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Abstract: Currently, Extreme Learning Machine (ELM) is one of the research trends in the machine learning field
due to its remarkable performances in terms of complexity and computational speed. However, the big data era and
the limitations of general-purpose processor cause the increasing of interest in hardware implementation of ELM in
order to reduce the computational time. Hence, this work presents the hardware-software co-design of ELM to
improve the overall performances. In the co-design paradigm, one of the important components of ELM, namely
Given Rotation-QRD (GR-QRD) is developed as a hardware core. Field Programmable Gate Array (FPGA) is chosen
as the platform for ELM implementation due to its reconfigurable capability and high parallelism. Moreover, the
learning accuracy and computational time would be used to evaluate the performances of the proposed ELM design.
Our experiment has shown that GR-QRD accelerator helps to reduce the computational time of ELM training by
41.75% while maintaining the same training accuracy in comparison to pure software of ELM.

Keywords: Extreme Learning Machine (ELM), machine learning, field programmable gate array (FPGA), hardware
implementation.

1. Introduction
Nowadays, rapid development of technology has caused an increased demand involving machine learning in various

applications in order to improve the overall performance of the systems. Many of conventional machine learning
techniques are based on feedforward network topologies and gradient-descent backpropagation (BP) algorithm. These
algorithms present some drawbacks such as slow convergence and local minimum problems which requires massive
iterative steps and consumes a lot of computational time, hence inadequate to meet today’s computational extensive
application demand [1].

A new machine learning technique which called Extreme Learning Machine (ELM) was proposed in 2006 and
proved that it has higher computational speed and better generalization performance than other traditional machine
learning techniques [2]. ELM is a Single hidden layer feedforward network (SLFN) which consists of only one hidden
layer, one input layer and one output layer in its learning network. Besides that, the linear algebra-based algorithm of
ELM and its randomly generated input weight and hidden neuron bias feature converting better performance compared
to the steepest descent-based methods used in various machine learning techniques such as Support Vector Machine
(SVM) and Artificial Neural Network (ANN) [3]. In the algebra-based algorithm of ELM, Moore-Penrose pseudo-inverse
method is used to obtain the minimum norm least squares solution of system equation. Therefore, the computation of
Moore-Penrose pseudo-inverse in ELM algorithm is the key to determine the performances of ELM. There are several
techniques that can be used to compute the Moore-Penrose pseudo-inverse which include Singular Value Decomposition
(SVD), QR decomposition (QRD), LU decomposition and Cholesky decomposition. In [4], The C-based implementation
of an embedded Extreme Learning Machine (ELM) algorithm is proposed by using modified Gram-Schmidt QR
decomposition (MGS-QRD) and the hardware implementation is then created for FPGA. In this paper, Givens rotation
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QR decomposition (GR-QRD) is chosen to be used due to its high stability, less complexity and suitability in parallelized
architecture [5].

However, software-based implementation of Moore-Penrose pseudo-inverse consumes a lot of computational time
due to the limitations of sequential-based processing of the general purpose processor which only able to perform one
arithmetic operation per processing time. Therefore, it is desirable to have a dedicated hardware to accelerate the pseudo-
inverse computation. Field Programmable Gate Array (FPGA) is a silicon chip that can be reprogrammed to perform
specific functions or applications instead of running through software application [6]. In 2016, [7] proposed an FPGA
implementation of a real-time extreme learning machine. Another variant of ELM namely Online Sequential Extreme
Learning Machine (OS-ELM) is also implemented using FPGA [8-9]. The features of FPGA such as reconfigurability,
high parallelism and low power consumption makes it as the best candidate to accelerate the highly computational
algorithm such as pseudo-inverse hence optimizing the overall performance of ELM [10][11].

2. Theoretical Background

2.1 Extreme Learning Machine
Extreme Learning Machine (ELM) is a machine learning algorithm using Single Hidden Layer Feedforward

Networks (SLFNs) as the learning network [2]. The learning network of ELM is shown in Fig 1. The number of nodes
of input and output layer depends on the number of attribute of the dataset and the number of output class respectively.
As shown in Fig.1, ELM consists of only one hidden layer in its learning network. The main concern of the learning
network of ELM is the number of hidden neurons we need to choose correctly to optimize the performance of learning
algorithm [12].

Fig. 1 – Topology of ELM

For ELM with n input nodes, L hidden nodes, m output nodes and a set of N arbitrary distinct samples (  ,  �  ); j =
𝑇
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Where   ൌ ሾ  1,   2, … ,    ሿ𝑇 is the weight vector connecting the ith hidden node and the input nodes,  �  ൌ ሾ �  1, �  2, … ,  �   ሿ𝑇is the weight vector connecting the ith hidden node and the output nodes, and   is the threshold or the
bias of the ith hidden node. The  � ሺ𝒂 ,   ,  ሻ is an activation function that satisfies ELM universal approximation
capability theorem:

H ൌ ሾ
ℎሺ 1ሻ

⋮ ሿ ൌ ሾ
� ሺ 1, 1, 1ሻ ⋯ � ሺ 𝐿 , 𝐿, 1ሻ

⋮ ⋱ ⋮ ሿ ሺ2ሻ
ℎሺ 𝑁ሻ � ሺ 1, 1, 𝑁ሻ ⋯ � ሺ 𝐿 , 𝐿, 𝑁ሻ � ൈ𝐿

For ELM implementation, there are four main training steps in ELM algorithm [11]:

i. Randomly assign input weight, ai and hidden node bias, bi.
ii. Calculate hidden layer output matrix, H.
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𝒕

iii. Compute Moore-Penrose Pseudo-Inverse of matrix H: H+.
iv. Calculate output weight matrix, β: β = H+T.

where

𝑻
𝟏

𝑇 ൌ ሾ ⋮ ሿ ൌ ሾ
𝑻

11 ⋯ 1
⋮ ⋱ ⋮ ሿ (3)

 � 𝑵 � 1 ⋯ 𝑁 � ൈ

2.2 Moore-Penrose Pseudo-inverse
Moore-Penrose Pseudo-Inverse computation is a method which can provide a solution to a system of linear

equations that lacks a unique solution. This method focuses on finding the minimum (Euclidean) norm solution to a
system of linear equations with multiple solutions. For 𝐴 ∈  ሺ ,  ;  � ሻ, the pseudo inverse of matrix A: A+ exists if it
satisfies the four criteria [14]:

𝐴 � ൅𝐴 ൌ 𝐴 ሺ4ሻ

𝐴൅ � 𝐴൅ ൌ  � ൅ ሺ5ሻ

ሺ � 𝐴൅ሻ
∗

ൌ 𝐴 � ൅ ሺ6ሻ

ሺ𝐴൅𝐴ሻ
∗

ൌ 𝐴൅𝐴 ሺ7ሻ

where K donated the field of real or complex numbers while A* denoted the Hermitian transpose of matrix A. For full
columns rank (linearly independent columns), the pseudo-inverse, A+ can be expressed as:

 � ൅ ൌ ሺ𝐴∗𝐴ሻ െ1𝐴∗ ሺ8ሻ

While for full rows rank (linearly independent rows), the equation of A+ is shown in below:

 � ൅ ൌ 𝐴∗ሺ𝐴𝐴∗ሻ െ1 ሺ9ሻ

2.3 Givens Rotation QR Decomposition (GR-QRD)
Givens rotation is one of the QR decomposition methods that can decompose a m×n matrix A into [15]:

𝐴 ൌ   ሺ10ሻ

Where Q is a m×m orthogonal matrix while R is a m×n upper triangular matrix. By using GR-QRD for Moore-Penrose
pseudo-inverse computation, each nonzero element of matrix H below the main diagonal is first eliminated into 0 to form
an upper triangular matrix R. For each iterative step, only two rows of matrix H are used to compute the zero and all the
elements of these rows would change after the zero computation. The equations used to produce matrix R are shown
below.
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Besides that, the orthogonal matrix, Q can be obtained by using the inverse of matrix R as shown in following equation:

 ൌ  െ1H ሺ15ሻ

By using R-1 and Q obtained, the Moore-Penrose pseudo-inverse can be computed by using the following equation.

Where  𝑇 is the transpose of matrix Q.

H൅ ൌ െ1 𝑇 ሺ16ሻ

3. Methodology

3.1 Hardware Partition
For the Moore-Penrose pseudo-inverse method used in ELM algorithm, the computation of GR-QRD greatly affects

the performance of the ELM in terms of accuracy and computational speed. By implementing the GR-QRD using
hardware logic on FPGA, the computational time can be significantly reduced since the tasks can be processed in parallel,
thus it leads to much higher speed. Therefore, different aspects and related constraints should be considered in order to
design and construct a parallel architecture for GR-QRD implementation [15]. In this paper, Linear Systolic Array (LSA)
[17] was proposed as the parallel architecture for the implementation of GR-QRD on FPGA because of the following
reason:

1) 100% utilization of processing units can be achieved;
2) Huge circuit resources can be preserved and much larger data can be processed. By using LSA, the number of

processing elements (PEs) required to compute GR-QRD can be determined by the following equation:

ሺ ൅ 1ሻ
         𝐸     ൌ

2
ሺ17ሻ

where n is the number of hidden neurons used in the ELM algorithm. There are two types of PE used in the LSA
architecture for implementation of GR-QRD which are boundary node and internal node. Boundary node is the processing
unit that computes the sine and cosine function from the hidden layer output matrix H by equation (13), (14) and (15)
while internal node is the processing unit that performs the effective rotations to each element of the input matrix by
using cosine and sine function computed from boundary node. There is only one boundary node required to compute GR-

QRD while
 െ1

internal nodes are required to perform the effective rotation in LSA architecture.
2

For designing the PEs in LSA architecture, boundary node requires three multipliers, one adder, one square root and
one divider to compute the Givens rotation parameters while four multipliers, one adder and one subtractor are required
for internal node to perform the effective rotations. All the mathematic calculations will be computed by using fixed-
point arithmetic operation and each arithmetic operation requires 1 clock cycle to compute the output. Fig.2 and Fig.3
illustrate the block diagrams of the boundary node and internal node respectively and also the corresponding clock cycles
for each arithmetic operation. The delay blocks in these PEs are the registers that temporarily store the value of r and will
then become one of the inputs in the next rotation after a few cycles of delay, TD where TD is arbitrated by the number of
hidden neuron used in the ELM algorithm.
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Fig. 2 – Block Diagram of Boundary Node

Fig. 3 – Block Diagram of Internal Node

The total circuit resources required for implementing a single boundary node and internal node on the DE2-115 FPGA
Development Board were listed in Table 1 and Table 2. The results were obtained through simulation by using Quartus
Prime software while the module was written in Verilog HDL.

Table 1 - Total Circuit Resources Requred By Boundary Node

Circuit Resource Value
Total Logic Elements 2,901

Total Registers 384
Total Pins 264

Embedded Multiplier 9-bit 32
Elements
Total PLLs 0

Table 2 - Total Circuit Resources Required By Internal Node

Circuit Resource Value
Total Logic Elements 2,130

Total Registers 342
Total Pins 194

Embedded Multiplier 9-bit
Elements 32

Total PLLs 0
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3.2 Software Partition
In this paper, the ELM modules other than GR-QRD were described in C++ to be run on a soft-core processor. Soft

processor exists as synthesized netlists incorporated in the FPGA using logic block resources of a particular FPGA and
it provides the advantage of flexibility in system designing. The soft-core processor used for this study is NIOS II
processor on Altera DE2-115 FPGA Development Board. Fig.4 illustrates the block diagram of software based design of
ELM modules on NIOS II processor.

Fig. 4 – Block Diagram of Soft-core Based of ELMModules

3.3 Hardware Software Co-Design
The hardware partition of GR-QRD accelerator and software partition of ELM modules need to be combined to

accelerate the overall performance of ELM algorithm. In order to accomplish the task, Qsys System Integration Tools
from Quartus Prime software was used to build the system interconnection between GR-QRD accelerator, NIOS II
processor and other modules. Besides that, the data ports required by the GR-QRD accelerator are implemented in the
form of Parallel Input/Output (PIO) components for data flowing between block to block.

Fig.5 represents the block diagram of the proposed ELM architecture. Inside the FPGA fabric, it contains all the
System-on-A Programmable Chip (SOPC) components including NIOS II processor and the GR-QRD accelerator. The
Avalon Bus Interface is used to create the connection between blocks for data transferring and controlling off-chip
devices.

Fig. 5 – Block Diagram of Proposed ELMArchitecture
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4. Result and discussion

4.1 Performance Evaluation
Pima Indians Diabetes database has been used to appraise the performance of the proposed ELM algorithm. This

database is a medical analysis emanated from the Applied Physics Laboratory, Johns Hopkins University, which was
established in 1988 [18]. It consists of 768 female residents who are over 21-years old Phoenix, Arizona. The diagnostic,
binary-valued variable investigated is whether the resident or patient shows signs of diabetes according to World Health
Organization criteria. It is a binary classification dataset where the positive class will be represented by 1 while negative
class will be represented by 0. There are 505 and 263 samples for diabetic and non-diabetic patient respectively. This
dataset consists of 8 attributes, including pregnant frequency, concentration of plasma glucose, diastolic blood pressure,
tickness of triceps skin fold, serum insulin in two hours, body mass index (bmi), diabetes pedigree function and age

The performance of ELM algorithm is affected by the number of the hidden neurons used. In this paper, an analysis
was conducted to obtain the optimum number of hidden neurons in order to optimize the performances of the proposed
ELM system. Table 3 shows the ELM network parameters used for the analysis and a graph of accuracy against number
of hidden neurons has been drawn as shown in Fig 6.

Table 3 - ELM Network Parameters Used

Parameter Detail
Number of Hidden Layers 1
Number of Input Neurons 8
Number of Output Neurons 2

Activation Function Sigmoid

Fig. 5 – Graph of Accuracy against Number of Hidden Neurons

For ELM algorithm, the network size which is too small in hidden neurons will have low training and testing accuracy
due to underfitting while the network size which is too large in hidden neurons will also result in low testing accuracy
due to overfitting. In our case study, the optimal number of hidden neurons used in the proposed ELM system for diabetes
binary classification is 21 at which both training and testing accuracy achieve its highest value.

.
4.2 Comparison of Software Implementation and Hardware-Software Co-Implementation of

ELM System
In order to evaluate the time reduction of this hw-sw co-implementation, a fully software-based ELM algorithm was

implemented running on NIOS II processor on the FPGA device itself. The source code of this soft-core based ELM
design was written in C programming language and implemented on Altera DE2-115 FPGA Development Board. The
training accuracy, testing accuracy, training time and testing time for both designs were recorded as shown in Table IV.
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Table IV - Performances of Soft-core Based and Combined Hard-core and Soft-core Based ELM

Implementation

Type of

Implementation

Accuracy (%)
Computational time

(s)

Training Testing Training Testing

Software-based 77.78 76.04 276 29

Hardware-Software

Based
78.12 76.04 158 29

The hw-sw co-design of ELM algorithm in this project has less significant effect on the testing accuracy and testing
time because GR-QRD computation is not required in the ELM testing phase. Most importantly, the result shows that the
hardware-based implementation of GR-QRD in ELM algorithm helped to reduce the training time from 276 seconds to
158 seconds which accelerates the ELM training phase by 42.75 % while maintaining the same training accuracy.

5. Conclusion
In this study, embedded system architecture for hardware-software implementation of ELM is presented. In ELM

algorithm, Givens rotation QR decomposition (GR-QRD) method was proposed to perform Moore-Penrose pseudo-
inverse computation. In order to evaluate the performance of the proposed ELM system, a real world dataset, diabetes
dataset, was tested. The results show that the proposed ELM system can produce a relatively high accuracy in both
training and testing phase.

Besides, the GR-QRD was implemented as fully hardware logic to speed up the computation of ELM algorithm and
Linear Systolic Array (LSA) was used as the parallel architecture to implement the GR-QRD accelerator. By comparing
the hw-sw co-implementation approach with the fully software-based ELM design, the results show that the hardware-
software implementation of ELM with GR-QRD accelerator can reduce the computational time of ELM training phase
by 41.75% while maintaining the same training accuracy.

For the current and future work, MGS-QRD can be used to compute the Moore-Penrose pseudo-inverse and parallel
computing features can be explored on FPGA to further increase the computational speed. The proper scheduling and
pipelining between the modules can significantly speed-up the ELM computation without affecting training and testing
accuracy.
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