganese concentration to reduce in the groundwater along with other 

contaminants such as potassium, magnesium and sodium more than removal in pebble size column filter. Therefore, the 

best flow rate can be determining by looking at the flow rate which has the highest percentage removal. ICP-OES 

analysis was done to determine the concentration of elements presence in groundwater after the filtration process. The 

result was summarized as follow in Table 2. 

 
Table 2 - Percentage of manganese removal via pebble size marble filtration 

 

Flow rate  

(l/s) 

Mean Conc. Before 

Filtration (ppm) 

Mean Conc. After 

Filtration (ppm) 

Removal Percentage 

(%) 

RSD 

(%) 

0.007 0.509 0.213 58.15 1.34 

0.008 0.522 0.298 42.91 0.11 

0.011 0.513 0.228 55.56 2.79 

0.017 0.495 0.288 41.82 0.81 

 

From the graph, it can be concluded that the highest percentage removal recorded is at 58.15% with flow rate of 

0.007 L/s. This was probably due to high retention time of groundwater sample during this flowrate. The lower the 

flowrate the higher the retention time. 

In nutshell, for pebble size marble column filter, the highest percentage removal of manganese was 58.15% while 

the lowest was 41.82%. Flowrate of 0.007 L/s was the most effective flowrate compared to remaining 3 flowrates in 

terms of percentage of manganese removal. Thus, the best retention time is 1 hour 39 minutes. 

 

3.3 Sand Size Marble Column Filter 

When comparing to pebble size marble, sand size marble has lower porosity than pebble size marble. This 

contributes a better filtration and trapping metal elements. Based on Table 3, the highest percentage removal was taken 

at 96.5% with flow rate of 0.017 l/s. This was opposed from what was expected. More retention time was expected to 
give better percentage removal.  
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Table 3 - Percentage of manganese removal via sand size marble filtration 
 

Flow rate 

(l/s) 

Mean Conc. Before 

Filtration (ppm) 

Mean Conc. After 

Filtration (ppm) 

Removal Percentage 

(%) 

RSD 

(%) 

0.007 0.504 0.019 91.29 1.76 

0.008 0.505 0.044 96.23 1.04 

0.011 0.494 0.021 95.75 2.6 

0.017 0.511 0.014 97.26 0.34 

 

At flowrate 0.007 l/s shown in Fig. 3, the performance of sand size marble has dropped to 91.29%. This shown the 

limitation of retention time after 1 hour 39 minutes. In sand size marble column filter, shorter retention time showed the 

highest removal percentage of manganese. 

In nutshell, for sand size marble column filter, the highest percentage removal of manganese was 96.5% while the 

lowest was 91.29%. Flowrate of 0.017 L/s was the most effective flowrate compared to remaining 3 flowrates in terms 

of percentage of manganese removal. Therefore, the best retention time is 40 minutes. 

 

 
 

Fig. 2 - Graph manganese percentage removal vs flow rate for pebble size marble filter 

 

 

 
 

Fig. 3 - Graph manganese percentage removal vs flow rate for sand size marble filter 

 

According to the Table 3 and Table 4, the porosity of marble in pebble size was above 40% compared to marble in sand 

size where the porosity was below 30%. When relating the filtration performance of marble in sand size with these 
data, it indicates low porosity below 30% can do better filtration in removing manganese. The lower the porosity, the 

higher removal of manganese. However, too low porosity can cause problems clogging. Below 0.3mm of marble size 

increases the plasticity of the marble and tends to agglomeration and cementation. 
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Table 4 - The porosity of marble in pebble size 
 

Particle Size  

(mm) 

Volume of Void  

(m3) 

Volume of Media  

(m3) 

Porosity  

(%) 

10-14 0.0047 0.0069 68.12 

6-10 0.004 0.0069 57.97 

4-6 0.0034 0.0069 49.28 

2-4 0.0029 0.0069 42.03 

 

 

Table 5 - The porosity of marble in sand size 
 

Particle Size  

(mm) 

Volume of Void  

(m3) 

Volume of Media  

(m3) 

Porosity  

(%) 

1-2 0.0019 0.0069 27.54 

0.6-1 0.0014 0.0069 20.29 

0.4-0.6 0.0011 0.0069 15.94 

0.3-0.4 0.0009 0.0069 13.04 

 

4. Summary 

Groundwater treatment was studied and there are many other methods for groundwater treatment, but the most 

economical and flexible method is by physical filtration treatment.  Removal of manganese in groundwater using 

pebble and sand size marble column filter are measured and the sand size marble filter is more effective compared to 

pebble size marble column filter. Pebble size marble column filter can remove 58.15% of manganese in groundwater at 

flow rate 0.007 l/s while sand size marble column filter can remove manganese in groundwater up to 96.5% at flow rate 

0.017 l/s. As conclusion, marble in sand size contributes a better filtration and trapping metal elements due to higher 

retention time and lower porosity compared to marble in pebble size. 
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