
INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 11 NO. 3 (2019) 129-138 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

IJIE

Journal homepage: http://penerbit.uthm.edu.my/ojs/index.php/ijie 

The International 
Journal of 

Integrated 
Engineering 

ISSN : 2229-838X     e-ISSN : 2600-7916

*Corresponding author: wahidah231@uitm.edu.my
2019 UTHM Publisher. All rights reserved. 
penerbit.uthm.edu.my/ojs/index.php/ijie 

129 

Performance of Extreme Learning Machine Kernels in 

Classifying EEG Signal Pattern of Dyslexic Children in 

Writing 

A. Z. Ahmad Zainuddin1,2,3, W. Mansor1,2*, Khuan Y. Lee1,2, Z. Mahmoodin1,2,3

1Computational Intelligence Detection RIG, Pharmaceutical Life Sciences CORE, 

 Universiti Teknologi MARA, Shah Alam, 40450, MALAYSIA 

2Faculty of Electrical Engineering 

Universiti Teknologi MARA, Shah Alam, 40450, MALAYSIA 

3Medical Engineering Technology Section, 

 Universiti Kuala Lumpur British Malaysian Institute, Jalan Sungai Pusu, Gombak, 53100, MALAYSIA 

*Corresponding Author

DOI: https://doi.org/10.30880/ijie.2019.11.03.014 

Received 12 April 2019; Accepted 4 July 2019; Available online 3 September 2019 

1. Introduction

Dyslexia is neurological d isorder in  some part of brain area processing information, that causes skills to decode 

word, fluent reading and accurate writ ing become tough to a learner even though adequate education level appropriate 

to the age has been received [1]. According to the Malaysian Ministry of Education, the dyslexic learner is categorised 

as a student who possesses the same or above intelligent quotient level but having severe difficult ies in spelling, 

calculating, reading and writing. Dyslexia Association of Malaysia reported that approximately 10% of school children 

Abstract: Dyslexia is a specific learning disability that causes leaners to have difficulties to process letters and 

number during reading, writing and doing mathematics. Early identification of dyslexic characteristic is crucial so 

that early intervention given could overcome learner d ifficu lties. A  process of writing involves areas in  brain  

learning pathway and motor cortex. Th is activity could be recorded using electroencephalogram (EEG) non -

invasively. Using this information, a study has been conducted to distinguish EEG signal of normal, poor and 

capable dyslexic ch ildren. In this work, EEG signals were recorded from eight channels; C3, C4, P3, P4, FC5, 

FC6, T7 and T8. The signals were extracted using discrete wavelet transform (DWT) with Daubech ies wavelet 

family  order 2, 4, 6 and 8 to acquire beta and theta band features. The coefficient of beta band power and the ratio  

of theta/beta band power were input features of expert learning machine (ELM) classifier. Four types of kernels 

namely linear, rad ial basis function (RBF), polynomial and wavelet were applied  as output  weight in  connecting 

hidden node and the output node of ELM. Parameters were varied to optimize each kernel to obtain the best 

classification accuracy. Results show that db2 gives the highest classification performance for all kernel among 

other Daubechies family. RBF and wavelet kernel yield the h ighest accuracy at 89% compared with other ELM 

kernels. This work reveals that ELM with RBF and wavelet kernel together with beta band power and ratio of 

theta/beta band power extracted from db2 could distinguish  normal, poor and dyslexic children during writing.     
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are expected to have dyslexia. While in  2016 other reports revealed that 53,610 ch ild ren enrolled learn ing disability 

program at school with 8.4% of them expected to have dyslexia. The number of dyslexic children enrolled in special 

program in primary school increase intensely from 577 in 2013 to 5,806 in 2017 [2]. Since the sign of dyslexia in leaner 

become apparent when they start school which most of learning reading and writing process takes place, early 

identification of dyslexia is crit ical as academic content become harder as they grow older. As dyslexic children learn 

differently, intervention program g iven at early stage would help them to overcome their d isabilit ies early to match 

with normal learner. 

Brain-based studies to analyse dyslexia  used structural and functional connectivity which  were implemented 

previously using an imaging technique such as functional magnetic resonance imaging (fMRI) [3], positron emission 

tomography (PET) [4] and magnetoencephalography (MEG) [5]. Electroencephalography (EEG) is another popular 

technique used to detect brain electrical act ivities due to high temporal resolution where t ime and frequency domain are 

preserved, radiation risk-free, cost-effective, portable and less handling procedures. These make EEG fit to be applied 

in studying learning activity where brain signal activit ies associated with task currently performed can be recorded 

using EEG. Numerous studies associate with brain areas related to brain electrical signal connectivity were performed 

such as in brain-computer interface (BCI) [6], brain d isorder [7] and sleep studies [8]. In  our work, the detection of 

brain electrical activities was explored using EEG. 

In EEG signal analysis for identifying dyslexia, most of the studies focussed on reading [9][10], not much work 

concentrated on writing even though writing is also a part of learning disorder for dyslexia. Writing is a complex process 

involving coordinating between motor skill and cognitive process [11]. Active attention from learner is required during 

the writ ing process which stimulates brain area associated with writing. There are several brain areas which  are 

responsible for the ability to write. The first area known as Broca’s language area is responsible for expressive language 

in speaking and writing, while the second area known as Wernicke is responsible for understanding the spoken or written 

language. Besides that, temporal and parietal areas are also involved in the comprehension of written words and in the 

program of motor areas to convert visual image into written symbols. All of these appear dominant in the left hemisphere 

of the brain in a normal learner.  

In previous studies, some features extracted from EEG signal to find distinguishable feature during writing were 

power spectrum [12], frequency content [13] and DWT [14]. These features were employed in machine learning with a 

promising result such as in K-nearest neighbour (KNN) [15] and Support Vector Machine (SVM) [16].  However, no 

attempts being made yet using ELM to classify dyslexic subject even though it was reported able to produce higher 

classification accuracy for application in EEG signal analysis such as in emotional recognition[17], epilepsy [18] and 

BCI [19]. ELM is a feedforward neural network with a single hidden layer proposed by Huang [20]. It works by reducing 

the processing time required for training a neural network which overcomes the problem of slow learning speed 

associated with back propagation methods and yields a better performance due to its ability to obtain the smallest 

training error. The algorithm avoids multip le iterations, generate its random parameter and overcome overfitting 

problems by empirical risk min imization princip le. ELM has been known to be better in  generalization, robustness and 

controllability [21]. However, in limited samples cases, it produced the unsatisfactory result, hence kernel model in 

ELM is applied to make it more robust and performs better for linearly non-separable samples [22].  

This paper describes the performance of ELM with linear, RBF, po lynomial and wavelet kernel to achieve the 

highest classification accuracy with the optimum parameter for normal, poor and capable dyslexic based on EEG signal 

patterns during writing. In this work beta band power and ratio of the theta/beta band power were ext racted using db2, 

db4, db6 and db8 to act as  an input feature vector for the classifier.  

 

2. Research Methodology 

 

The process flow to select the optimum parameter for kernels in EEG s ignal analysis is shown in Figure 1. This 

work was carried out in several stages , starting from selection of subject, data collection procedure, EEG signal 

acquisition, artifacts removal, extraction of features and selection of kernel for optimum classification accuracy.   
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Fig. 1 – Process of classifying EEG signals of normal and dyslexic children 

 

2.1 Subject Identification 

In this work, the 30 subjects participated consists of 10 normal subjects, 10 poor dyslexics subjects and 10 capable 

dyslexic subjects. The characteristics of dyslexia either poor or capable were determined by the assessment carried out 

with the assistant from the Dyslexia Association of Malaysia. Poor dyslexic is referred  to as a subject having difficulty 

in read ing and writing compared with their age group. A capable dyslexic subject is denoted as has the improved 

capability to read and write. This group of subjects  usually already attend the intervention program. During the 

assessment subjects background, medical history and right and left-hand dominant were recorded  to ensure conformity 

of data with no neurological disorder. Subjects with an aged range between 7 to 12 years old were selected to 

participate in this work because at this stage, they start receiving formal learn ing activity  at school where the symptom 

of dyslexia can be clearly seen. Ethical approval in conducting this work was granted from the Research Eth ics 

Committee UiTM. Written informed consent was explained and signed when agreed by the subject’s caretaker.  

 

2.2 Task Procedure 

 

 
 

Fig. 2 – EEG Signal Recording during writing 
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In a controlled environment room, the subject was seated with a piece of paper and pencil as shown in Fig 2. A 

screen in front of subject displayed the word in turn. For each word seen, the subject needs to write one by one in a piece 

of paper given earlier.   Two sets of a word  consist of known-word and non-word, were prepared.  Known-words are the 

words that have meaning while non-words are words that mix and match without having any meaning. Familiar word 

would recall from v isual word form area (VWFA) within the occipital-temporal region and any new word for the subject 

would require decoding through brain learning pathway area. Each set of word  contains a letter that poses a problem for 

a dyslexic.  

 

Five tasks as shown in Table 1 were prepared for this work. Task A was designed to acquire the baseline of EEG 

signal. Task B and C was intended for recording during writing known-word while Task D and E for non-word.   

Table 1 – Writing Tasks 

TASK CATEGORY ACTIVITY 

Task A Relaxes with eye closed for 40 seconds  

Task B Write three known-words 

Task C Write another write three known-words 

Task D Write three non-words 

Task E Write another three non-words 

 

 

2.3 EEG Signal Acquisition and Pre-Processing 

EEG signals were recorded while subject performing tasks using g.Nautilus wireless biosignal acquisition system 

as shown in Fig 2. Eight channel electrodes were placed on the subject’s scalp according to the International 10-20 

electrode placement system. These electrode placement are associated with reading and writ ing and were determined 

from previous work [23]. On the left side of brain, the signals were recorded from C3, P3, T7 and FC5 along learning 

pathway while on the right side of brain, the signals were recorded from electrodes C4, P4, T8 and FC6 to detect for an 

alternative pathway that may exist. Eight channel EEG signals were then sampled at 250Hz with 24-bit resolution. 

During pre-processing, the unwanted signal from 50Hz power line source were filtered using Notch filter and any Dc 

offset were removed through high pass filter with cut-off frequency at 0.5Hz. Clean raw EEG signals were saved as 

.mat files for features extract ion and classification using a program written in MATLAB. Table 2 shows the electrode 

positions on the scalp and function for each area. 

Table 2 – Electrode positions used in the work 

Area 
Left 

Hemisphere 

Right 

Hemisphere 
Function 

Parietal Lobe C3 C4 Sensory motor integration 

Wernicle’s Area P3 P4 Recognition of word 

Temporal Lobe T7 T8 Auditory processing of language 

Broca’s Area FC5 FC6 Language organization 

 

A total of 960 EEG signals recording were attained from this work. Out of these, 70% is made up for the training 

dataset and the remaining 30% is for the testing dataset. 

 

2.4 Feature Extraction 

EEG signals consist of frequency bands related to its function. These bands were known as delta (δ) band (0.5 to 

4Hz) which is associated with deep sleep; theta (θ) band (4-8Hz) that is related to drowsiness or dreaming; alpha (α) 

band (8-13Hz) indicates relaxat ion or awareness; beta (β) band (13-30Hz) shows concentration or active attention; and 

gamma (γ) band (more than 31Hz) is incurred by simultaneous processing of informat ion from different parts of brain . 

Since all these frequencies were mixed up in one single EEG signal, it needs to be separated according to the frequency 

band for analysis of brain activ ity. EEG signal is non-stationary in nature, hence time-frequency scale representation 

using DWT was employed as it can localize features. Raw EEG signals were decomposed into five frequency sub-

bands as shown in Fig 3 using Daubechies mother wavelet with order 2, 4, 6 and 8 to provide smooth EEG s ignals [24]. 

Detail coefficients at Level 3 (D3) and Level 5 (D5) were frequency bands of interest in this study. In this work, D3 
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represents the beta band, state of attention and focus during writ ing. While D5 represents the theta band, state of 

dreaming or loss attention.  

 

 

Fig. 3 – Sub-band and frequency range of decomposition level 

 

Power features for reconstructed beta and theta bands were calculated using equation (1) where x is signal values 

and L is the signal length. The coefficients of beta band power and ratio of theta/beta band power served as the input 

vector to the classifier. 

 

  
 
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L x
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      (1) 

 

2.5 Classifications 

ELM is a single hidden layer feedforward (SLFN) neural network based on risk minimizat ion princip le that 

produces fast learning speed and better generalization compare with backpropagation network. Th is is achieved by 

initiat ing randomly, fixing the weights between input and hidden neurons according to a continuous probability density 

function that bypasses a time-consuming training algorithm. The weights between hidden and output neurons of the 

SLFN were determined analytically and the only  parameter needs to be learned. For N arbitrary distinct samples (xi, 

ti)Rn × Rm, standard SLFNs with L hidden nodes and activation function g(x) are mathematically modelled as  

      




L

i

jjiii Njtxbag

1

,...,1,,,    (2) 

where ai is the weight factor connecting the ith hidden neuron and the input neuron; bi is the impact factor of the 

ith hidden node; βi is the weight vector connecting the ith hidden node and output node. Equation (2) can be written 

compactly as (3). 
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The ELM is aimed  to arrive at the s mallest train ing erro r and smallest norm of output weights. The least -square 

solution; ̂   derived with the minimum norm using (3) to (5) is as follow, 

     ̂  =H†T      (6) 

where H† is the Moore Penrose generalized inverse of hidden layer output matrix H.  
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 Kernels were employed as output weight and integrated into ELM to obtain better generalizat ion with less user 

intervention. In this work, the parameters used for each kernel are σ fo r RBF, n and p  for polynomial and b, c  and d for 

wavelet. 

  Linear Kernel    ,K x y x y        (7) 

  RBF Kernel   
2

, exp
x y

K x y

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Table 4 displays pseudocodes prescribing the ELM algorithm for EEG based classification of dyslexic children. 

Table 4 - Pseudocodes for ELM classifier 

Input:  

 A set of training sample (xi, ti), i = 1, 2, …N 

 A set of test sample x̂ 

 Activation function g(x) and kernel parameter  

Output:  

Predicted label t 

Procedure: 
Step 1: Assign randomly input weight vector ai, i = 1, 

…, L. 

Step 2: Calculate the hidden (kernel) layer output 

matrix H from K(x,y). 

Step 3: Calculate the output weight vector ̂  

Step 4: Compute the predicted label by equation (11) 

 

 

For a new test sample x̂, the decision function of ELM is given by (11), 

     


xgt       (11) 

 
The overall classificat ion accuracy was calculated using confusion matrix. Sensitiv ity and specificity were then 

performed for wavelet with highest accuracy only to show proportion of true positive rate and true negative correctly 

identified for each group of subjects.  The calculation is shown in (12), (13) and (14) where Tn is true negative, Tp is 
true positive, Fp is false positive and Fp is false negative. 
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3. Results and Discussions 

 

Table 1 shows the performance of the classifier to classify normal, poor and capable dyslexic ch ildren  using linear 

kernel. The highest accuracy was achieved using features from db2 and db6 with 74% accuracy.  

Table 1 – Accuracy of ELM with Linear kernel 

 
Daubechies order 

db2 db4 db6 db8 

Accuracy 0.74 0.69 0.74 0.71 
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Table 2 displays the overall accuracy of ELM classifier with wavelet kernel when the three variables were tuned to 

achieve higher accuracy. Each parameter was tuned from 0.00001 to 10000 respectively one by one.  It was found that 

db2 gives the highest classification with 89% accuracy compared  to other Daubechies wavelet used in  this work, 

followed by db4 with 86% accuracy and db8 with 80% accuracy. Db6 only manage to get the highest at 69% accuracy.  

Table 2 – Accuracy of ELM with Wavelet kernel 

b c d 
Daubechies order 

db2 db4 db6 db8 

0.00001 1 1 0.34 0.34 0.34 0.34 

0.0001 1 1 0.37 0.34 0.34 0.34 

0.001 1 1 0.63 0.49 0.43 0.49 

0.01 1 1 0.80 0.63 0.54 0.57 

0.1 1 1 0.77 0.71 0.63 0.66 

1 1 1 0.69 0.66 0.63 0.57 

10 1 1 0.54 0.43 0.46 0.37 

100 1 1 0.49 0.34 0.31 0.29 

1000 1 1 0.43 0.31 0.29 0.31 

10000 1 1 0.40 0.31 0.29 0.31 

1 0.00001 1 0.37 0.37 0.40 0.49 

1 0.0001 1 0.37 0.43 0.49 0.37 

1 0.001 1 0.57 0.46 0.54 0.29 

1 0.01 1 0.51 0.34 0.49 0.31 

1 0.1 1 0.43 0.29 0.46 0.54 

1 1 1 0.69 0.66 0.63 0.57 

1 10 1 0.89 0.83 0.63 0.80 

1 100 1 0.89 0.83 0.69 0.80 

1 1000 1 0.89 0.83 0.69 0.80 

1 10000 1 0.89 0.83 0.69 0.80 

1 1 0.00001 0.89 0.83 0.69 0.80 

1 1 0.0001 0.89 0.83 0.69 0.80 

1 1 0.001 0.89 0.83 0.69 0.80 

1 1 0.01 0.89 0.83 0.69 0.80 

1 1 0.1 0.89 0.83 0.63 0.80 

1 1 1 0.69 0.66 0.63 0.57 

1 1 10 0.43 0.29 0.46 0.54 

1 1 100 0.51 0.34 0.49 0.31 

1 1 1000 0.57 0.46 0.54 0.29 

1 1 10000 0.37 0.43 0.49 0.37 

 

Table 3 d isplays the overall accuracy of ELM classifier with RBF kernel for db2, db4, db6 and db8 when the 

kernel parameter was tuned with in range 10000 to 0.00001 at decrement factor o f 10. It can be observed that the 

accuracy increases to maxima as kernel width decreases until 1 and then it decreases when the kernel parameter 

continues to decrease. The highest accuracy is achieved by db2 with 89%, db4 at 83% and db8 at 80% when the kernel 

width set to 1. The db6 only manage to get 71% accuracy at kernel width equal to 10.   

Table 3 – Accuracy of ELM with RBF kernel 

Kernel 

Parameter, σ 

Daubechies order 

db2 db4 db6 db8 

10000 0.69 0.63 0.63 0.66 

1000 0.69 0.66 0.63 0.66 

100 0.74 0.66 0.63 0.66 

10 0.77 0.74 0.71 0.69 

1 0.89 0.83 0.69 0.80 

0.1 0.83 0.71 0.60 0.69 

0.01 0.86 0.61 0.57 0.63 

0.001 0.63 0.51 0.46 0.51 

0.0001 0.37 0.34 0.34 0.34 

0.00001 0.34 0.34 0.34 0.34 
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Accuracy of classifier using polynomial kernel is shown in Table 4. In this work kernel parameter is polynomial 

order. The value is set at 2, 3, 4 and 5 were applied to distinguished EEG signal from features extra cted using 

daubieches wavelet. It was found that polynomial order 2 and wavelet db2 gives the highest accuracy with 86% 

accuracy.  74% accuracy for db4, 66% for db6 and 63% for db8 from polynomial order 5 for highest accuracy.   

Table 4 – Accuracy of ELM with Polynomial kernel 

Order, p 
Daubechies order 

db2 db4 db6 db8 

2 0.86 0.71 0.51 0.46 

3 0.8 0.69 0.51 0.49 

4 0.77 0.66 0.63 0.63 

5 0.77 0.74 0.66 0.63 

 

In terms of highest accuracy among all kernels, it was found that db2 gives better performance compared with the 

rest of the wavelet  tested. It also found that db6 accuracy is lower compared  with others wavelet due to its insensitivity 

in detecting normal, poor and capable dyslexic subjects. Hence to calculate sensitivity and specificity, db2 was chosen 

as it gives better result compared with the rest of Daubechies wavelet order.  

Table 5 shows the performance of ELM classifier in terms  of sensitivity and specificity  obtained from each kernel 

with the highest accuracy. For normal subjects, RBF and wavelet kernel gives the best classification performance with 

92% sensitivity and 87% specificity. Even though the specificity for linear and polynomial attained 100% and 96% 

respectively, its sensitivity was low with 25% and 67% only. In  classifying poor dyslexic subject, ELM manages to 

achieve 100% sensitivity for linear and polynomial with 91% and 96% specificity respectively which is better than 

RBF and wavelet  kernel with only 83% sensitivity, however, their specificity is 100%. For capable dyslexic subject, all 

kernels give more than 91% sensitivity except the linear kernel which manages to achieve 100% but its specificity is 

only 71%.  

The results obtained from this study demonstrated that in classifying normal subject, RBF and wavelet are the 

optimum kernels to be used while for recognizing poor subject, the polynomial kernel is the best. In classifying capable 

dyslexic subject, RBF and wavelet kernels have very good balanced between sensitivity and specificity even though 

they could not achieve 100% sensitivity. Therefore, it can be concluded that both RBF and wavelet kernel are the 

suitable kernels to differentiate EEG signal of normal, poor and capable dyslexic children from writing task. 

Table 5 – Performance of ELM Classifier for each Kernel with db2 

Group Performance 
ELM Kernel 

Linear RBF Polynomial Wavelet 

Normal 
Sensitivity 0.25 0.92 0.67 0.92 

Specificity 1.00 0.87 0.96 0.87 

Poor 
Sensitivity 1.00 0.83 1.00 0.83 

Specificity 0.91 1.00 0.96 1.00 

Capable 
Sensitivity 1.00 0.91 0.91 0.91 

Specificity 0.71 0.96 0.88 0.96 

Overall Accuracy 0.74 0.89 0.86 0.89 

 

 

4. Conclusion 

In this work ELM classifier was employed to recognize EEG signals of normal, poor and capable dyslexic children 

during writing word and non-word. EEG signal features were ext racted using DWT with Daubechies wavelet order 2, 

4, 6 and 8 through beta band power and ratio of theta/beta band power. Linear, RBF, polynomial and wavelet kernels 

were applied as activation function to determine the optimize parameter for the classifier. Performance evaluation of 

each kernel was assessed and compared using confusion matrix to determine its accuracy, sensitivity and specificity. 

Results show that RBF and wavelet kernel with 89% accuracy outperformed polynomial and linear kernel performance. 

It was also found that features from db2 yield the highest accuracy in determin ing normal, poor and capable dyslexic 

subject. This work can be further expanded in examining performance for word task only and non-word task only to see 

which task would g ive better accuracy. Other than that, future works would also be focusing on others classifier to find 

the optimum parameter in differentiating EEG signal pattern of normal, poor and capable dyslexic children.  
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