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1. Introduction

The high cost of fossil fuel and global climate change impact of nonrenewable energy (NRE) generation sources

has led to the integration of Renewable Green Energy Sources (RGES) in existing power system [1] [2][3]. The RGES 

are environmental friendly, cost-effective, and could be harnessed at low cost to meet the ever-increasing electrical 

energy demands, resulting from the explosive growth in world population as specified by the Global Wind Energy 

Council (GWEC) [4], [5]. The increase in WFG source integrations on existing transmission system has been 

implemented in countries like the U.S (with over 42% installed capacity), Europe (with 36% installed capacity), China, 

and Egypt [4]. The integration of RGES like Wind Farm Generator (WFG) and Photovoltaic (PV) systems on existing 

High Voltage Transmission Line (HVTL) grid, has compromised existing protection scheme coordination [6] [7]. This 
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led to wrong trips of a healthy section of the transmission lines, leading to undesired damages to equipment 

installations and personnel safety due to injected infeed current into the faulty section of the line affecting the already 

setting of the protection relays [8] [9].  

These penetrations of RGES also come with some system challenge in term of reliability, security, stability and 

compromised power quality [10]. The need to provide a more robust protection scheme that is adaptive in nature 

towards meeting the current trend in the RGES paradigm shift is not only necessary but eminent [11]. This is 

particularly so, considering the limitations of both the fundamental units ( e.g. differential, or pilot protection) 

involving total protection coverage of the transmission lines with the provision of high cost communication channels 

installations linking end sources, and the non-unit protection systems ( e.g. distance relay) with partial line coverage 

protection schemes of HVTL [12]–[14]. This necessitate the need for a high-speed, low cost, and reliable unit 

protection scheme for the entire integrated WFG-HVTL protection scheme.  

Currently, protections of different HVTL architectures have gone through series of developmental changes with 

the advent of Artificial Intelligence (AI), and soft computational Intelligence (CI) approaches [15]–[18]. A non-

communication protection scheme with the deployment of high-speed Wavelet Multi-Resolution Analysis (WMRA) 

filter banks for fault transient current and voltage signal analysis has been proposed recently [6], [18]–[20]. These band 

filter extract of both high and low-frequency components of the measured fault signals and calculate the spectral energy 

of the two distinct measurement quantities by the relay in order to discriminate between the internal and external fault 

scenarios on the HVTL. A high-speed, low cost and reliable non-communication channel protection scheme for the 

entire unit protection of transmission lines have also been developed [21], [22]. Nevertheless, it is limited to fault 

current discrimination across transmission lines and cannot handle fault classifications, and location functions. An 

adaptive backup scheme has been proposed for fault location determination using a limited number of the phasor line 

voltage and current measurements from the backup protection zone [20], [23], [24]. An advanced signal processing 

analysis method of wavelet transform analysis of fault voltage and current waveforms recorded at a suitable monitoring 

location in the multi-bus meshed power system, to detect and classify faults has been proposed [25]. The robustness of 

improved adaptive protection proposed systems could not be guar-anteed, due to the few numbers of fault scenarios 

simulated in the research works. Fault identification, classifications, and location on a series compensated transmission 

line have also been developed using hybrid Wavelet-ANFIS algorithms, whereby wavelet feature extraction of one 

cycle fault voltage and current signals is per-formed based on norm entropy of decomposed signals. This deter-mines 

the main frequency, harmonics and transient features of the fault signals under various conditions [26], [27]–[30]. 

Earlier studies do not involve renewable energy sources integration on existing conventional line architectures in order 

to address the pending protections compromise challenges for during fault scenarios. This is considered as one major 

limitation that motivates this research work for further investigation into signature acquisition during fault occurrence.  

In view of this limitation from previous work, a robust soft computational fault classification approach with detail 

comparative assessment study of Discrete Multiresolution Wavelet Analysis (DMRWA) on one-cycle voltage and 

current during faults for signals signature extraction and onward single line to ground (SLG) faults classification shall 

be performed so as to assess the HVTL protection scheme in the presence of WFG. 

The article is organized with the Introduction section discussing the comparative advantages of the RGES against 

the conventionally known energy generation sources with respect to cost, environmental impact assessment and effects 

on existing protection schemes. The Methodology section divulges the proposed steps in meeting the objectives of the 

soft computational approach of DMRWA for the 11 fault signatures extraction and onward classification of SLG faults 

from one-cycle data with and without the integrated RGES. This is followed by the Result and Discussion section. 

Finally, the summary of the work and objectives fulfillment are discussed in the Conclusion section. 

 

 

2.  Methodology 

The advent of smart grid technology requires an intelligent and automated fault detection and clearing operation 

scheme with little or no human interventions required [23]. This enhances protection and monitoring devices to be 

intelligently smart and adaptive in nature to faults or disturbances for data acquisition [24], faults classification and trip 

decision making when necessary [25]. This re-search work proposes an improved protection system dependability by 

preventing and eliminating faults as fast as possible with high precision, selectivity and reliability with minimal system 

interruptions or damages resulting from compromised protection safety system. This will be achieved with the 

application of soft computational approach (DMRWA) in extracting during-fault one-cycle signatures for accurate 

decision-making.  

 

2.1 Unit protection 

This paper present DMRWA feature extractions from one-cycle during fault transient voltage and current signals 

of HVTL system networks with and without integrated RGES-WFG upon fault inception on HVTL. A wideband 

spectrum of high frequency transient current signals at the fault location is created which propagates towards the 

substation bus bars. Other signals reflect back and forth in-between the faulted point and the system buses until a post-
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fault steady state was attained [15], [26], [27]. This research proposes a dual-ended power generation sources on 

transmission line of 132kV, 50Hz, 200km HVTL with integrated 9MW RGES-WFG (with six units of 1.5 MW), and 

connected at the point of the com-mon couple bus bar (PCC) as displayed in Fig. 1. The Matlab Simulink Simulations 

scenarios of 11 faults types (AG, BG, CG, ABG, BCG, ACG, ABCG, AB, BC, AC, ABC) are executed across the 

transmission lines at selected fault locations (10, 30, 50, 70, 90, 110, 130, 150 and 190 km) with various fault inception 

angels (0, and 30), and fault resistances of 0.001Ω and 0.1 Ω. The fault signature from each scenario is extracted at a 

sampling frequency of 50 kHz from the PCC in order to eliminate the aliasing effect.  

 

200KM, 135kV, 50Hz HVTL

SOURCE 1 SOURCE 2

9MW, WFG

 
 

Fig. 1 - Wind farm generator integrated transmission line model 

   

 

2.2 Wavelet Transform (WT) 

Wavelet is small waveforms existing for a short time duration with an average value of zero and mostly adopted in 

advanced signal processing of transient signal analysis. This resolves analysis signal of fault transient signals into 

translated and scaled components of the applied mother wavelet function, as applied in previous transient signal 

analysis studies [28], [29]. The time-frequency localization benefits for little signal disturbances on HVTL, along with 

the unique ability to extract analyzed signal signatures for various frequencies bands and retaining the time function 

information are one of WT’s unique benefits in fault transient studies.  

The discrete multiresolution wavelet analysis (DMRWA) tool is made up of cascaded pairs of low and high-pass 

filter banks. The low pass filter (LPF) produced the mother wavelet function, while the high pass filter (HPF) produced 

the scaling function for the analysis. The extracted output coefficients of the LPF produced a high scale and low 

frequency (LF) coefficient contents of the analysis signal called ‘approximate’ (CA), and HPF extract high frequency 

(HF) but low scale coefficient contents called the ‘detail’ (CD) of the signal at the same level. This research adopted the 

Daubechies (db4) wavelets as the mother wavelet for the signal decomposition analysis to obtain the fundamental 

frequency of 50Hz using a sampling frequency of 50 kHz for flexibility in control and monitoring as displayed in 10th 

levels decomposition of extracted faults signals as displayed in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2 - Fault current decomposition filter banks 
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The db4 decomposes the transient fault signals from voltage and current into two equal halves of the frequency 

band at the first stage before passing each half through cascaded pair of filter banks of HPF and LPF. Unique signatures 

of CD and CA was then extraction at each level of decomposition. The output from the LPF is further decomposed in 

turns with another pair set of filters at sub-sequent levels until the need fundamental frequency band was attained as a 

display in Table 1. The CD from the HPF was discarded at every stage due to noise interferences in the high-frequency 

components.  

 

 

Table 1- DMRWA decomposition scales 

 
Levels Detail coefficient (CD) Frequency KHz Approximate Coefficient CA Frequency KHz 

L1 D1 25 – 50 KHz A1 0 – 25 KHz 

L2 D2 12.5 – 25 KHz A2 0 – 12.5 KHz 

L3 D3 6.25 – 12.5 KHz A3 0 – 6.25 KHz 

L4 D4 3.125 – 6.25 KHz A4 0 – 3.125 KHz 

L5 D5 1.563 – 3.125 KHz A5 0 – 1.5625 KHz 

L6 D6 0.778 – 1.563 KHz A6 0 – 0.78125 KHz 

L7 D7 390.63 – 781.25 Hz A7 0 – 390.63 Hz 

L8 D8 195.31 – 390.63 Hz A8 0 -  195.31 Hz 

L9 D9 97.66 – 195.31 Hz A9 0 – 97.66 Hz 

L10 D10 48..83 – 97.66 Hz A10 0 – 48.83 Hz 

 

 

Samples of the SLG decomposed one-cycle during fault transient signatures of voltage and current signals as the 

most frequent and common transmission line fault at a 10km location with and without integrated WFG. The 

approximate components of both voltage and current signals at every level of decompositions contain unique signatures 

based on the signal standard deviation (STD), entropy energy (EE) and signal coefficients content. These features were 

further adopted for fault identification, and classification in an adaptive HVTL unit protection scheme design using 

different classification algorithm to determine the most accurate and fastest in execution speed for effective unit 

protection scheme.  Figure 3 (a) and 3 (b) display comparative plots of decomposed voltage signal signatures of a SLG 

fault at 10km with and without RGES-WFG integration respectively. Similarly, the current signal decomposition 

display in Figure 4 (a) and 4 (b). The acronym A, B, C represent phase A, B, and C while for ground involvement in 

any fault scenario a capital letter G is used. 

The EE of the decomposed fault voltage and current signals across SLG, LLG, and LLLG faults for both proposed 

network topologies indicates a decrease in values in the faulted voltage entropy energies for all the ground faults with 

the integration of the RGES-WFG topology, when compared with HVTL without RGES-WFG integration.  On the 

other hand the current signal EEs increase with RGES-WFG integration as compared to normal power system topology 

across the entire ground fault as shown on the Table 2 to 3. 

 

 

2.3 Adaptive SLG Fault Classification model 

The statistical analysis of the decomposed approximate component at the 10th level presents the statistical relations 

such as min, max, STD and entropy energy (EE) of the signal for discriminate application on different signal attributes 

under both proposed power sys-tem topologies. The mathematical concepts and relationship between extracted signal 

signatures under both power network topologies are studied for unique modeling of adaptive fault identification, and 

classification that could be integrated into the existing protection relay to address the pending miss coordination 

challenges due to infeed contribution from the integrated RGES. 
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a                                                                                              b    

    
  

 
Fig. 3 - Voltage signal decomposition, (a) without WFG, (b) with WFG integrated at PCC 

 

 

     a                                                                                              b 

    
 

Fig. 4 - Current signal decomposition (a) without WFG, (b) with WFG integrated at PCC 
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The decomposed features of min, max EE, and STD of the original signal after passing through series of two-stage 

DMRWA filters at the last level produce unique detailed feature that was used to train and build an intelligent classifier 

models in order to enhance fast operational speed of unit protection adaptive relay with supervised classification 

approach as propose in this work.  

The next stage in the adaptive relay development was the deployment of all extracted SLG fault signatures after 

decomposition of the fault current and the voltage signal for the supervised machine learning of a classification 

algorithm for effective predictions of SLG faults as the most common fault types on HVTL. 90% of the extracted 

features data was used for the training while 10% was deployed for the testing in order to validate the generalization of 

the classifier model. 

 

3. Result and Discussions 

The statistical min, max, and STD results presented from the de-composed faulted voltage and current signals 

measured at PCC for the same fault location, across 11 fault types show that the current infeeds penetrations from the 

integrated RGES increases the values of STD and EE from measured decomposed current comparison study of both 

power system topologies across all ground faults as displayed in Table 2 (a - b), and Table 3(a –b), except for the 

symmetrical LLLG fault result on Table 4. These unique values were deployed for individual fault type identification, 

to distinguish be-tween the ground fault from non-ground fault signatures using the one-cycle extracted fault voltage 

and current signals features. It can be observed that the STDs of the voltage signal have higher values as compared to 

those of the current signals for both network architectures under the same faulted conditions across all ground faults 

types (SLG, LLG, and LLLG).  

Table 5 (a), 5 (b) and 6 display the obtained EE across both propose network topologies for SLG, LLG and LL 

faults across the entire HVTL, with a fault location at a step size of 20 km intervals. This produced far much higher 

values of EE with in feeds penetrations due to RGES -WFG integration on the line. The SLG faults have lower STD 

values as compared to double-line-to-ground (LLG) faults, while the LLLG fault has the highest STD. 

 

Table 2(a) - SLG fault decomposition results at 10km          Table 2(b) - SLG fault decomposition results at 10km 

 
 Fault 

Types 

 

Sig. 

HVTL STATISTIC WITHOUT  WFG 

Min (-) Max STD EE 

 Phase 

AG 

V 3.99+4 4.07+04 9290 7.54+12 

I 6.13 12.39 6.18 2.60+05 

Phase 

BG 

V 8.26+04 7.61+04 1.51+04 3.16+13 

I 8.08 9.13 6.07 2.28+05 

Phase 

CG 

V 3.62+04 4.28+04 9108 8.46+12 

I 12.48 3.33 5.58 1.30+05 

 

 

Table 3(a) - LLG fault decomposition results at 10km         Table 3(b) - LLG fault decomposition results at 10km 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fault 

type 

 

Sig 

HVTL STATISTICS WITH WFG 

Min (-) Max STD EE 

Phase 

AG 

V 3.78+04 4.16+04 9851 7.93+12 

I 6.594 14.90 7.29 3.30+05 

Phase 

BG 

V 8.14+04 6.96+04 1.40+04 3.09+13 

I 9.170 10.73 7.01 2.52+05 

Phase 

CG 

V 3.18+04 3.18+04 9490 7.78+13 

I 15.16 3.12 6.52 1.94+05 

Fault 

Types 

 

Sig 

HVTL STATISTIC WITHOUT  WFG 

Min (-) Max STD EE 

Phase 

ABG 

V 8.25+04 7.45+04 1.20+04 1.75+13 

I 7.43 10.82 6.285 2.51+05 

Phase 

BCG 

V 8.12+04 11.34+04 1.19+04 1.79+13 

I 10.33 6.629 5.98 1.83+05 

Phase 

ACG 

V 3.82+04 5.14+04 9.74+04 8.53+13 

I 9.50 8.079 6.04 2.07+05 

Fault 

Types 

 

Sig 

HVTL STATISTICS WITH WFG 

Min (-) Max STD EE 

Phase 

ABG 

V 7.819+04 6.649+04 1.043+04 1.730+13 

I 7.0385 12.512 6.671 2.740+05 

Phase 

BCG 

V 7.769+04 6.692+04 1.043+04 1.730+13 

I 11.999 6.399 6.506 2.170+05 

Phase

ACG 

V 5.656+04 5.853+04 3.050+04 1.266+13 

I 6.799 5.526 4.221 1.222+05 
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Table 4(a) - LLLG fault decomposition results at 10km    Table 4(b) - LLLG fault decomposition results at 10km  

 
Fault 

Types 

 

Sig 

HVTL STATISTIC WITHOUT  WFG 

Min Max STD EE 

ABCG V -5.55+04 5.55+04 5.346 1.38+13 

I -9.241 8.67 6.212 2.19 

 

 

The major difference lies in the discrimination of the STD values obtained from the RGES-WFG integration, 

having a much greater value for both voltage and current signals as compared to those obtained earlier without RGES-

WFG integration. This major difference can be employed in the fault classifications across varying network topologies. 

This variation in wavelet statistical STD values resulted from the injection infeed contribution from the connected 

RGE-WFG integration. The faulted phase signal statistical values from both network topologies are also distinct for the 

symmetrical LLLG fault in Table 7. 

The Table 8 result from the SLG classification model across six different classification algorithm from different 

categorized groups; the Rules functions adopted some set of rules formation based on the numerical data provided 

across feature attributes for the training of an intelligent device using either the most valuable attributes with the 

highest information relevance as seen in Rule.OneR classifier algorithm or allowing all attributes to contributes equally 

as seen in Rules.ZeroR algorithm. Another adopted tree algorithm category involves splitting all features to search for 

best feature with most useful information for prediction. The functions classifier adopted the Multilayer. Perceptron, 

Input. Mapping and Logistic classifier algorithm for the intelligent prediction using a supervised machine learning 

approach of mapping the input features to the predicted output 

Finally, the Bayes Network category is a statistical probabilistic approach of classification, which indicated the 

best-generalized performance from the Bayesian network algorithms with 99.15 % correct classification performance. 

This model was also able to discriminate SLG fault under the two proposed network topologies RGES-WFG 

integration and without. This will address the pending protection limitations due to the Miro-grid integration impact on 

the currently existing system. The operation speed of the model is also fast enough for effective response time for trip 

command signal to associated breaker for effective reliability and system dependability. 

 

 

Table 5(a) - SLG fault current entropy (EE) across the HVTL 

 
 

Distance 

Phase AG Fault   E E(1005) Phase BG Faults EE (1005) Phase CG Faults EE (1005) 

Without WFG With WFG Without  WFG With WFG Without  WFG With WFG  

10 2.605 3.296 2.284 2.516 1.297 1.9400 

30 1.319 2.437 2.031 2.095 0.962 1.2720 

50 1.826 1.967 1.868 1.865 0.763 0.9249 

70 1.650 1.691 1.764 1.728 0.630 0.3755 

90 1.504 1.506 1.697 1.639 0.537 0.5896 

110 1.418 1.292 1.652 1.580 0.472 0.5025 

130 1.319 1.302 1.599 1.540 0.429 0.4150 

150 1.257 1.230 1.567 1.506 0.397 0.4020 

170 1.223 1.185 1.551 1.487 0.374 0.3755 

190 1.223 1.147 1.556 1.475 0.365 0.3652 

Fault 

Types 

 

Sig 

HVTL STATISTICS WITH WFG 

Min (-) Max STD EE 

ABCG V -5.28+04 5.28+04 7.065 1.345+13 

I -9.157 8.58 6.1717 2.159+05 
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Table 5(b) - LLG fault current entropy (EE) across the HVTL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.  

 
Table 7: LLLG fault current entropy (EE) across the HVTL 

                                                                                                          
                                                          

Distance  

ABCG Faults  EE (1005) 

Without  WFG With WFG 

10 2.1937 2.1590 

30 1.9683 1.9300 

50 1.7933 1.7480 

70 1.6402 1.6018 

90 1.5371 1.4827 

  110 1.4419 1.3852 

130 3.4743 1.3034 

150 1.2707 1.2377 

170 1.2249 1.1793 

190 1.1733 1.1297 

                                                         

 

 

 

 

 

 

 

 

 

Distance 

Phase ABG Fault EE (1005) Phase BCG Faults EE (1005) Phase ACG Faults EE (1005) 

Without  WFG With WFG Without  WFG With WFG Without  WFG With    WFG 

10 2.511 2.740 1.833 2.170 2.066 1.222 

30 2.216 2.256 1.596 1.701 1.783 1.161 

50 2.022 1.999 1.443 1.476 1.58 1.222 

70 1.850 1.814 1.335 1.335 1.412 1.222 

90 1.763 1.686 1.251 1.238 1.293 1.222 

110 1.672 1.587 1.187 1.171 1.192 1.170 

130 1.594 1.509 1.137 1.113 1.105 1.077 

150 1.498 1.45 1.099 1.070 1.025 1.006 

170 1.467 1.399 1.061 1.035 0.972 0.943 

190 1.422 1.357 1.029 1.005 0.918 0.890 
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Table 8 - SLG Fault classified model 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

This study have been able to provide an improved adaptive protection relay algorithm through a novel hybrid 

signal processing and supervised machine learning approach to solving the pending protection coordination challenges 

in RGES integration on existing conventional system to meeting the energy sustainability problem and reduction of the 

climate change effect from the GHG emission gases from conventional generation sources.  

This study is limited to WFG micro-grid integration on the existing transmission line, future work can be explored 

with other natural green energy sources like the PV farm integration in areas where wind speed is not readily available 

or stable  
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