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1. Introduction 

Coal bottom ash is a non-combustible solid waste residue mainly generated from the coal-fired electricity 

generating power plants. In Malaysia, the production of coal bottom ash and fly ash from coal-fired power plant has 

tremendously increased. Abubakar and Baharudin [1] reported that Sejingkat Coal Fired Power Station at Kuching 
Sarawak deposited off both bottom ash and fly ash into an 81,000 m2 area and 2.4 m deep ash pond located besides the 

power station. Moreover, there are two ash ponds, one of which is fully utilized [2]. Muhardi et al. [3] also reported 

that, other power plants such as Tanjung Bin power station produce 1,620 tonnes per day of fly ash and 180 tonnes per 

day of bottom ash from 18,000 tonnes per day of coal burning alone. 

The construction of many coal-fired power plants such as in Kapar, Manjung, Sejingkat, Jimah and Tanjung Bin 

has given a major impact on the environment resulting from the increased production of coal bottom ash. Generally, 

coal bottom ash is disposed or utilized as landfill or as base material in road construction. The limited availability of 

space for disposal of coal bottom ash is the main issue faced by the industry and some of the methods of disposal have 

their disadvantages which can lead to the contamination of natural ground water [1]. In order to minimize the disposal 

space and environmental impact, it has become a practice to reuse the coal bottom ash as part of cementitious materials 

in concrete industry. Several studies have been carried out to resolve the problem and explore any other potential use of 

Abstract: In this study, the effects of coal bottom ash (CBA) on the properties of Portland cement mortar were 
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replacement material had clear influences on the investigated properties of the mortars. The use of CBA reduced 
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coal bottom ash in the industry such as the study by Manz [4] which reported that bottom ash can be used as a partial or 

total fine aggregate replacement for natural sand. A study by Cheriaf et al. [5] identified that coal bottom ash with 

adequate grinding, can be used as a partial cement replacement material in Portland cement concrete production. In 

addition, studies of utilizing coal bottom ash as a construction material are continuously being done to maximize the 

potential use of coal bottom ash and at the same time minimize the environmental impact from this waste material [6]. 
However, a systematic investigation on some of the effects of coal bottom ash on the properties of mortar is still 

lacking especially in relation to the coal bottom ash from local power plants in Malaysia. Therefore, this study attempts 

to quantify the effects of utilizing treated coal bottom ash on the properties of Portland cement mortar both in the fresh 

and hardened states. The properties investigated include flow, compressive strength, porosity, water absorption and 

permeability. This study is important as there is strong possibility that the coal bottom ash can be used as part of the 

cementitious materials whilst resolving some of the related environmental issues towards achieving better 

sustainability. 

 

2. Materials and Methods  

The materials used in this study for the preparation of   the Portland cement mortar samples are described in the 

following subsections. The treatment processes to obtain standard sand and the treated coal bottom ash are also 

provided. 

 

2.1 Cement  

       A Type I Portland cement (PC) which complied with the requirements of ASTM C150 was used as the main 

binder, with a specific surface area of 320 m2/kg and a specific gravity of 3.1. The chemical compositions of the Type I 

Portland Cement include Al2O3 (5.27%), Fe2O3 (3.1%), CaO (62.8%), MgO (1.52%), SO3 (2.73%), Na2O (0.16%) and 
K2O (0.63%) [8]. Fuel Inlet: At the fuel inlet boundary, velocity profile of the fuel jet is specified. Fully developed 

velocity profile is prescribed such that the flow rate corresponding to the experimental value is obtained. This velocity 

is calculated for corresponding strain rate. A constant temperature of 298 K is prescribed. Mass fraction value of fuel is 

prescribed corresponding to the experimental conditions. 

 

2.2 Coal Bottom Ash  

The coal bottom ash (CBA) used in the research was obtained from coal-fired Sultan Azlan Shah/ Manjung Power 

Plant in Perak, Malaysia. The as-received CBA particles were relatively coarse and have angular particles with very 

porous surface texture. The particle sizes range from as coarse as a fine gravel to a fine sand (<10 mm to 75 µm). The 

CBA was first dried in an oven at 105 ± 5°C and then sieved through a 300μm sieve to remove coarser particle. 

Subsequently the CBA was ground using a laboratory scale ball mill for 8 hours to obtain finer particle size; sufficient 

grinding can improve the pozzolanic activity of the bottom ash [7]. Similar approaches were earlier used to improve the 

reactivity of palm oil fuel ash for use as supplementary cementitious materials in engineered cementitious composites 

[8], high strength concrete [9], [10] and alkali activated binder [11]-[13]. In order to remove excessive unburned carbon 

which will affect the potential pozzolanic properties, the CBA was heated at 550 ± 50oC for 60 min in an electric 
furnace [14]. Then, the heat treated CBA was subjected to further grinding for 12 hours using the same laboratory ball 

mill to obtain finer particles of CBA. The chemical compositions of the CBA determined by using X-ray fluorescence 

spectrometer include SiO2 (34.09%), Al2O3 (9.31%), Fe2O3 (12.39%), CaO (11.88%), MgO (5.28%), SO3 (0.91%), 

Na2O (0.12%), K2O (0.51%) and 1.84% loss on ignition [15]. Based on ASTM C618, the coal bottom ash in this study 

could be classified as Class C mineral admixture. The specific surface area and specific gravity of the treated CBA 

were 316 m2/kg and 2.9, respectively. It was used as a supplementary binder, replacing part of the Portland cement up 

to a replacement level of 30%. 

  

2.3 Fine Aggregate  

Mining sand complying with ASTM C778 [16] was used as fine aggregate in the mortar mixtures. In order to 

remove the excessive silt, the mining sand was wet-sieved and materials passing 75 micron sieve which are classified 

as silt were removed. Subsequently, the mining sand was oven dried at 105 ± 5ºC for 24 ± 0.5 hours. The evaluated 

physical characteristics of the mining sand, include a fineness modulus of 2.9, specific gravity of 2.6 and water 

absorption of 1%.  
 

2.4 Mix Proportions and Samples Preparation  

The material compositions of the mortar mixes prepared and tested in this study are shown in Table 1. A total of 8 
batches of mortar mixtures with cement: sand ratio of 1:2.5 and 1:2.75 each with water/binder ratio of 0.58 and 0.64, 

respectively were prepared.  Mortar mixtures containing CBA were proportioned to have CBA content of 10, 20 and 

30% replacing the Portland cement on-mass-for mass basis. The reference mixtures used only Portland cement (CEM 
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1) as the binder. Hence, the mortar mixtures were given designations of ARef, A10, A20 and A30 as well as BRef, B10, B20 

and B30 for binder: sand ratio of 1:2.5 and 1:2.75, respectively.  

Mortar mixtures as detailed in Table 1 were prepared for determination of compressive strength, porosity, water 

absorption and gas permeability. Prior to casting the samples, the flow of the fresh mortars were evaluated. 

Subsequently, fithteen pieces of 50 mm cube specimens for compression testing were made for each mixture. In 

addition, eight pieces of 50 mm cube specimens were prepared for porosity and water absorption testing. Meanwhile 

eight pieces of mortar cylindrical specimens having a diameter of 50 mm and a thickness of 40 mm were made for gas 

permeability testing. The samples were demoulded 24 h after casting and properly kept on the shelves of the moist 

room maintained at 20°C with 90% humidity and cured until they were required for testing. The samples were tested 
for compressive strength, water absorption, porosity and gas permeability after 3, 7, 28, 56 and 90 days of curing. 

 
Table 1 - Mix compositions and fresh properties of mortars 

  

Mortar 

Mix 

Cement: 

fine agg. 

ratio 

Portland 

cement 

)3(kg/m 

Treated 

CBA 

)3(kg/m 

Fine 

aggregate 

)3(kg/m 

Water 

)3(kg/m 

Water/ 

binder 

ratio 

Water/ 

cement 

ratio 

Flow 

(%) 

Ref.A 

10A 

20A 

30A 

1:2.50 

1:2.50 

1:2.50 

1:2.50 

625.0 

562.5 

500.0 

437.5 

0.0 

62.5 

125.0 

187.5 

1562 

1562 

1562 

1562 

363 

363 

363 

363 

0.58 

0.58 

0.58 

0.58 

0.58 

0.65 

0.73 

0.83 

67 

57 

47 

40 

.RefB 

10B 

20B 

30B 

1:2.75 

1:2.75 

1:2.75 

1:2.75 

592.0 

532.8 

473.6 

414.4 

0.0 

59.2 

118.4 

177.6 

1628 

1628 

1628 

1628 

379 

379 

379 

379 

0.64 

0.64 

0.64 

0.64 

0.64 

0.71 

0.80 

0.91 

65 

51 

45 

31 

 

2.5 Test Procedures  

2.5.1 Flow of Mortar   

     The flow of the fresh cement mortar was measured by means of the flow of cement mortar test in accordance to 

ASTM C1437 [17]. This test method is used for the determination of the flow of hydraulic cement mortar, and of 

mortars containing cementitious materials other than hydraulic cements. It is commonly used as a standard test when 

there is a requirement for a mortar to have a water content that provides a specified flow level. An adequate flow of 

cement mortar is needed so that the mortar can be placed and compacted to maximum density [6]. 
 

2.5.2 Compressive Strength of Mortar   

The compressive strength of mortar is defined as the maximum compressive stress that it can support before 
failure. The standard method described in ASTM C109 [18], Compressive Strength of Hydraulic Cement Mortars was 

followed for the compressive strength test. Three pieces of mortar cube specimens were tested at each testing age for 

each mixture and the average strength was reported. 

 

2.5.3 Porosity and Water Absorption  

In this study, the porosity and water absorption were determined following the water immersion under vacuum 

method prescribed by RILEM (1984) [19]. Firstly, the mortar samples were oven dried in a ventilated oven at 105 ± 

5ºC for 24 ± 0.5 hours and then the oven dried mass (W4) of the samples was determined. Next, the samples were 

placed in the vacuum saturation apparatus and a vacuum pressure of one bar was applied for three hours. While the 

specimens were still under vacuum, deionized water was introduced so as to submerge the specimens until about 10 

mm of water covering the topmost surface of the specimens. This process was continued by maintaining the vacuum 

pressure for three hours after an introduction of water. Then, the pressure was released and the specimens were kept 

submerged in water for another one hour to achieve full saturation. Lastly, the specimens were removed from the water, 

their surfaces were wiped with a dry cloth and subsequently their mass in air (W2) and in water (W3) were determined. 
The porosity (P) was computed by using Eq. (1), whilst the water absorption (A) was calculated by using Eq. (2). 

 

( ) 2 4

2 3

% 100
W W

P
W W

 −
=  

− 
 (1) 

 

( ) 2 4

4

% 100
W W

A
W

 −
=  
 

 (2) 
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The flow of the fresh cement mortar was measured by means of the flow of cement mortar test in accordance to 

ASTM C1437 [17]. This test method is used for the determination of the flow of hydraulic cement mortar, and of 

mortars. 

 

2.5.4 Gas Permeability   

Permeability is one of the main parameters influencing the durability performance of cement based materials 

including concrete and mortar. The assessment of gas permeability of mortar was undertaken using a gas permeameter 

similar to that developed by Cabrera and Lynsdale [20] but utilizing a nitrogen gas. The coefficients of gas permeability 
of the mortar samples were computed using Equation 3, which is based on Darcy’s equation [21]. 

 

2

2 2

1 2

2. . . .
PL V

K
A t P P

=
−

 (3) 

 

where: K = specific gas permeability coefficient (m2), η = viscosity of nitrogen gas at room temperature (17.8x10-6 

Ns/m2), V = volume of gas passed through the concrete surface during the testing time [m3], A = cross-sectional area in 

the flow direction (m2), L = length of flow (m), P2  = atmospheric pressure, usually 1 bar, P1 = average overpressure, 

(Ps + Pf)/2 (bar), t = time (sec). 

The volume of gas passed through the concrete or mortar surface, V, during the testing time interval was obtained 
using Eq. (4): 

 

( )s f res

atm

P P V
V

P

−
=  (4) 

 

where: Ps = absolute starting pressure (bar), Pf  = absolute final pressure (bar), Vres = volume of the nitrogen gas 

reservoir, Patm = P2 = atmospheric pressure (1 bar). 

 

3 Results and Discussion 

3.1 Effect of CBA on Flow of Fresh Mortar 

The flow of both series of the mortar mixtures with cement: sand ratio of 1:2.5 and 1:2.75 is reported in Table 1. 

The results generally show that the inclusion of the CBA tend to reduce the workability of the resulting mortars, with 

greater reduction in flow at higher CBA contents. The reduction in flow of the mixtures containing CBA in comparison 

to the reference mortar mixtures is clearly portrayed in Fig. 1. This clearly indicates that the use of the CBA as a partial 

replacement of PC increases the water demand of the mortar mixtures which could be attributed to the porous surface 

texture of the CBA particles. In addition, the lower specific gravity of the CBA in comparison to PC implicates a higher 

volume of binder as a result of the mass-for-mass replacement of the PC with the CBA for the mortar mixtures 

containing CBA, thus contributes towards increasing the water requirement of the mortars. Since the same amount of 

water was used for all mixtures in the same mortar groups, the mixtures containing CBA exhibited clear reduction in 

the measured flow values. Therefore, the observed effect of CBA on flow and water demand of Portland cement mortar 
is the opposite of the effect of fly ash which has been known to reduce the water demand and increase the workability 

of mortar and concrete from the ball-bearing effect induced by the fly ash [22]. The porous surface and irregular shape 

of CBA particles are different from that of fly ash particles which are having smooth and glassy surface with spherical 

shape. Nonetheless, despite the fact that the CBA mortar mixes exhibited a significantly lower degree of workability in 

comparison to the reference mixes, compaction of the mortars was done without any problem, even with the mixes with 

30% CBA content. Thus, the reduction in flow with the use of CBA should not affect the hardened properties of the 

mortars [23]. 

 

3.2 Effect of CBA on Compressive Strength 

The results of the compressive strength tests on mortar mixtures containing CBA as a partial substitute of Portland 

cement and the reference mixtures are shown in Fig. 2 and Fig. 3. It is evident that the compressive strength increased 

gradually with curing time for all mortar mixtures as a result of the cement hydration in the case of the reference PC 

mortar mixtures and combination of Portland cement hydration as well as pozzolanic reaction for the case of the mortar 

mixtures containing CBA. In the first 7 days, the reference mixture showed the highest compressive strength for both 

series of 1:2.5 and 1:2.75 mortar mixtures, while the mortar mixtures containing CBA exhibited lower strength in 
particular at the higher CBA content. The reduction in strength for the mixtures containing CBA could be mainly 

attributed to the combined influence of a dilution effect resulting from the reduction in PC content and the relatively 

slower pozzolanic reactivity as well as delay onset of pozzolanic reaction of the CBA [24]. The lower the cement 
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content as a result of the inclusion of greater amount of CBA led to greater dilution effect, hence lowered the strength 

of the mortars at early ages. Nonetheless, for the mortar mixtures with 1:2.5 cement: sand ratio containing 10 and 20% 

CBA, there is a clear trend that the compressive strength was higher than that of the reference mixture at longer curing 

periods of 28, 56 and 90 days, with the A10 mixture exhibiting the highest strength at the stated curing periods. In the 

case of the mixture containing 30% CBA (A30), its strength was the lowest at all curing periods. The higher increase in 

strength than the reference mixture at longer curing periods for the mixtures containing 10 and 20% CBA could be due 

to the pozzolanic reaction to sustain the pozzolanic reaction of the CBA at the longer curing periods to produce 

secondary C-S-H, thus promoting higher strength. However, at much higher CBA content of 30%, the dilution effect 

from the significant reduction in cement content and the higher CBA content could have been more dominant. Hence, 
less C-S-H as well as less Ca(OH)2 could have been produced from the PC hydration reaction, consequently limiting 

the probable pozzolanic reaction of the CBA and ultimately leading towards lower strength.  

 

 
 

Fig. 1 - Reduction in flow of mortar mixtures containing CBA 
 

 

 
 

Fig. 2 - Effect of CBA on compressive strength of mortar (Cement: sand ratio of 1:2.5) 

 

 

 
 

Fig. 3 - Effect of CBA on compressive strength of mortar (Cement: sand ratio of 1:2.75) 
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In the case of the mortar mixtures with cement: sand ratio of 1:2.75, their strength is generally lower than their 

counterparts with cement: sand ratio of 1:2.5. This trend is attributed to the higher water/binder ratio and lower binder 

content of the mortars with cement: sand ratio of 1:2.75. Furthermore, in comparison to the reference mixture, the 

enhancement in strength at the longer curing periods of 28, 56 and 90 days as a result of the CBA inclusion was only 

observed at CBA content of 10%. At higher CBA content of 20 and 30%, the strength of the mortars appeared to reduce 
with greater reduction in strength at the higher CBA content. Again, this different trend could have been influenced by 

the higher water/binder ratio and lower binder content of the mortar mixture with cement: sand ratio of 1:2.75, 

exacerbating the dilution effect as the binder particles are pushed further apart and creating more pores to be filled by 

the products of hydration and pozzolanic reaction, thus leading to lower strength. From the overall results, it seems that 

the optimum CBA content for both series of mortar mixtures in order to obtain maximum strength at 28 days and 

beyond is 10%. The reactivity of the CBA could probably be improved by further refining the particle size of the CBA 

to increase its specific surface area [25] which could provide better effect on compressive strength. 

 

3.3 Effect of CBA on Porosity and Water Absorption 

The porosity of the cement mortars with different cement: sand ratios and having different CBA content is shown 

in Fig. 4 and Fig. 5 for mortar mixtures with cement: sand ratios of 1:2.5 and 1:2.75, respectively. While the results for 

water absorption are shown in Fig. 6 and Fig. 7 for mortar mixtures with cement: sand ratios of 1:2.5 and 1:2.75, 

respectively. In general, the results show that both the porosity and water absorption of both series of mortars reduced 

with curing time, but the reduction after 28 days is rather negligible. From 3 to 28 days, there seems to be quite a 

significant reduction in porosity and water absorption which could be attributed to the hydration of cement and 
hydration of cement complimented with pozzolanic reaction of CBA in the case of mortar mixtures containing CBA, 

producing C-S-H, filling the pores and leading to the overall reduction in porosity and water absorption. However, from 

the age of 28 to 90 days both the porosity and water absorption underwent very marginal reduction. Comparison 

between the different mixtures indicates that for both series of mortar mixtures, the reference mixtures exhibited lower 

value of porosity and water absorption at the early ages of 3 and 7 days, while the effect of CBA inclusion was to 

increase both the porosity and water absorption, with greater increase at the higher CBA content. This observed trend 

could be explained as due to the dilution effect resulting from the reduction in cement content as well as the slower rate 

of pozzolanic reaction of the CBA. Nonetheless, at longer curing periods of 28 days up to 90 days, there is a clear trend 

that the mixtures containing 10 and 20% CBA portrayed lower porosity and water absorption than the reference 

mixture for the 1:2.5 mortar, and mixture with 10% CBA for the case of the 1:2.75 mortar. The reduction in porosity as 

well as water absorption could be associated with the pozzolanic reaction of the CBA, but both porosity and water 
absorption increased at higher CBA content due to the more dominant dilution effect as a result of lower cement 

content. Furthermore, the mortar mixtures with cement:sand ratio of 1:2.5 seem to generally register lower porosity and 

water absorption than their counterparts with cement:sand ratio of 1:2.75 due to the higher binder content and lower 

water/binder ratio of the mortar mixtures with cement:sand ratio of 1:2.5. 

 

 
 

Fig. 4 - Effect of CBA on porosity of mortar (cement: sand ratio of 1:2.5) 
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Fig. 5 - Effect of CBA on porosity of mortar (cement:sand ratio of 1:2.75) 

 

 

 
 

Fig. 6 - Effect of CBA on water absorption of mortar (Cement: sand ratio of 1:2.5) 

 

 

 
 

Fig. 7 - Effect of CBA on water absorption of mortar (cement:sand ratio of 1:2.75) 

 

3.4 Effect of CBA on Gas Permeability 

The coefficient of gas permeability of the mortar mixtures is shown in Fig. 8 and Fig. 9 for mixtures with 

cement:sand ratio of 1:2.5 and 1:2.75, respectively. In general, there is a clear trend that the coefficient of gas 

permeability reduces with curing times from 3 to 90 days. This reduction could be attributed to the hydration of cement 

in the case of the reference mixtures as well as hydration of cement complimented with pozzolanic reaction of the CBA 

for the case of the mortar mixtures containing CBA. With longer curing time, the hydration and pozzolanic reaction 

further progressed producing greater amount of C-S-H, segmenting and refining the pores and leading to lower 

permeability. As in the case of porosity and water absorption, the effect of CBA is to increase the coefficient of 

permeability at the early ages but tends to reduce the coefficient of permeability at longer curing period. This is true for 
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the mixtures containing 10 and 20% CBA for the 1:2.5 mixture and 10% CBA for the 1:2.75 mixture. At higher CBA 

content, the reduction in the Portland cement content leads to slightly higher coefficient of permeability. From the 

overall results, it seems that lower long-term permeability could be achieved with the use of 10% CBA.   

 

 
 

Fig. 8 - Effect of coal bottom ash on gas permeability coefficient (cement:sand ratio of 1:2.5) 

 

 

 
 

Fig. 9 - Effect of coal bottom ash on gas permeability coefficient (cement: sand ratio of 1:2.75) 

 

4. Conclusions 

This study investigated the probability of using CBA as a partial Portland cement replacement material in the 

production of mortar. Based on the results presented earlier as well as the corresponding discussion, the following 

conclusions can be drawn; 
i) The inclusion of CBA as partial replacement of Portland cement increases the water demand of the mortar 

mixtures leading to reduction in the flow of the mortars, with lower flow at higher CBA contents. 

ii) The CBA can effectively replace Portland cement up to 20% of the 1:2.5 and 10% of the 1:2.75 mortar mixtures, 

with marginal strength improvement at the ages of 28, 56 and 90 days. The results approve that the CBA has some 

pozzolanic reactivity leading to small increase in strength at low replacement level and longer curing periods in the 

CBA mortars in comparison to the control mixtures.  

iii) The effects of CBA inclusion is to reduce the porosity, water absorption and permeability of the Portland cement 

mortars at longer curing period of 28, 56 and 90 days for CBA contents of 10 and 20% in the 1:2.5 mortar 

mixtures, and for CBA content of 10% in the 1:2.75 mortar mixtures.  
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