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1. Introduction 

Trihalomethanes (THMs) belong to the chlorinated DBP group which comprises four compounds; chloroform 

(CHCl3), bromoform (CHBr3), bromodichloromethane, BDCM, (CHCl2Br) and dibromochloromethane, DBCM, 

(CHBr2Cl) [1]. THMs are currently being regulated in most drinking water standards as they have been classified under 

Group B carcinogens (carcinogenic) which have reportedly caused bladder cancer and   birth defects [1]-[3]. THM 

formation in treated water is a result of the reaction between the disinfectants, such as chlorine, used for water 

disinfection, with natural organic matters present in natural waters. THM precursors in water can be determined by 

quantifying these water quality parameters which include total organic carbon, dissolved organic carbon, UV 

absorbance at 254 nm wavelength (UV254) or specific UV absorbance (SUVA) parameters [4]. According to the 

Ministry of Health, Malaysia, the maximum allowable limit for total THMs in drinking water is 1 mg/L and it should 

not exceed the limit to ensure safe and reliable drinking water [5]. 

Chlorine is the main disinfectant applied in Malaysian drinking water treatment plants due to its effectiveness in 

destroying bacteria and other pathogens, besides being more economical when compared with other types of oxidants 

[1]. Apart from that, using chlorine as a disinfectant at the right dose will ensure chlorine residue at the users’ end.   

Natural organic matter (NOM) is mostly present in natural water sources which can originate from different 

sources. Since NOM is a heterogenous mixture of organic compounds from the degradation of plant and animal 

residues, its content in natural water may vary depending on the sources [6]. NOM presence in natural waters is not 

toxic, however, it can cause aesthetic problems (colour, odour and taste) while also serving as a medium for other 
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harmful contaminants to bind. NOM consists of hydrophobic and hydrophilic parts. Hydrophobic parts, which typically 

have high molecular weight, contain aromatic carbon, phenolic structures and conjugated double bonds, where 

hydrophobic acids (also called humic substances) have a major portion in aquatic NOM [7]. Hydrophilic NOM (non-

humic substances), which is more polar, consists of aliphatic carbon and nitrogenous compounds and usually have low 

molecular weight. According to Sillanpaa et al., coagulation process has been the top selection in removing NOM from 

source water as it has been proven to be efficient in removing DBP precursors [8], where metallic-based coagulants are 

the popular choice. 

Two metal salts; ferric and aluminium salts, are most widely used [9] as they are low-cost and efficient in 

removing turbidity and colour in water in wastewater treatment plants [10]. Aluminium salts are more efficient in 

removing colour and turbidity, compared to ferric salts [7]. Nonetheless, a few past researchers found that the latter was 

more efficient in removing NOM compared to the former [11], [12]. Thus, ferric salts would be a more suitable choice 

to be applied if the main objective is to remove NOM in source water.  

Typically, coagulation-flocculation and disinfectant processes are separated into different stages to ensure that the 

reaction at each stage has been completed. However, in cases of natural disasters or even in rural areas where source 

water is available but with no proper treatment plant, it is a better idea to provide a simple and rapid treatment method 

to generate clean and safe drinking water. Therefore, this study aims to determine the best coagulant dosage to be 

applied simultaneously with disinfectant under different pH, to remove THM precursors. Apart from that, the formation 

of THM was compared to the drinking water quality standard to determine if this combination is suitable for rapid 

water treatment.  

 

2. Methodology 

 This research involved groundwater sampling and the samples were later subjected to jar testing that applied 

simultaneous coagulation and disinfection processes as the THM formation potential (THMFP) test.   

 

2.1 Sampling Site and Analysis 

 This study extracted groundwater sample from a borehole located in Universiti Sains Malaysia, Pulau Pinang 

(coordinate location of 5° 08’ 50.5”N, 100° 29’ 34.7E). The depth of the borehole is 43.575 m with a diameter of 0.2 

m. It is located just 1 km away from the Kerian River. It was reported previously in a study by Akbar that this 

groundwater had elevated organic matter content that might be due to surface water intrusion [14]. Before sampling, the 

groundwater was purged for two hours to make sure the readings for water quality was stabilised. Submersible pump 

was used to purge the borehole. This is mainly to make sure the variations in the water quality parameter of the raw 

water is small (less than 10% differences between the readings). The water sample was stored at 4°C until analysis 

began. Sampling works were carried out from March till May 2017. The parameters tested for the raw water included 

pH, temperature, UV254, and turbidity. UV254 is a measurement of the amount of light absorbed by organic compounds, 

specifically aromatic. In water sample, UV254 also indicates the concentration of organic matter, especially those 

containing aromatic rings. All parameters were tested according to the Standard Method for the Examination of Water 

and Wastewater (Standard Method).  

 

2.2 THM Formation Potential Test 

 Ferric chloride (FeCl3) and ferric sulphate (Fe2(SO4)3) were chosen as coagulants for this study as ferric-based salts 

were proven to be more efficient in removing NOM [12, 13]. Jar tests were carried out with either FeCl3 or Fe2(SO4)3 

as coagulants at various pH and coagulant dosages, where the pH range was between 4 – 6 and the coagulant dosage 

was between 0 – 100 mg/L. Control sample (no coagulant dosage) were carried out for each pH conditions. Coagulants 

were added simultaneously with chlorine (5mg/L dose) after pH adjustments were carried out. Prior to dosing, chlorine 

stock solution was prepared from sodium hypochlorite at 1000mg/L and will be tested for the initial condition before 

dosing. The mixing was carried out as follows: rapid mixing at 300 rpm (30 sec) followed by 250 rpm (2 mins), and 

later slow mixing at 40 rpm (10 mins) before the samples were left to settle for 20 mins. Then, the supernatant was 

extracted for THM quantification.  

 

2.3 Sample Extraction and THM Quantification 

Before THMs compound can be determined, all samples need to be extracted. 30 mL of sample was extracted 

following a liquid-liquid extraction (LLE) method as modified from the USEPA 551.1 method [15]. In a 60 ml glass 

extraction vial equipped with a PTFE-lined screw cap, the sample was adjusted to a pH of~3.5 (under acidic condition) 

using H2SO4 dilution followed by the addition of 1 g copper sulphate and 10 g pre-baked sodium sulphate [15]. 3 mL of 

Methyl tert-butyl ether (MTBE) with 1 µg/ml bromofluorobenzene (internal standard) was added as the extraction 

solvent. The extraction vial was shaken vigorously by hand for approximately 4 mins and was allowed to rest for 

approximately 2 mins to let the water and MTBE phases separate. An aliquot of the extract was removed by using a 

glass pipette and transferred to a 2 mL GC vial and which was subsequently quantified by gas chromatography with 
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mass spectrometry, GC-MS (Agilent 7890 GC with 5975C MSD ChemStation) [15]. The instrument settings areas seen 

in Table 1.  

 
Table 1 - GC-MS Settings Details  

 

GC: Agilent 7890A 

Columns: 
Restek Rxi-5 Sil MS column of dimensions 30 m x 0.25 mm x 

0.25 μM. 

Carrier Gas: Helium constant flow at 1 mL per minute 

Injection 

Volume: 
3 mL, splitless 

Temperature Programmes: 

Oven: 
Initial temperature at 35⁰C for 3 min, then 20⁰C per minute to 

150⁰C, 35 ⁰C per minute to 300⁰C and hold for 5 minutes 

Injector: 250 ⁰C 

Mass 

Spectrometer: 
Agilent 5975C 

MS Quad 

Temperature: 
150⁰C 

Ion Source: 230⁰C 

 

3. Results and Discussion 

 The groundwater site was selected with prior knowledge from Akbar [14] that it contained higher NOM compared 

to usual groundwater. This was to allow the maximum THM formation potential that might happen in the presence of 

elevated NOM levels in source water. Table 2 summarises the characteristics of the groundwater which had been 

sampled for four times from March till May 2017. pH and turbidity levels were still within the limit stated by the 

Ministry of Health, Malaysia [5]. When compared with previous research, UV254 values in this study were on the higher 

range compared to other groundwater samples and surface water from past research [16-18]. 

 
Table 2 Groundwater characteristics 

 

Parameters  Unit Min value Max Value Average 

pH   6.58 7.64 6.92 

Temperature °C 28.33 29.09 28.47 

Turbidity NTU 9.06 42.53 23.7 

UV₂₅₄ nm cm-1 1.002 1.328 1.161 

 

Fig. 1 shows the trends in turbidity removal at different pH levels and FeCl3 dosages. The trends indicated that a 

higher dosage produced higher percentage of removal; however optimum dosage could not be determined as the 

percentage of removal kept increasing with the dosage. The highest percentage removal was 44.61% with FeCl3 at 100 

mg/L at a pH of 5.5 (control sample – 44.31 NTU, final turbidity – 26.29 NTU). To achieve higher removal, higher 

coagulant dosage should be tested in order to obtain the optimum pH and dosage. The highest removal at 44.61% was 

still far from reaching the allowable Malaysian drinking water standard (5 NTU). However, with higher dosage it will 

be less economical. Thus, using FeCl3 as coagulant simultaneously with chlorine at the tested pH might need 

additions/alterations of some other conditions to boost the turbidity removal. 

Fig. 2 shows the percentage of turbidity removal using Fe2(SO4)3 as the coagulant. There is a difference in the 

removal trend compared to FeCl3. By using Fe2(SO4)3, the optimum value obtained was when the pH was 5.0 at the 

dosage of 80 mg/L. During optimum conditions, the percentage of removal was slightly higher than removal rates 

recorded when using FeCl3, at 50.51% (final turbidity – 23.49 NTU). However, the initial turbidity for the Fe2(SO4)3 

experiments were at 46.06 NTU, just slightly higher than the initial turbidity for FeCl3, 44.31 NTU. Thus, when 

comparing both coagulants, the percentage of removal obtained showed only a slight difference. However, FeCl3 

showed the percentage turbidity removal continued to increase even at the same coagulant dose (100 mg/L) compared 

to ferric sulphate. It can be concluded that the application of Fe2(SO4)3 is more economical due to higher removal of 

turbidity at lower dosage, however higher turbidity removal can be expected with higher dosage of FeCl3. According to 

a study by Ibrahim and Aziz [14], overdosing the coagulant results in a substantial increase in the amount of generated 

sludge and a decrease in pH. This might explain the decreases in removal after 80 mg/L for all cases when applying 

Fe2(SO4)3 as coagulant. 
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Fig. 1 - Percentage of turbidity removal using FeCl3 as coagulant at various conditions pH  

and coagulant dose 

 

 
 

Fig. 2 - Percentage of turbidity removal using Fe2(SO4)3 as coagulant at various conditions pH  

and coagulant dose 

 

Fig. 3 shows the percentage of UV254 removal, which produced two peaks at 10 mg/L and 50 mg/L.  The first peak 

shows a low removal rate compared to the second peak illustrating that FeCl3 was effective with only 10 mg/L as it had 

removed almost 40% of UV254. However, the best value for UV254 removal was chosen at pH 5.5 set at a dosage of 50 

mg/L, due to higher removal. The highest percentage removal was at 80.76%. As compared to previous research, FeCl3 

reached until 55% UV254 removal at dosage of 80 mg/L [4]. Furthermore, according to Sulaymon et al. [19], FeCl3 

obtained UV254 removal about 54% at dosages greater than 40 mg/L. It showed that, UV254 removal obtained in this 

study achieved higher removal rates than previous studies.  

Based on Fig. 4, Fe2(SO4)3 shows lower percentage removal compared to FeCl3 but at a higher coagulant dose. At 

pH 5, about 57.63% of UV254 was removed when using Fe2(SO4)3 compared to 78.84% when using FeCl3. Optimal 

removal obtained was at pH 5.0 and dosage of 80 mg/L. At lower pH of 4.0 and 4.5, Fe2(SO4)3 recorded removal trend 

of less than half the amount of removal at the higher pH, at all dosage.  By comparing both coagulants, FeCl3 was a 

more effective coagulant as it removed higher percentage of UV254. According to Crittenden et al. [20], it was recorded 

that for treatment plants Fe2(SO4)3 application mainly needs higher dosage, on weight basis, (20 – 250 mg/L) compared 

to FeCl3 (5 – 150 mg/L), which shown that normally Fe2(SO4)3 are needed in higher quantity to obtain good removal.  
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Fig. 3 - Percentage of UV254 removal using FeCl3 as coagulant at various conditions pH  

and coagulant dose 

 

 
 

Fig. 4 - Percentage of UV254 removal using Fe2(SO4)3 as coagulant at various conditions pH  

and coagulant dose 

 

With regards to the removal of turbidity and UV254, pH 5.0 and 5.5 are the best condition for removal for both 

FeCl3 and Fe2(SO4)3. Thus, THM formation potential experiments were carried out for these two pH levels to determine 

if THM formation would exceed the standard limits. Fig. 5 shows THM formation at pH 5 for both coagulants. All 

THM compounds were formed at this stage and BDCM was the dominant compound for both coagulants. For 

Fe2(SO4)3, BDCM formed the highest concentration which exceeded the limit specified by the Ministry of Health and 

WHO; as more than 0.060 mg/L formed, followed by chloroform, DBCM and bromoform. For FeCl3, BDCM was the 

major compound formed at the set concentrations which almost exceeded the limit at all dosages except at 5 mg/L 

(0.087 mg/L) while chloroform and bromoform were not as high. Even though the percentage removal for FeCl3 was 

lower compared to Fe2(SO4)3, the dosage to reach the optimum removal was found to be lower for FeCl3 compared to 

Fe2(SO4)3.  

By referring to Fig. 6, higher chloroform formed in groundwater at pH 5.5 for Fe2(SO4)3 application (0.16 mg/L at 

50 mg/L), whereas when FeCl3 was applied BDCM had higher concentrations. At the same dose of 50 mg/L 

chloroform was reduced to less than 0.01 mg/L, while BDCM formed was at 0.060 mg/L, which is close to the 

maximum detection limit. However, BDCM shows a gradual decrease after reaching the highest peak. For FeCl3, all 

THM compounds formed at lower concentrations compared to Fe2(SO4)3. Only BDCM exceeded the limit while other 

THM compounds did not. Based on Fig. 5 and Fig. 6, the application of FeCl3 with chlorine might have the ability to 

reduce chloroform formation in the treated water. However, BDCM might be slightly elevated in most cases.  
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At both pH levels, mostly all four THM compounds were formed, though at different concentrations. By 

comparing both coagulants with various conditions of pH and dosages, pH 5.5 showed the least formation where most 

of the compounds formed were still under the limit specified by the two guidelines. This means that THMs formation 

potential was the least at pH of 5.5. With regards to total THM (TTHM) weight basis, it is still considered unsafe for 

prolonged use as the TTHM weight exceeded the limit stated (>1 mg/L of TTHM). If consumers drink or use this water 

for other purposes at an extended period, there is a high health risk. 

 

   
 

Fig. 5 - Occurrence of THM compound in groundwater at pH 5 using a) Fe2(SO4)3 and b) FeCl3 

 

 

   
 

Fig. 6 - Occurrence of THM compound in groundwater at pH 5.5 using a) Fe2(SO4)3 and b) FeCl3 

 

4. Summary 

This study was conducted to determine the effectiveness of removing THM precursors by using simultaneous 

coagulant-disinfectants. Groundwater was tested at different pH levels and coagulant dosages. Generally, Fe2(SO4)3 

application at all the pH tested shown pattern with optimal conditions, however FeCl3 application shown better removal 

with increment of dosage until 100 mg/L. For Fe2(SO4)3, the highest percentage of removal was at 50.51% and 57.63% 

which indicated highest turbidity and UV254 removal, respectively. This was by applying Fe2(SO4)3, at the optimal 

conditions which was at pH 5 and dosage 80 mg/L for both parameters, turbidity and UV254. For FeCl3, the highest 

percentage of removal was 44.61% and 80.76% for turbidity and UV254, respectively. However, turbidity removal did 

not show any obvious peak but it could be concluded from the graph that higher dosage of coagulant produced higher 

turbidity removal. The optimum condition for UV254 removal was at pH 5.5 and dosage of 50 mg/L. It would be better 

to also have dissolved organic (DOC) data so that the correlation of THM formation can be compared with the DOC 

value. However, due to certain limitations, the authors were not able to present it here. On weight basis, most of the 

water samples tested at pH 5 and 5.5, which recorded the best removal rate, exceeded the TTHM limit specified by the 

Malaysian Drinking Water Quality Standard. 

 

 

a) b) 

a) b) 
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