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1. Introduction 

Aerobic granular sludge (AGS) can be defined as a self-immobilization of bacteria to aggregate with suspended 

biomass to form discrete well defined granules without the use of carrier material [1]–[3]. Compared to anaerobic 

granular sludge which has been widely applied, the instability of aerobic granules in long term operational bioreactors 

[1] had become the bottleneck for its practical application [4]. The stability of aerobic granules is defined as the ability 

of microbial granules to resist hydrodynamic and mechanical shear force [5]. The state of aerobic granules stability can 

be measured in terms of bioactivity, microbial community, and extracellular polysaccharides (EPS) composition and 

distribution, and granular characteristic [6]. Table S1 presents a summary of current research works regarding the 

operating conditions strategized to enhance the stability of aerobic granules system.  

According to Tao et al. [7], the formation mechanism of aerobic granules can be categorized into three phases, 

namely lag, granulation and maturation. in which the aerobic granules reach the largest size and continually constant 

during the maturation period. In contrary, the model for aerobic granules formation developed by Verawaty et al. [8] 

showed that matured aerobic granules will subsequently disintegrate after reaching a certain critical size and causing an 

Abstract: Understanding on the competence of aerobic granules sludge (AGS) system to recover the granulation 

process when instability occurs remained scarce since current research works on continuous variation in the 

organic loading rate (OLR) applied have been rarely reported. Thus, this study determines the dynamic granulation 

process and stability of AGS system by combining selective pressure generated by variation of OLR from 0.26 to 

0.81 kg CODs m-3 d-1, use of an airlift reactor with divided funnel having a low height/diameter (H/D) ratio of 4.4 

and low hydrodynamic shear force (superficial air velocity, SAV of 0.7 cm s-1).  Matured AGS was attained after 

67 days of the reactor setup with an optimal sludge volume index (SVI) of 33 ml g-1 and 15 min of settling time. 

The AGS system was generally stable between day 41 to 67 at average mixed liquor suspended solids (MLVSS) of 

0.85 g L-1 and sludge retention time of 6 days. The next generation sequencing (NGS) analysis indicated that the 

shift in microbial community performing denitrification process from Rhodocyclaceae to Comamonadaceae class 

was accommodated with changes in aerobic granules size from 147 µm to over 336 µm.  

Keywords: Aerobic granular sludge, airlift reactor, microbial structure, next generation sequencing, sewage 
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overall reduction in granular sizes. A model developed by Verawaty et al. [8] was further approved by Awang and 

Shaaban [9] which exhibited granulation, maturation and disintegration as a cyclic process. The difference in the 

mechanism proposed might be attributed by different type of substrate used, either synthetic wastewater with constant 

organic loading rate (OLR) [7] or real wastewater with continuous variation in OLR [8,9]. Each type of substrate has a 

maximum OLR that can be treated in the bioreactor system without affecting the aerobic granules stability. However, 

the understanding on the capacity of the system to recover the granulation process when instability occurs remained 

scarce since current research works on continuous variation in the OLR applied have been rarely reported [10].  Most 

of the works regarding stability as presented in Table S1 have been performed using synthetic wastewater with constant 

OLR except for Corsino et al.  [11] and Liu and Tay [12] which used brewery and industrial wastewater, respectively. 

Although Pronk et al. [13] have successfully implemented aerobic granules technology for the treatment of sewage 

at full-scale with detailed description of the process, conversions, energy usage and design consideration, relatively, but 

lack of information was reported regarding the characteristics of AGS with respect to OLR variations. A review by 

Nancharaiah and Reddy [14] suggested that the future research on aerobic granules should be directed towards 

discovering formation mechanisms, improving formation of aerobic granules in low-strength sewage and wide-spread 

implementation of aerobic granules systems in sewage and industrial wastewater treatment. 

In this context, the objective of the present study is to determine the dynamic granulation process and stability of 

aerobic granules system when developed under combined selective pressure generated by variation of OLR, reactor 

with a low height/diameter (H/D) ratio and low hydrodynamic shear force. The relationship of extracellular polymeric 

substances (EPS) distribution and microbial community structure at different phases of aerobic granulation process 

were also evaluated.  
 

2. Material and Methods 

2.1 Reactor Setup and Operation 

It was reported that reactor with H/D ratio of over 10 was mostly used in the literature [15] in order to meet the 

requirement of the minimal SAV of 1.2 cm/s for a successful formation of AGS [16]. Therefore, this study has defined 

that a reactor with an H/D below than 5 was considered to be low. An airlift reactor with divided funnels as showed in 

Fig. S2(a) was proposed for the optimization of aerobic granules formation in reactor with low H/D ratio of 4.4 and run 

under low SAV. The internal diameter of the airlift reactor was 11 cm and the diameter of the divided funnels was 8.5 

cm. The divided funnels comprised two sections with the same length (10 cm) and effluent discharging point located 

between the gaps of the divided funnels. In order to alleviate the problem with friction of aerobic granules in 

downstream area, 2.5 cm gap was set between the divided external funnels and sidewall of the reactor.  

The operating strategies comprised two phases. In Phase 1, the cycle time was 4 hours with filling, reaction, 

settling and discharge time were fixed to 30 min, 185 min, 15 min and 6 min, respectively.  During Phase 2, the cycle 

time was changed to 3 hours with filling (30-10 min) and reaction times (125-145 min) changed accordingly to the 

performance of aerobic granules. Aeration was achieved by injecting air from the bottom of the reactor through a fine-

bubble porous stone. The low air velocity resulted in a low SAV of 0.7 cm s-1 during reaction time. After settling time, 

2.25 L of the supernatant was discharged which resulting in a volumetric exchange ratio of 50%. The experiment was 

operated under room temperature without pH control. A certain volume of sludge (around 50 mL) in the reactor was 

periodically taken just before the aeration time ended and stored in -20ºC for further investigation.  

The given flow patterns for bubble column (Fig. S2(b) to Fig. S2(c)) were based on a report by Liu and Tay [17], 

[18] which described liquid upflow pattern as a homogenous circular flow along the reactor height, in which longer 

flowing trajectories in SBR with higher H/D ratio will provide better effective hydraulic attrition for microbial 

aggregation to form aerobic granules. The flow pattern for airlift reactor with divided funnels used in this study (Fig. 

S2(d)) was derived based on Liu and Tay [17] and Zhou et al. [19] where liquid turns flow direction when it reaches an 

inclined part of the funnels, resulting in two circular flowing trajectory inside the reactor. Under combined selective 

pressure of low SAV and low H/D ratio, the airlift reactor with divided funnels can deliver a higher shear force and 

better mixing compared to bubble column type reactor. 

 

2.2 Sewage and Seed Preparation 

Sewage and activated sludge were collected from a sewage treatment plant operated by Indah Water Konsortium 

Sdn. Bhd (Malaysia), located at Damansara and Pantai 1, respectively. The raw sewage and activated sludge were taken 

directly from primary clarifier and aerobic tank, respectively. The characteristics of the sewage are as follows: total 

chemical oxygen demand (COD) of 470–163 mg L−1, soluble chemical oxygen demand (CODs) of 231–86 mg L−1, 5-

day biochemical oxygen demand (BOD5) of 54–140 mg L−1, suspended solids (SS) of 32–136 mg L−1 and ammonium 

(NH4
+) of 22–53 mg L−1.  At initial stage, 2.3 L of activated sludge after aeration for 1 day was used as seed, resulting 

in an initial concentrated mixed liquor suspended solids (MLSS) of 1.7 g L-1.  
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2.3 Analytical Methods 

Parameters such as BOD5, CODs, MLSS, mixed liquor volatile suspended solids (MLVSS), SS and sludge volume 

index (SVI) were analysed according to APHA standard methods [20]. In this study, CODs was used instead of total 

COD due to a huge increment for total COD compared to CODs when the SS value increased. A high SS value 

contributes to an increase in the COD value, since more organic and inorganic materials are oxidized by potassium 

dichromate [9]. Ammonium, nitrite and nitrate were determined by the photometric determination using Merck test kit. 

The morphology of aerobic granules was observed using field emission scanning electron microscope (FESEM), where 

sample preparation was described by Awang and Shaaban [15]. Aerobic granules sizes were measured under a digital 

microscope, DSX500 Opto with 5x magnification lenses. The size, geometric shapes and angles on screen were 

measured and analysed by an image acquisition of 2D (OLYMPUS Stream image analysis software).  
Multiple staining schemes for aerobic granules were employed to determine the distribution of EPS. General 

principles in designing a multicolour staining scheme for granules have been presented by Chen et al. [21] with special 

precautions taken to avoid overlapping of excitation and emission wavelengths of fluorophores (dyes).  In this study, 

SYTO 63 (Product ID, S11345) and FITC (Product ID, F6434) were purchased from Life Technologies. Calcofluor 

white (Product ID, 18909) was purchased from Sigma. The stained aerobic granules were kept in cold room at 

temperature of 5 ᵒC. The whole aerobic granules images were visualized under confocal laser scanning microscope 

(CLSM; Leica Tcs Sp5 li model) with corresponding excitations and emissions. Z-sectioning was performed on whole 

granules and rendered three-dimensionally by using Las Af Lite software.  
 

2.4 Microbial Community Identification 

The shift in the microbial community was analysed using polymerase chain reaction (PCR) coupled with next-

generation sequencing (NGS) method. NGS is a new method that helps to identify microbial community based on 

percentage quantity rather than percentage similarity. Aerobic granules were centrifuged at room temperature for 30 sec 

at 10,000 g. Water was removed to provide approximately 0.25 g of biomass. DNA was isolated from aerobic granules 

using PowerSoil®DNA isolation kit and kept in a freezer at a temperature of -20ºC until microbial identification was 

carried out.  

The platform for NGS used in this study was based on Illumina Miseq. Methods described for DNA quality 

control, bioinformatics analysis and taxonomic classification were provided by Sango Biotech (Shanghai) Co., Ltd. The 

DNA concentration and purity were measured using agarose gel electrophoresis technique. DNA concentration 

required for PCR reaction was quantified using Qubit 2.0 DNA kit. The primer for PCR was designed using a blend of 

universal primer of Illumina Miseq sequencing platform. Agarose gel electrophoresis was run to test the PCR products, 

and DNA was recovered by Sangon agarose recover kit. Once again, Qubit 2.0 was used to quantify the recovered 

products based on a mixture of 1:1 ratio with DNA concentration. The mixed sample was shaken and later used as 

subsequent sample for library construction and sequencing.  

PRINSEQ software was used to truncate low-quality data in order to improve merge ratio for subsequent 

sequences. Flash software was used to fuse dual-terminal sequences and split the data to samples by barcodes. Primer 

and barcodes were then trimmed from the resulting sequences using PRINSEQ software. UCHIME software and 

sequences in Silva data as template were used to filter out PCR chimeras. Only samples with sequences length of over 

450 bp were used for taxonomic classification analysis. The sequences readings were clustered into operational 

taxonomic units (OTU) based on the distance between sequences. OTU clustering software used was UCLUST. 

Sequence similarity was set at 0.97, and OTU was considered to be as close as possible to genus. The representative 

sequences from each OTU were subjected to RDP Classifier software, and Greengenes database was used to classify 

taxonomic assignment based on Bergey’s taxonomy. 

 

3. Results and Discussion 

3.1  Size and Morphology Development 

Fig. 1(a) exhibits the deviation in aerobic granules size at different days which was reflected in the length of the 

box plot. On day 0, the inoculate seed was activated sludge with median size of 154 µm. Dissipation of activated sludge 

occurred within 24 hour of start-up and resulted in pin flocs formation on day 1. The aggregation of pin flocs started on 

day 1, and by day 8 the pin flocs of median size started to increase from 24 to 99 µm. Fluffy aerobic granules started to 

appear after 32 days, but with apparent existence of filamentous microorganism protruding from the aggregates. The 

deviation in aerobic granules size on day 50 between 264 to 459 µm was within the range of day 32 (151 to 545µm). 

This suggested that the densify process of fluffy aerobic granules has started. This was in line with pattern of sludge 

volume index (SVI) profile (Fig. 1(b)) that exhibited small deviations between 5 min intervals of settling time after 22 

days of the formation process. Moreover, the morphology of aerobic granules on day 50 (Fig. 2(b)) exhibited a 

cauliflower-like structure. Meanwhile, Fig. 2(a) displays aerobic granules on day 32 which have a long straggler shape 

indicating an aggregation of small aerobic granules along the filamentous microorganism as backbone. Similar 
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cauliflower-like structure was also observed by Liu et al. [22] when aerobic granules were developed at substrate with 

COD/N ratio less than 5. 

 

 
 

 
 

 
 

Fig. 1 - (a) Deviation in aerobic granules size (b) Profile of SVI at every 5 min intervals of settling time  

(c) Profile of biomass (MLSS and MLVSS), OLR and CODs influent 
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Aerobic granules size continued to increase up to 1237 µm on day 67, with a large number of small aerobic 

granules of less than 532 µm were predominantly present in the reactor. This might be attributed to the densify process 

which contributed to a clear outline boundary of aerobic granules. Thus, it can be concluded that mature aerobic 

granules were achieved on day 67. According to Verawaty et al. [8], mature aerobic granules will subsequently 

disintegrate after reaching a certain critical size and thus causing an overall reduction in granular sludge. This indeed 

occurred on day 77 in which the size of mature aerobic granules on day 67 decreased and varied between 333 and 750 

µm. The morphology of aerobic granules on day 77 (Fig. 2(c)) was more likely exhibited the detachment of biomass 

from parents aerobic granules, and this further confirmed the disintegration of mature aerobic granules on day 67. A 

close-up image on aerobic granules morphology at day 77 demonstrated the appearance of peritrichous ciliates 

surrounded by various degrees of rod and cocci shape bacteria. According to Weber et al. [23], ciliates stalks serve as 

backbone in the granule-forming process since bacteria use them as a substratum to grow. At day 91, the aerobic 

granules continued to increase in size, with diameter varying between 511 and 2463 µm. This signified the aggregation 

between small and large granules via bridging, which in turn led to irregular shape and diffused granular structure. 

Mature aerobic granules again were predominant in the reactor on day 105 with diameter varying between 326 and 728 

µm. Based on microscope and FESEM images, the mature aerobic granules produced on day 105 exhibited a tiny oval 

or rod shape form instead of the desired sphere shape.  

SVI profile in Fig. 1(b) showed a decreasing pattern along with the formation of aerobic granules. SVI for the first 

13 days of the formation process was noticeably higher compared to the rest of the formation days. However, biomass 

concentrations in terms of MLSS and MLVSS (Fig. 1(c)) were comparatively high between day 1 to 13 and day 41 to 

77. These demonstrated that the transient phase in the formation process was strongly related to the settling properties 

of aerobic granules. Based on microscopic observation and SVI profile, it was more likely that aerobic granules on day 

1 to 36 and day 41 to 67 were in aggregation and stability phases, respectively. During aggregation phase, formation of 

aerobic granules was highly dependable on OLR. This matched well with the profile of MLSS and MLVSS which 

varied according to changes in CODs influent from day 1 to 36. Cycle time was adjusted from 4 to 3 hours on day 33 

when analysis on F/M ratio (Fig. S3) indicated that the biomass decreased due to insufficient food since 22 days of the 

formation process. Changes in CODs influent during the stability phase did not significantly affect MLSS and MLVSS 

profile. By removing the biofilm which has grown on the reactor wall during reactor maintenance on day 69, aerobic 

granules did not have to outcompete for food with biofilm. In turn, MLSS promptly increased from 0.83 g L-1 on day 

67 to 1.38 g L-1 on day 71.  

Along with the increase in MLSS and partial disintegration of mature aerobic granules, it appeared that some 

aerobic granules floated and entrapped into effluent discharge pipe during feeding. As a result, MLSS promptly 

decreased from 1.58 g L-1 on day 77 to 0.60 g L-1 on day 83. It was expected that hydrolysis of anaerobic core during 

disintegration of mature aerobic granules releases gases and organics acids [24], which were entrapped within the 

sludge layer at static condition. Besides, long feeding time may create an anoxic condition inside the reactor and this 

governed the denitrification process which released nitrogen gas within the sludge layer. From observation, the aerobic 

granules started to float after 20 min of feeding time. Hence, the feeding time was changed from 30 to 10 min on day 

82 with settling time remained at 15 min throughout the formation process. After that, a reduction in biomass 

concentration and sludge retention time (Fig. S3) was observed.  

Nonetheless, mature aerobic granules were successfully re-dominated in the reactor on day 105. The formation of 

these aerobic granules in airlift reactor with divided funnels was mostly stable between day 41 to 67, and this was in 

line with result on F/M ratio that varied slightly between 0.57 to 1.13 g CODs g-1 MLVSS-1 d-1. Deng et al. [25] 

suggested a benchmark of F/M ratio above 0.5 g COD g-1 MLVSS-1 d-1 to meet a normal growth, reproduction and a 

variety of physiological demand of the microbial. During stable periods, the differences of SVI in each 5 min intervals 

of settling time started to plateau off and were equivalently distributed. Aerobic granules were stabilized at average 

MLSS of 0.85 g L-1 and SRT of 6 days. 

The enormous deviation in aerobic granules size obtained in this study was caused by self-aggregation of aerobic 

granules and re-granulation of the detached bioflocs, newborn flocs and crushed aged aerobic granules. The final 

aerobic granules size obtained on day 105 was in the range of 326 to 728 µm and can be considered as smaller 

compared to that of reported by other studies [26]-[29] utilizing sewage as substrate which was around 750 to 800 µm, 

and can reach up to 2000 µm. This was mainly attributed to short flowing trajectories in the airlift reactor with divided 

funnels. The variations in OLR have intrusive the formation process particularly during low OLR, and required longer 

period to achieve mature aerobic granules or full granulation of biomass. Based on our previous study [9] on the 

formation of aerobic granules in SBR with equal H/D ratio, the use of divided funnels has successfully expedited the 

formation period of mature aerobic granules within 67 days (in this study) compared to 89 days (previous study). The 

result obtained enlightened that aerobic granule formation only required a definite critical height for an effective 

flowing trajectory to take place. Thus, this study supports the advantage of using an airlift reactor with divided funnels 

in optimizing the performance of reactor with low H/D ratio. 
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Fig. 2 - Morphological developments of aerobic granules during the experimental run. 
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3.2 Reactor Performance 

Fig. S4(a), Fig. S4(b) and Fig. S4(c) depict influent and effluent concentration as well as the removal efficiency of 

soluble CODs, SS and ammonium during the formation process, respectively. During the first 36 days, aerobic granules 

were in formation stage and thus led to poor CODs and SS removal. Negative removal for SS at an early stage 

indicated that the biomass was excessively washed out from the reactor. Afterwards, the reactor’s performance 

improved continuously and was at stable condition throughout day 41 to 67, the average of CODs, SS and ammonium 

removal reached 71%, 64% and 78%, respectively. As for the concentration of nitrite and nitrate in the effluent during 

stable periods, the respective average values of 14 mg l-1 and 13 mg l-1 were obtained. 

The average of CODs, SS and ammonium removal obtained in this study can be considered as moderate compared 

to that of reported by other studies [26]-[29] utilizing sewage as substrate which was generally more than 90% and 80% 

for COD and ammonium, respectively. The moderate CODs removal and the decreasing patterns for pH at the end of 

reaction time (Fig. S2(d)) were attributed to low COD/ammonium ratios during Phase 1 and Phase 2, which was less 

than 6.0 (Fig. S2(d)). This finding can be associated to studies by Yang et al. [30] and Wang et al. [31] who postulated 

that aerobic granulation and nitrification process are closely related to the COD/nitrogen (COD/N) ratios applied to the 

reactors where inhibition of both heterotrophic and nitrifying bacteria activities may occur if  substrate with COD/N 

ratio lower than 10 is  used. On the other hand, Wagner and da Costa [32] reported a decrease in COD removal from 

96% to 78% when COD/N ratio decreased from 11.2 to 4.7, even though the influent ammonium concentration was less 

than 91 mg l-1. Thus, it can be concluded that the rate of nitrification inhibition should not be estimated solely based on 

ammonium influent concentration. Complete nitrification could occur even when the wastewater has high ammonium 

influent, and the COD/N ratio is over 10 [30]. 

 

3.3 Distribution of EPS 

Fig. 3(a) shows the appearance of contrast image, while Fig. 3(b) to Fig. 3(e) display fluorescent staining results of 

the whole aerobic granules on day 77 and 105. Fluorescent images were probed at the centre (-72 µm) of aerobic 

granules for day 77, and 7 µm from the centre of aerobic granules for day 105 (centre at 11 µm). The thicknesses of the 

whole aerobic granules used for CLSM image analysis on day 50, 77 and 105 were reflected on the length of Z-

sectioning as illustrated in Fig. 3(f). The condition of selected aerobic granules for CLSM image viewing for day 77 

was matured aerobic granules with apparent existence of filamentous microorganism protruding from aggregates. 

Whilst, selected aerobic granules for CLSM image viewing for day 105 were from partial disintegration of aerobic 

granules on day 91. 

Based on the image analysis at different Z-sectioning on day 77, it can be concluded that the core of aerobic 

granules was formed by protein, whereas the active cells (nucleic acid) and β-D-glucopyranose polysaccharides were 

also within the core of the granule, but to a lesser extent than protein. This finding was consistent with reports by Chen 

et al. [21] and McSwain et al. [33].  Chen et al. [21] reported that β-D-glucopyranose polysaccharides are concentrated 

not only in the outer layer, but they also spread throughout the granules interior. Meanwhile, McSwain et al. [33] 

spotted few signals of active cells from aerobic granule centre and claimed that the sample was either in flocs or small 

aerobic granules formed when cells and EPS existed together at the centre. 

Zhu et al. [34] further described a study by Wang et al. [35] on β- polysaccharides forming a continuous shell and 

integrated structure that held the soft core of aerobic granules as mesh skeleton which favoured the formation of stable 

granular structure. This was in conjunction with the overlapped images on day 77 which revealed that β-D-

glucopyranose polysaccharides were likely to entrench the protein surface with traces of active cell almost completely 

covered. Whilst, the overlapped images on day 105 signified that β-D-glucopyranose polysaccharides were likely to act 

as the backbone for protein and active cells layer embedment. This observation was supported by Adav et al. [36], in 

their study revealing large fragments which may have originated from the outer layers of aerobic granules prior to 

hydrolysis. The β-polysaccharides were likely to form the backbone of a network like outer layer of embedded proteins, 

lipids, α-polysaccharides and cells, whose elasticity supported the mechanical stability of granule. 

Image analysis at different Z-sectioning on day 50 (image not included) was also similar to day 77. Only protein, 

with a few spots of β-D-glucopyranose polysaccharides, was present on the overlapped images of day 50. In contrast, 

the overlapped image on day 105 which was probed at 7 µm from the centre of aerobic granules indicated the 

significant presence of active cells. Furthermore, the image analysis at different Z-sectioning on day 50, 77 and 105 

showed that high fluorescent intensity for active cells was present between β-D-glucopyranose polysaccharides and 

protein in a very thin layer depending on the thickness and form of aerobic granules. Outer surface and core of aerobic 

granules were mainly composed of β-D-glucopyranose polysaccharides and protein, respectively.  

 

3.4 Microbial Community During Granulation 

In order to demonstrate the evolution of microbial population, a total of 58,679 effective sequencing readings were 

assigned according to Bergey’s taxonomy. Analysis was carried out on day 0, 8, 50, 77 and 105, each representing 

seed, aggregation, stability, disintegration and re-aggregation phase, respectively. Most of the effective sequencing 
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readings were affiliated to 3 major phyla out of 25 detected phyla in total, which were Proteobacteria, Bacteroidetes 

and Firmicutes. Previous studies reported that phyla of Bacteroidetes [37], Proteobacteria [25] and Flavobacterium 

[38] were dominant in aerobic granules formation.  

 

 
 

Fig. 3 - CLSM images of aerobic granules on day 77 and 105; (a) Contrast images, (b) β-D-glucopyranose 

polysaccharides (calcofluor white), (c) Protein (FITC), (d) Nuclei acid (SYTO 63), (e) Overlap images of b-d and 

(f) Z-sectioning on whole aerobic granules on day 50, 77 and 105. 
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Cluster analysis as shown in Fig. 4 was used to scrutinize the similarity of microbial community that represented 

different phases in aerobic granules formation. It was noted that Betaproteobacteria and Sphingobacteriia classes, 

which belong to the Proteobacteria and Bacteroidetes phyla, were always dominant throughout the formation period. 

The rapid increase in total sequences percentage for Betaproteobacteria and Sphingobacteriia classes from 42% in seed 

to 74%, 68% and 62% on day 50, 77 and 105, respectively, indicated a significant shift in microbial population. 

Dominant classes have outcompeted minor classes in which 18% of Bacilli classes was markedly existed only on day 8, 

suggesting that this class was beneficial to the aggregation process at an early stage. Bacteroidia and Nitrospira classes 

existed noticeably in seed, with Flavobacteriia class increased steadily throughout the formation period. This 

demonstrated that only certain microbial community was beneficial to aerobic granules formation.  

 

 
 

Fig. 4 - Cluster analyses for the first 15 taxonomic classifications from bacterial community of 

seed, day 8, 50, 77 and 105 at the class level 

 

As shown in Fig. 5, the taxonomic classification of pyrosequences from bacterial community at genus level 

revealed that seed contained a greater microbial diversity than aerobic granules. For example, the presence of 

Candidatus, vadinBC27, unclassified_Rhodocyclaceae and Sulfuritale genera in seed were over 3% as compared to 1% 

in aerobic granules which was formed afterwards. Except for several dominant genus, most of the microbial community 

from seed was suppressed to less than 1% during the aggregation, stability, disintegration and re-aggregation phases. 

Bacillus genus was markedly present in aggregation phase (day 8) but almost non-existent in the late formation process, 

suggesting that this genus was dominant in smaller aerobic granules with median size of 99 µm and eventually was 

eliminated as the aerobic granules size increased.   

Genus of Thauera from Rhodocyclaceae family also was significantly prevalent on day 8 with nearly 15% 

abundance, but continued to decrease to less than 5% on day 50 when the median aerobic granules size was 336 µm. 

Then, Comamonas, Alicycliphilus and Ottowia genus from Comamonadaceae family increased with the decrease in 

Rhodocyclaceae class on day 50, 77 and 105 with total abundance accounted at 8%, 18% and 10%, respectively. Thus, 

this highlighted the shift in microbial community for the denitrification process from Rhodocyclaceae to 

Comamonadaceae family which was accommodated with changes in aerobic granules size from 147 µm to more than 

336 µm. This result has confirmed an increasing trend in the dominant abundance of unclassified_Chitinophagaceae 

and unclassified_Saprospiraceae from Sphingobacteriia class throughout the formation period. Further investigation on 

the phylogenetic analysis using MEGAN software showed a shift in Chitinophagaceae family, from Ferruginibacter 

genus in seed, to Sediminibacterium genus on day 8 and Taibaiella genus on day 50 and 77, and Filimonas genus on 

day 105. The closed up morphology image for aerobic granules on day 105 (Fig. 2(d)) proved the domination of 

unclassified_Chitinophagaceae genus, where rods cells with rounded or so called microcysts were tightly linked 

together to form a compact flora structure.  
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Fig. 5 - Taxonomic classification of pyrosequences from bacterial community of seed, 

 day 8, 50, 77 and 105 at the genus level 
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Comparing the result of microbial community in this study with other research works further proves that the 

dominance of a particular microbial is governed by substrate or type of wastewater and OLR. The dominant microbial 

in seed will suppress the existence of other species over the formation period and results in low microbial species 

diversity in mature aerobic granules. A study by Li et al. [38] confirmed that reactor with high OLR has the lowest 

microbial species diversity compared to reactor with low OLR. Zhou et al. [39] proved that microbial selection pressure 

is not a prerequisite for aerobic granulation from both the dynamic granulation steps and molecular biology aspects. For 

example, the domination of Sphingobacteriia class in this study was similar to that of reported by Zhou et al. [39] on 

the formation of aerobic granules in sewage. Findings by Xia et al. [40] suggested a gradual accumulation of antibiotic-

resistant microorganisms like Firmicutes sp. in the treatment of sewage containing antibiotics. Whilst, Abdullah et al. 

[37] claimed that the existence of Propionicbacteriaceae family is associated with the presence of phenolic 

compounds. 

 

4. Summary 

Aerobic granules were successfully attained although the combined selective pressure applied was not favourable 

for aerobic granules formation. Although the variations in OLR have intrusive the formation of AGS particularly during 

low OLR, the self-aggregation of AGS and re-granulation of the detached bioflocs, newborn flocs and crushed aged 

AGS ensured the later stability of AGS system. Smaller size of aerobic granules in the range of 333 to 750 µm was 

relatively stable. This was based on CLSM analysis that showed active cells, β-D-glucopyranose polysaccharides and 

protein existed together at aerobic granules core. The NGS analysis result indicated the shift in microbial community 

performing denitrification process from Rhodocyclaceae to Comamonadaceae class was accommodated with the 

changes in aerobic granules size from 147 µm to more than 336 µm.  
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