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1. Introduction

Managing respiratory motion is crucial in image guided radiotherapy (IGRT) [1], for instance during cone-beam CT

(CBCT) imaging that usually spans up to a minute for a complete scan. Currently, most clinics adopt a static 3D CBCT 

image reconstruction protocol to be registered with reference 3D CT images acquired prior during treatment planning. 

Considered as an involuntary action where a patient would continue to breath e – either regularly and/or irregularly – even 

in unconscious conditions, respiratory motion affects the quality of the reconstructed images during treatment deliv ery. 

Abstract: Mitigating effects of respiratory motion during image guided radiotherapy (IGRT) is important especially 

during thoracic and abdomen scanning protocols such as cone-beam CT (CBCT) imaging. However, the lack of 

‘ground-truth’ in validating new algorithms has always been a challenge. The objective of this study is to outline the 

development of a novel 4D digital phantom for simulation of respiratory motion effects during CBCT image 

reconstruction based on Varian On-Board Imager (OBI): Half-Fan (HF) operating mode geometry. A set of actual 

4D Magnetic Resonance (MR) data was used to develop the digital phantom. Firstly, the MR data sequence was 

extended to mimic a standard CBCT imaging acquisition protocol. Then, the images were segmented into several 

organs of interest and assigned with respective CT attenuation values. Subsequently, 2D projections of the developed 

digital phantom were simulated using the Varian OBI geometry. A Poisson noise model was also incorporated to the 

projection data to realistically simulate quantum noise that is present in an actual clinical environment. Three types 

of projections were then reconstructed using the standard 3D Feldkamp-Davis-Kress (FDK) algorithm, projections: 

without noise, with noise, and with noise and reconstructed with an additional Hann filter. As validation, the 

reconstructed images were compared against a single-frame of the developed phantom; quantitatively, using 

normalized root mean squared error (NRMSE) and qualitatively, using difference images . The results indicated that 

the phantom managed to display a consistent trend in modeling the effects of respiratory motion on the reconstructed 

images. On average, the NRMSE values for all three reconstructed images within the entire field -of-view (FOV) 

were evaluated to be approximately 29.07±0.22%. Nonetheless, the difference images indicated a large error in areas 

largely affected by respiratory motion. The NRMSE of a region-of-interest (ROI) near the affected area was 

evaluated as 51.26% that constitute to a significant +22.19% difference. 
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Therefore, using a static 3D volume would disregard the effects of respiratory motion. Tumor cells located at areas 

vulnerable to this motion would inevitably endure displacement thus exposing other organs -at-risk (OAR) to unnecessary 

radiation dose, apart from compromising treatment accuracy.  

The emergence of various digital phantoms , such as the widely used 4D XCAT phantom [2] in medical imaging  

have greatly aided the development of new algorithms to ensure the accuracy during IGRT, thus allowing them to be 

simulated prior to clinical validation. However, a main challenge still remains which is to generate a digital phantom that 

is able to accurately emulate the internal anatomical changes of various organs due to either respiratory and/or cardiac 

motion.  

This paper intends to simulate the effects of respiratory motion on reconstructed CBCT images, based on the current 

protocols of the Varian On-Board Imager (OBI) used at UKM [3]. For this purpose, a digital 4D CBCT phantom is 

developed from actual 4D Magnetic Resonance (MR) data. Using the simulated phantom, 2D projections are 

computationally simulated and subsequently reconstructed back using the standard Feldkamp-Davis-Kress (FDK) 

algorithm [4]. A comparison between the reconstructed images with the phantom is analyzed and presented in the Results 

and Discussion section. 

 

2. Methodology 

The scope of this paper is divided into 2 main parts: (1) development of a novel 4D CBCT phantom, and (2) a CBCT 

simulation based on the Varian OBI: Half-Fan (HF) geometry  and protocol [3]. 

 

2.1 Phantom Development 

The 4D CBCT digital phantom is developed from MR images that are acquired from a volunteer on a 32-channel 

coil 1.5T Philips AchievaTM scanner [5]. The images include the thoracic region as shown in Fig. 1, with complete 

respiratory cycles and a 0.7s sampling time.  

 

 
 

Fig. 1 – A single frame MR data across the (a) coronal, (b) axial, and (c) sagittal planes  

 

A comparison between the parameters of the original dynamic MR data and the required CBCT specifications is shown 

in Table 1. 

Table 1 – MR and CBCT dataset comparison 

Parameters MR CBCT 

Image size 336×45×336 384×384×64 

Voxel size (mm3) 1.482×5.5×1.482 1.172×1.172×2.5 

Total length (s) 22.4 60.0 

Sampling time (s) 0.7 0.0946 

Total frames 35 635 
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The steps involved to develop the digital phantom are as shown in the flowchart shown in Fig. 2 and described in more 

detail in the following sub-sections. 

 

 
 

Fig. 2 – Flowchart of the 4D CBCT phantom development 

 

2.1.1 4D MRI sequence extension 

To mimic the standard 3D CBCT imaging protocol time length, the original 4D MR sequence was first extended to 

1 minute. This extension is based on the respiratory signal extracted from the 4D MR sequence. The respiratory signal 

was extracted from the MR data by placing a virtual ‘pencil-beam’ identifier around a region between the right hemi-

diaphragm separating the right lung and liver, as shown in Fig. 3(a). By tracing the amplitude variation of the identifier 

over the entire frames of the original MR data, the respiratory signal was extracted where the selected adequate-length is 

shown by the dotted-red-lines. Fig. 3(b) shows the extension of the original selected sequence where the dashed-blue-

line marks the cut-off frame when the sequence reaches 60 seconds.  
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Fig. 3 – Respiratory signal (a) extraction (for frame selection), and (b) extension 

 

2.1.2 4D MRI registration and segmentation 

For a typical thoracic CBCT acquisition, approximately 635 projections are acquired by a Varian OBI over a minute, 

thus giving a sample time of approximately 0.0946s. As shown in Table 1, in contrast to the 0.7s MR data sampling time, 

additional intermediary frames are required to match the CBCT data sampling time. To generate the intermediary frames  

according to the CBCT sampling time, the original 4D MRI sequence is first registered to find the deformation between 

the first frame which is selected as the reference frame and subsequent frames. A free-form deformation scheme [8], [9] 

was thus used to register each ‘target’ frame, In, of the MR data with the same ‘reference’ frame, Ir, as shown. This 

generates the displacement field (DF), µn(p), which represents the deformation of each point, p, between frames Ir and 

In. as shown in (1). 

In ( p + μn ( p ) )  =  Ir ( p )  (1) 

On the other hand, the first image frame of the original MR sequence was also segmented into several organs of 

interest. In this study, vital organs that are known to be affected by respiratory motion near the thoracic region [6], namely  

the lungs and airway, stomach, spleen, liver, kidneys and heart , were segmented separately using the sparse field method 

[7]. The segmented organs are as shown in Fig. 4. 

 

 
 

Fig. 4 – A single frame of a segmented MR data across the (a) coronal, (b) axial, and (c) sagittal planes  

 

2.1.3 CBCT frame generation 

With the original 4D MRI sequence registered, from (1), intermediary DFs, µn+λ, with 0 < λ < 1, in between 

consecutive image frames, as shown in (2), can thus be generated. The required intermediary frames, In+λ, were then 
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interpolated according to the CBCT sampling time using (3) with the earlier segmented single frame, Ir, used as the 

reference frame. Fig.5 illustrates this procedure of generating the intermediary frames. 

µn+λ  =  μn + λ ( µn+1 − μn )  (2) 

In+λ  = Tn+λ [ Ir ]  (3) 

 
Fig. 5 – Interpolating intermediary frames 

 

Finally, each of the organs was then assigned with their respective linear attenuation coefficient values, as shown in 

Table 2, to reflect the amount of radiation absorbed by the organs according to their distance from the radiation source.  

Table 2 – Organs of interest and attenuation coefficient values  

Organ Attenuation Coefficient Value (mm-1) 

Body 0.01751 

Right Lung 0.005044 

Left Lung 0.005044 

Airways 0.01826 

Stomach 0.01826 

Spleen 0.01845 

Liver 0.01844 

Right Kidney 0.01828 

Left Kidney 0.01828 

Heart 0.01844 

 

As a main characteristic of a typical CBCT image, the attenuation coefficient values are preferred compared to the 

standard CT Hounsfield values since the attenuation scale could enhance  the contrast between each organ due to its 

physical characteristic of representing the radiological line integral at each image pixel [10].  

 

2.2 Image Reconstruction 

In the Varian OBI, performing CBCT within the thoracic and abdomen region requires a Half-Fan (HF) operating 

mode [3] to acquire 2D projections on a flat panel detector that is physically located at the opposite end against a source . 

Both source and detector are attached to the linear accelerator gantry via retractable robotic arms. The HF scanning mode 

is achieved by laterally displacing the detector and thus allowing a scan with a larger field-of-view (FOV). This is shown 

in axial and coronal views as shown in Fig. 6(a) and 6(b). 
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Fig. 6 – (a) Axial and (b) coronal views of the Half-Fan (HF) OBI geometry 

 

A summary of the physical lengths used to simulate the OBI HF mode is shown in Table 3.  

Table 3 – Varian OBI HF mode physical parameters 

Organ Length (mm) 

Source-to-detector, lsd 1500 

Source-to-isocentre, lsi 1000 

Lateral detector, ld 397 

Vertical detector, wd 298 

Lateral displacement, δ 150 

HF mode FOV diameter 450 

HF mode FOV length 160 

 
With the developed CBCT phantom at the gantry isocentre, 2D HF projections, P, were computed over a fully rotated 

θ = [0°, 360°] scan with 635 projection views. Fig. 7 shows an example of the projected phantom based on the described 

geometry taken at θ = 0°, is shown, in which the highlighted area is the effective area of the displaced detector from the 

central axis, at y = 0 mm.   

 

 
Fig. 7 – Extended 2D projection of the developed CBCT phantom 

 
Simulated noise, Ṗ [11] was then added to realistically model analytic imaging noise that is apparent in an actual 

CBCT scan. Based on the Beer-Lambert law, a noiseless transmission data, Ii, for each ray i were computed using (4), 

given that the mean number of incident photons  for a single projection in a typical clinical study, I0, is approximately  

1.0×105. Assuming a negligible Gaussian-distributed electronic noise from the detector, quantum noise was modeled 

using a Poisson-distributed random number generator as shown in (5). A comparison between the noiseless projection 

data and the projection data with simulated noise on the 2D flat panel detector are shown in Fig. 8(a) and Fig. 8(b) 

respectively. The simulated noise model, i.e. the difference between the noiseless and projection with noise projections , 

is also shown in Fig. 8(c).  

 

Ii  =  I0
exp ( −Pi )  (4) 

Ṗi = log ( I0
/ Poisson ( Ii ) ) (5) 
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Fig. 8 – Projections: (a) without noise, and (b) with noise, using the (c) simulated Poisson noise model 

 

In this study, the standard 3D Feldkamp-Davis-Kress (FDK) algorithm [4] was used to reconstruct the images  from 

all of the projection views. The algorithm uses a heuristic to approximate the reconstruction based on the Filtered Back-

Projection (FBP) algorithm of each axial slice along the cone-angle, Γ, as shown in Fig. 6(b). An additional Hann filter 
[12] was applied on-top of the standard Ram-Lak filter to the simulated noisy projected data, Ṗ to mitigate the noise 

effect prior to the backprojection step in FBP.  

 

The 3D reconstructed image was evaluated against a single-frame developed phantom taken at the end-expiration  

phase, as shown in Fig. 9. Highlighted in the figures is the reconstruction FOVs of the standard Varian OBI: HF CBCT 

reconstruction protocol as mentioned in Table 3 prior.  

 
Fig. 9 – Developed phantom with reconstruction FOV across the (a) coronal, (b) axial, and (c) sagittal planes 

 

The evaluation was done qualitatively by taking the difference image between the original single-frame phantom, IP, 

with the reconstructed 3D image, IR, and quantitatively using the normalized root mean squared error (NRMSE) [3] as 

shown in (6), where m = 1, 2 … M with M being the total number of voxel elements within the reconstructed FOV.  
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3. Results and Discussion 

3.1 4D CBCT digital phantom 

The approach of generating the segmented 4D MR data used in this study is similar to the described framework of 

generating a segmented 4D MR data sequence by just transforming a single static MR image using the deformation fields 

obtained via registration on the original MR data [5]. Although it is also possible to adopt an alternative approach by 

performing image segmentation on each of the image frames in the MR sequence individually, however the latter 

approach could contribute to a larger progression error since the deformation fie lds are a result of registration between 

the original MR data. Registering between the individually segmented MR data to obtain its corresponding deformation 

fields might be a way to overcome this. However, this would eventually compromise the quality of t he fields prior to 

interpolation since registering the segmented organs omits the influence of other organs that are not included during 

segmentation.  

Based on the extended 4D MR data sequence shown in Fig. 3(b) earlier, the large sampling time can be observed by 

the apparent discontinuity of the diaphragm motion in between frames. Nonetheless, using the interpolation scheme 

described in Fig. 5, the sampling time is reduced to match the CBCT parameters. A segmented image (as in Fig. 4) of the 

respiratory signal from the extended data in Fig. 3(b) is shown in Fig. 10(a). The respiratory signal of the interpolated 

data, as shown in Fig. 10(b), was also extracted using the same technique of placing a ‘pencil-beam’ identifier on the 

same location on each of the generated intermediary frames, In+λ, described earlier. It can be seen from both figures that 
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because of the low CBCT sampling time as a result of interpolation in generating the intermediary frames, the diaphragm 

motion was ‘smoothened’ in between the end-exhale (maximum peaks) and end-inhale (minimum peaks) positions, thus 

providing a more realistic motion for the developed digital phantom. Following the steps of developing the CBCT 

phantom shown in Fig. 2, a single frame of the CBCT phantom, assigned with the respective attenuation coefficient 

values listed in Table 2, during the end-expiration breathing phase is shown in Fig. 11. 

 
 

Fig. 10 – Respiratory signal extracted from (a) segmented MR data, and (b) interpolated phantom data 

 
Fig. 11 – A frame of the developed CBCT phantom across the (a) coronal, (b) axial, and (c) sagittal mid-planes 

 

3.2 Reconstructed Images 

Using the FDK algorithm, the reconstructed images restricted to the Half-Fan FOV are shown in Fig. 12. Three sets 

of images where reconstructed from three different types of projections. A noiseless projected 4D CBCT phantom was 

reconstructed and shown in Fig. 12(a). Then, a projected 4D CBCT phantom that was incorporated with the quantum 

noise model was also reconstructed and shown in Fig. 12(b) and Fig. 12(c), with the latter having an additional Hann 

filter as described previously.  

Based on the images, it can be seen that there is an intensity bias in intensity level on the reconstructed images when 

compared with the phantom shown in Fig. 9 earlier. Comparing the reconstructed attenuation coefficient values against 

the original phantom, the mean intensity bias is approximately ±30.06% for all three sets of reconstructed images. The 

reason for this intensity bias is due to the weighting factor applied to the projections required during the standard 3D 

FDK reconstruction algorithm used for the HF geometry, as discussed in [13]. The bias concern can be addressed by 

considering the mean bias when reconstructing the images, given the knowledge of the attenuation coefficient values of 

the digital phantom. Nonetheless, it would be impractical when implementing the algorithm clinically. 

Apart from that, apparent motion artifacts can be observed in the axial plane of the reconstructed images shown in 

Fig. 12, when compared to the phantom in Fig. 9. Fig. 9 is a single frame of the 4D phantom at the end-exhale breathing 

phase. This is because the 3D reconstruction FDK algorithm that is currently used in a typical tho racic/abdomen scan 

protocol does not consider projection views at different breathing phases .  



A.A.Abd Rahni et al., Int. J. of Integrated Engineering Vol. 11 No. 3 (2019) p. 90-99 

 

 

 98 

Quantitatively, the NRMSE values of the reconstructed images against the developed CBCT digital phantom shown 

in Fig. 9 are tabulated in Table 4. Observing the values across the columns, the simulated phantom displayed the desired 

outcomes. Comparing between the noiseless and with noise phantoms, the NRMSE values showed an increase of 

approximately +0.58%. Whereas with the additional Hann filter to mitigate the noise, approximately −0.50% decrease in 

NRMSE was achieved, i.e. only an increase of approximately +0.08% from the noiseless phantom. This shows that the 

simulation managed to display the effect of noise in the CBCT phantom, mimicking noise that are actually present in 

clinical CBCT data, while the Hann filter managed to mitigate some fraction of the noise. 

 
Fig. 12 – Reconstructed images on the coronal, axial and sagittal planes respectively using projections from the 

developed CBCT digital phantom: (a) no noise, (b) added noise, and (c) added noise with additional filter 

Table 4 – MR and CBCT dataset comparison 

Projection type No Noise + Noise + Noise + Hann 

NRMSE (%) 28.85 29.43 28.93 

 

Although generally the NRMSE values  are almost similar at approximately 29.07±0.22%, this is because the value 

is taken from the entire FOV where not all of the areas are significantly affected by motion. Contrasting the difference 

images as shown in Fig. 13 shows there are high differences  especially around areas that are largely affected by respiratory 

motion e.g. diaphragm, lung walls, heart etc. As an example, consider a region of interest (ROI) as highlighted in the 

difference image of the reconstructed image from projections incorporated with noise and additional Hann filter as shown 

in Fig. 13(c). The NRMSE value within the ROI is evaluated as 51.26% that constitutes to a significant +22.19% average 

difference when compared to a more ‘generic’ NRMSE value over the entire FOV. Based at Fig. 13(d), which is an 

enlarged view of the ROI for the coronal plane in Fig. 13(c), the motion artifacts caused by the diaphragm movement  

during respiration can also be deduced by the spectrum of the difference image.  

 

 
Fig. 13 – Difference images using projections: (a) without noise, (b) with noise, and (c) with noise and filter; 

whilst (d) enlarged view of the ROI for the coronal plane of (c) 

 

From the results, it is shown that respiratory motion that occurs during a 1-minute CBCT scan degrades the quality 

of the 3D reconstructed images. Thus, the current protocol using the existing reconstruction algorithm is insufficient to 

accurately reconstruct an image within the thoracic and abdomen region that are largely affected by respiratory motio n. 

Nonetheless, this analysis is only possible using a digital phantom. This is because; the advantage of utilizing a simulated 

phantom is the availability of a ‘ground truth’ to validate virtually conducted clinical experiments. This approach is 

preferred especially when proceeding with a clinical trial for validation is impractical and costly. Furthermore, currently 



A.A.Abd Rahni et al., Int. J. of Integrated Engineering Vol. 11 No. 3 (2019) p. 90-99 

 

 

 99 

there is not a physical phantom that is able to accurately model the variability of the human respiratory motion. The 

advantage of using this  developed 4D CBCT digital phantom over existing phantoms such as the 4D XCAT [2] phantom 

is that this phantom provides actual motion of each tissue and organ independently. Unlike XCAT, although it provides 

detailed human anatomical features and includes an internal motion model derived from 4D CT data [14], the motion 

model heavily depends on a user-defined motion curve that does not simulate the motion of each organ uniquely , thus 

hindering its ability to simulate complex deformations due to respiration  [15].  

 

4. Conclusion 

In this study, a novel dynamic Cone-Beam CT (CBCT) digital phantom was successfully developed from actual 4D 

Magnetic Resonance (MR) data. Using this 4D digital phantom, the currently-used protocol for thoracic and abdomen 

CBCT imaging was virtually simulated based on the Varian On-Board Imager (OBI): Half-Fan (HF) operating mode 

successfully. The results suggest that respiratory motion artifact is evident in the static reconstructed images and affects 

image quality. Therefore, the current protocol needs to consider respiratory motion during the image reconstruction 

process, to ensure accuracy in Image Guided Radiotherapy Treatment (IGRT). 
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